热休克蛋白47在肾脏纤维化中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     肾纤维化是指在各种致病因子如炎症、损伤等作用下,间质细胞及细胞间质增多,尤其是基质蛋白合成增加,基质降解受抑制造成细胞外基质(Extracellular matrix, ECM)的大量堆积导致的肾小球硬化和小管间质纤维化。它是多种慢性肾脏疾病最终导致肾功能衰竭的主要病理改变和共同通路,延缓和防止肾纤维化是防治慢性肾脏病进展的关键。胶原是ECM的主要成分,在各种肾脏纤维化疾病中合成都显著增高,它合成和沉积增加与肾脏纤维化的启动和进展有密切关系。
     热休克蛋白47(Heat shock protein 47, HSP47)是一种胶原特异性的“分子伴侣”,在胶原生物合成过程中协助前胶原修饰、折叠、装配,是胶原成熟的必要条件,其表达影响胶原产量。HSP47在多种肾脏纤维化的动物和临床疾病研究中包括高血压肾硬化模型大鼠,5/6肾脏切除大鼠模型,人类IgA肾病及糖尿病肾病肾组织等,表达都明显增高,且与胶原同步增加。并初步证实动物体内抑制其表达可减轻纤维化的程度,如HSP47反义寡聚脱氧核苷酸转染抗Thy-1肾小球肾炎大鼠,HSP47 siRNA转染UUO大鼠,都可以改善肾纤维化,提示HSP47在肾脏纤维化中的作用可能并不局限于调节胶原的合成。
     丝裂原活化蛋白激酶(Mitogen-activated protein kinase, MAPK)信号通路是介导细胞反应的重要信号系统,能将细胞外信号转导至细胞及其核内,通过保守的三级级联反应(MAPKKK-MAPKK-MAPK)激活转录因子,调节基因表达。细胞外调节蛋白激酶(extracellular signal-regulated kinase, ERK1/2)和c-Jun氨基末端激酶(c-JunNH2-terminal kinase, JNK)是它的两个主要家族成员。其中ERK1/2又被称为丝裂原活化的MAPK通路,主要功能是介导促进细胞增殖和分化;JNK主要功能是调节参与机体应激反应。体外实验证明ERK1/2,JNK信号传导通路可介导外界刺激所致的热休克蛋白合成。
     基于以上分析得知HSP47是胶原合成的特异性“分子伴侣”,其在肾脏纤维化中表达增高,且有促肾脏纤维化作用,但其作用机制可能不局限于对胶原合成的调控,MAPK信号传导通路可能参与调控HSP47的表达。为此,本实验开展如下的研究。
     目的
     利用单侧输尿管梗阻(unilateral ureteral obstruction, UUO)大鼠模型,初步观察HSP47在肾脏组织的表达情况,旨在探讨HSP47在肾小管间质纤维化中的作用。
     方法
     SD大鼠随机分为模型组(UUO组)和假手术组(Sham组),每组8只。采用单侧(左)输尿管结扎方法,建立梗阻性肾小管间质纤维化大鼠模型,Sham组只游离输尿管而不结扎。术后14天处死动物,取结扎侧肾脏,同时处死假手术组大鼠,取出肾组织。观察各组之间蛋白尿,血肌酐水平,运用HE, Masson染色观察肾脏组织形态学改变,采用免疫组化方法检测HSP47、胶原Ⅳ(CollagenⅣ)与纤维连接蛋白(Fibronectin, FN)表达的部位和变化。
     结果
     1.与假手术组比较,UUO模型组大鼠血肌酐水平升高,蛋白尿无显著差异。
     2.与假手术组比较,光镜下UUO模型组大鼠肾组织出现不同程度的肾小管扩张、间质炎症细胞浸润,间质面积增宽、部分肾小管萎缩、肾小管上皮细胞空泡样变性。
     3.Masson染色结果显示:与假手术组比较,UUO模型组大鼠肾组织胶原在肾小管周围、间质区显著增多。
     4.免疫组化结果显示:与假手术组比较,UUO模型组大鼠肾组织HSP47表达显著增加,在肾小管周围、间质区表达增加最明显;CollagenⅣ表达显著增加,在肾小管基底膜、间质区表达增加最明显;FN表达显著增加,主要表达在肾间质区。
     结论HSP47在UUO大鼠模型肾脏组织表达上调,且与胶原表达部位一致,提示HSP47促进肾间质纤维化,且该作用与其促进胶原蛋白的合成有关。
     目的
     研究HSP47在TGF-β1诱导HK-2细胞合成Collagen及FN等ECM蛋白过程中的作用,并检测其对PAI-1表达的影响,探讨HSP47在ECM合成与降解平衡中的角色。
     方法
     常规培养HK-2细胞,分为对照组、TGF-β1组、HSP47siRNA组,对照组为无血清DMEM组,TGF-p1组为TGF-p1诱导,HSP47siRNA组为HSP47siRNA与TGF-β1共同作用,RT-PCR检测HSP47、collagenⅣ、FN. PAI-1的mRNA表达,Western Blot检测HSP47、collagenⅣ、FN蛋白表达,ELISA检测PAI-1的蛋白表达。
     结果
     1.常规培养的HK-2可表达HSP47,不同浓度TGF-p1(0、2.5、5、10ng/ml)干预不同时间(12h、24h、48h), HSP47基因和蛋白表达都呈逐渐增高的趋势,10ng/ml TGF-β1干预HK-2细胞48h时HSP47在基因和蛋白水平上都表达最强。
     2.不同浓度TGF-β1 (0、5、10ng/ml)干预HK-2不同时间(12h、24h、48h), collagenⅣ、FN、PAI-1在基因,蛋白水平表达呈逐渐增高的趋势,TGF-β1(10ng/ml)作用48小时三者基因和蛋白水平表达最强。
     3.HSP47siRNA组(HSP47siRNA处理24h,再TGF-β1 10ng/ml干预48)与TGF-β1 10ng/ml干预48h比较,前者HSP47, collagenⅣ, FN, PAI-1 mRNA和蛋白的表达都明显下调。
     结论
     1.TGF-β1呈浓度和时间依赖模式上调HK-2细胞HSP47的表达。
     2.TGF-β1呈浓度和时间依赖模式上调HK-2细胞collagen IV, FN,PAI-1表达。
     3.HSP47siRNA可以下调TGF-β1诱导下HK-2细胞分泌的collagenⅣ、FN、PAI-1的mRNA和蛋白表达。
     目的
     研究丝裂原激活蛋白激酶(MAPK)途径是否介导了TGF-β1诱导HK-2细胞上调HSP47表达。方法
     应用ERK、JNK特异性抑制剂观察对TGF-p1诱导HK-2细胞上调HSP47表达的影响
     结果
     应用PD98059、SP600125分别特异性抑制MAPK途径的胞外信号调节蛋白激酶(ERK1/2)、c-Jun-氨基末端激酶(JNK)通路,对TGF-β1上调HSP47的作用有不同影响。
     1.PD98059可以抑制TGF-β1对HK-2细胞ERK信号通路的活化和HSP47的表达,且不同浓度PD98059 (25uM、50uM、75uM)对HSP47的抑制效果有差异。
     2.SP600125可以抑制TGF-β1对HK-2细胞JNK信号通路的活化和HSP47的表达,且不同浓度SP600125 (10uM、20uM、30uM)对HSP47的抑制效果无明显差异。
     结论
     ERK1/2、JNK信号通路参与介导TGF-p1上调HK-2细胞表达HSP47。
Renal fibrosis refers to the increase of interstitial cells and intercellular matrix due to pathogenic factors such as inflammation, injury, etc, particularly, the increase of matrix protein synthesis, the inhibition of matrix degradation, leading to a huge accumulation of extracellular matrix (ECM), and leading to glomerular sclerosis and tubulointerstitial fibrosis. Ultimately, it is the main pathological changes and common pathways leading to renal failure in a number of chronic kidney diseases. Prevention and delaying of renal fibrosis is the key to preventing and arresting the progression of chronic kidney disease. Collagen is the main component of ECM, it increases significantly in various renal fibrosis diseases, and its increased synthesis and deposition are closely related to renal fibrosis.
     Heat shock protein 47 is a collagen-specific "molecular chaperone". During the biosynthesis of collagen, it helps in modification, folding and assembly of procollagen. It is the necessary condition for the biosynthesis of collagen, and its expression is closely related to the collagen production.The expression of HSP47 is increased significantly in a variety of animal studies and clinical diseases of renal fibrosis, including hypertensive nephrosclerosis in rats,5/6 nephrectomy rat model, human IgA nephropathy and diabetic nephropathy, etc, and the increase is directly proportional with that of collagen. Some researches preliminarily confirmed that inhibiting its expression in animals could reduce the degree of fibrosis, for example, transfecting HSP47 antisense oligonucleotides to anti-Thy-1 glomerulonephritis rats and HSP47siRNA to UUO rats could improve renal fibrosis, suggesting that its role in renal fibrosis may not be limited to regulating collagen synthesis.
     Mitogen-activated protein kinase (Mitogen-activated protein kinase, MAPK) signaling pathway is an important signaling system mediated cell response, which can transmit extracellular signals to the cell and its nucleus through the conservative cascade 3 (MAPKKK-MAPKK-MAPK) activated transcription factors to regulate gene expression. Extracellular regulated protein kinase (extracellular signal-regulated kinase, ERK1/2) and c-Jun N-terminal kinase (c-Jun NH2-terminal kinase, JNK) are two major members of the MAPK family, in which ERK1/2 is known as the mitogen-activated MAPK pathway. Its main function is to mediate the promotion of cell proliferation and differentiation; and the main function of JNK is to participate and regulate body stress, inflammation reaction. In-vitro researches show that the MAPK signaling pathway can mediate the synthesis of heat shock protein induced by external stimuli.
     The analysis above indicated that HSP47 is a collagen-specific "molecular chaperone", its expression is increased in renal fibrosis, and it could promote renal fibrosis, its role and mechanism in renal fibrosis may not be limited to the regulation of collagen synthesis alone. MAPK signaling pathway may also be involved in the regulation of synthesis of HSP47. To this end, the following research was carried out.
     Objective:
     To observe the expression of HSP47 in renal tissues of UUO rats and investigate its role in renal interstitial fibrosis.
     Method:
     Sprague-Dawley rats were randomly divided into control and UUO groups (each group:n=8). A unilateral ureter obstruction (UUO) model was induced in male rats by ligation of the left ureter as described. Rats were sacrificed at day 14 post-surgery and the obstructed kidneys were harvested and studied. In both groups, the proteinuria, serum creatinine levels were determined, renal morphological changes were observed by HE, masson staining and the location and expression levels of HSP47, collagenlV and fibronectin(FN) were determined using immunohi stochemistry.
     Results:
     1. Compared to the sham-operated kidneys, serum creatinine levels increased in the rats of UUO model group, but there was no significant difference in terms of proteinuria levels.
     2. Compared to the sham-operated kidneys, varying degrees of tubular dilatation or atrophy, infiltration of inflammatory cells in interstitial areas, expansion of interstitial space, and bubble-like degeneration of tubular epithelial cells were observed in the rats of UUO model group under light microscopy.
     3. The results of Masson staining demonstrated that collagen significantly increased around the renal tubule and in interstitial areas in the rats of UUO model group compared to sham-operated kidneys.
     4. Compared to the sham-operated kidneys, the results of immunohistochemistry demonstrated that the expression of HSP47 significantly increased in the renal tissue of UUO rats model, especially around the renal tubule and in interstitial areas; The expression of collagenⅣsignificantly increased in the renal tissue of UUO rats model, especially in renal tubular basement membrane and interstitial areas; The expression of FN significantly increased, especially in interstitial areas.
     Conclusion:The expression of HSP47 increased in the kidneys of UUO rats; The location of expression of HSP47 was also the same as that of expressed collagen. These hint HSP47 could probably promote renal interstitial fibrosis, and the effect was related to promote biosynthesis of collagen.
     Objective:
     To study the role of HSP47 in the synthesis of collagen, FN and other ECM proteins by HK-2 cells induced by TGF-β1, and determine its effect on PAI-1 expression, to explore its role in the balance of ECM synthesis and degradation.
     Method:
     Human proximal tubular epithelial cells (HK-2) were divided into three groups:control (only culture medium), TGF-β1 (treated with TGF-β1) and HSP47siRNA (treated with TGF-β1 and HSP47siRNA). The expressions of HSP47、collagenⅣ、FN、PAI-1 mRNA and HSP47、collagenⅣ、FN protein were detected by RT-PCR and Western blot respectively.PAI-1 protein was detected by ELISA.
     Results:
     1. HK-2 can express HSP47 under normal medium. The expression of HSP47 gene and protein gradually increased with different concentrations of TGF-β1 (0、2.5、5、10ng/ml) intervening with HK-2 at different times(12h、24h、48h), the gene and protein level of HSP47 were highest with 10ng/ml TGF-β1 intervening at 48h on HK-2 cells.
     2. Due to the effect of different concentrations of TGF-β1 (0、2.5、5、10ng/ml)at different time points(12h、24h、48h), the levels of gene and protein of collagenⅣ, FN, PAI-1 gradually increased, the gene and protein levels of collagenⅣ, FN, PAI-1 were strongest with TGF-β1 10ng/ml intervening at 48h on HK-2 cells.
     3. HSP47siRNA Group (HSP47siRNA intervenes at 24h, then TGF-β1 10ng/ml intervenes at 48h) can significantly reduce the expression of HSP47, collagenⅣ, FN, PAI-1 mRNA and protein compared to the intervention only by TGF-β1 on HK-2 cells.
     Conclusion:
     l.TGF-β1 can upregulate the expression of HSP47 in a concentration and time dependent mode on HK-2 cell.
     2. TGF-β1 can upregulate the expression of collagenⅣ, FN, PAI-1 in a concentration and time dependent mode on HK-2 cell.
     3. HSP47siRNA can reduce the expression of collagenⅣ, FN, PAI-1 mRNA and protein induced by TGF-β1 on HK-2.
     Objective:
     To investigate whether mitogen-activated protein kinase (MAPK) channels mediate the up-regulation of expression of HSP47 in HK-2 cells induced by TGF-β1.
     Methods:
     MAPK inhibitor was applied to observe the impact of up-regulation of expression of HSP47 in HK-2 cells induced by TGF-β1.
     Results:
     PD98059 and SP600125 can specifically inhibit the MAPK pathways:extracellular signal-regulated protein kinase (ERK1/2) and c-Jun-N-terminal kinase (JNK) respectively, and have different effects on the expression of HSP47 up-regulated by TGF-β1.
     1. PD98059 can inhibit the activation of ERK1/2 signaling pathway and the up-regulation of expression of HSP47 induced by TGF-β1 on HK-2 cells, and it was different among the effect with different concentrations of PD98059 (25uM、50uM、75uM)
     2. SP600125 can inhibit the activation of JNK signaling pathway and the up-regulation of expression of HSP47 induced by TGF-β1 on HK-2 cells, and there was no difference among the effect with different concentrations of SP600125 (10uM、20uM、30uM)
     Conclusion:
     ERK1/2、JNK signaling pathway may be involved in mediating the up-regulation of expression of HSP47 induced by TGF-β1 in HK-2 cells.
引文
[1]Couser WG.Chronic kidney disease the promise and the perils.J Am Soc Nephrol.2007; 18(11):2803-2805.
    [2]张路霞,左力,徐国宾.北京市石景山地区中老年人群中慢性肾脏病的流行病学研究.中华肾脏病杂志.2006;22(2):67-71.
    [3]Hendershot LM, Bulleid NJ.Protein-specific chaperones:the role of hsp47 begins to gel.Curr Biol.2000;10(24):R912-915.
    [4]Nagai N, Hosokawa M, Itohara S, et al.Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis.J Cell Biol.2000;150(6):1499-1506.
    [5]Razzaque MS, Taguchi T.Collagen-binding heat shock protein (HSP) 47 expression in anti-thymocyte serum (ATS)-induced glomerulonephritis.J Pathol.1997;183(1):24-29.
    [6]Razzaque MS, Shimokawa I, Nazneen A, et al.Life-long dietary restriction modulates the expression of collagens and collagen-binding heat shock protein 47 in aged Fischer 344 rat kidney.Histochem J.1999;31(2):123-132.
    [7]Razzaque MS, Azouz A, Shinagawa T, et al.Factors regulating the progression of hypertensive nephrosclerosis.Contrib Nephrol.2003;139:173-186.
    [8]MS R, A K, T H.Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy.Nephron 1998;80(4):434-443.
    [9]M S, K K, H T.Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experim-ental glomerulonephritis.1998;78(8):967-972.
    [10]Xia Z, Abe K, Furusu A, et al.Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47.Am J Nephrol.2008;28(1):34-46.
    [11]姜勇,龚小卫.丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础.生理学 报.2000;52(4):267-271.
    [12]Flanc RS, Ma FY, Tesch GH, et al.A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis.Kidney Int.2007;72(6):698-708.
    [13]Ma FY, Flanc RS, Tesch GH, et al.Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat.Lab Invest.2009;89(4):470-484.
    [14]Ma FY, Sachchithananthan M, Flanc RS, et al.Mitogen activated protein kinases in renal fibrosis.Front Biosci (Schol Ed).2009;1:171-187.
    [15]Adachi S, Tokuda H, Matsushima-Nishiwaki R, et al.Involvement of Rho-kinase in prostaglandin E(1)-stimulated VEGF synthesis through stress-activated protein kinase/c-Jun N-terminal kinase in osteoblast-like MC3T3-E1 cells.Prostaglandins Other Lipid Mediat.2009;90(1-2):1-6.
    [16]Dorion S, Landry J. Activation of the mitogen-activated protein kinase pathways by heat shock.Cell Stress Chaperones.2002;7(2):200-206.
    [17]Hatakeyama D, Kozawa O, Niwa M, et al.Upregulation by retinoic acid of transforming growth factor-beta-stimulated heat shock protein 27 induction in osteoblasts:involvement of mitogen-activated protein kinases.Biochim Biophys Acta.2002;1589(1):15-30.
    [18]Hayashi K, Takai S, Matsushima-Nishiwaki R, et al.(-)-Epigallocatechin gallate reduces transforming growth factor beta-stimulated HSP27 induction through the suppression of stress-activated protein kinase/c-Jun N-terminal kinase in osteoblasts.Life Sci.2008;82(19-20):1012-1017.
    [19]Kyriakis JM, Avruch J.Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation.Physiology reviews.2001;81(2):806-869.
    [20]AH B-H, MT C, DR M, et al.Cytokines in epithelial-mesenchymal transition:a new insight into obstructive nephropathy.The Journal of urology.2008 180(2):461-468.
    [21]M N.Mechanisms of tubulointerstitial injury in the kidney:final common pathways to end-stage renal failure.Internal medicine.2004;43(1):9-17.
    [22]Allison A. Eddy. Molecular basis of renal fibrosis. Pediatr Nephrol. 2000; 15:290-301.
    [23]Franck Verrecchia, Alain Mauviel. Transforming growth factor-P and fbrosis. World J Gastroenterol.2007; 13(22):3056-3062.
    [24]王伟铭,陈永熙,陈楠.慢性肾脏病与肾脏纤维化和炎症.内科理论与实践.2007;2(6):417-419.
    [25]AH B-H, MT C, DR M.Cytokines in epithelial-mesenchymal transition:a new insight into obstructive nephropathy.The Journal of urology.2008; 180(2).
    [26]Senatorski G, Paczek L, Kropiewnicka E, et al.Noninvasive monitoring of chronic glomerulonephritides progression].Pol Merkur Lekarski.2002;13 Suppl 1:21-6; discussion 6-7.
    [27]Strutz F, Muller GA.Interstitial pathomechanisms underlying progressive tubulointerstitial damage.Kidney Blood Press Res.1999;22(1-2):71-80.
    [28]Bascands JL, Schanstra JP.Obstructive nephropathy:insights from genetically engineered animals.Kidney Int.2005;68(3):925-937.
    [29]Klahr S, Morrissey J.Obstructive nephropathy and renal fibrosis.Am J Physiol Renal Physiol.2002;283(5):F861-875.
    [30]Eddy AA.Molecular Insights Into Renal Interstitial Fibrosis.Am Soc Nephrol.1996;7:2495-2508.
    [31]Razzaque MS, Le VT, Taguchi T.Heat shock protein 47 and renal fibrogenesis.Contrib Nephrol.2005;148:57-69.
    [32]Nagata K.Expression and function of heat shock protein 47:a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol.1998; 16(7): 379-386.
    [33]Sauk JJ, Nikitakis N, Siavash H.Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target.Front Biosci.2005;10:107-118.
    [34]Marutani T, Yamamoto A, Nagai N, et al.Accumulation of type IV collagen in dilated ER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP.J Cell Sci.2004;117(24):5913-5922.
    [35]Ishida Y, Kubota H, Yamamoto A.Type I Collagen in Hsp47-null Cells Is Aggregated in Endoplasmic Reticulum and Deficient in N-Propeptide Processing and Fibrillogenesis. Mol BiolCell.2006;17(5):2346-2355.
    [36]Rocnik EF, van der Veer E, Cao H, et al.Functional linkage between the endoplasmic reticulum protein Hsp47 and procollagen expression in human vascular smooth muscle cells.J Biol Chem.2002;277(41):38571-38578.
    [37]Sunamoto M, Kuze K, Iehara N. Expression of heat shock protein 47 is increased in remnant kidney and correlates with disease progression. International journal of experimental pathylogy,1998,79(3):133-140.
    [38]Liu D, Razzaque MS, Cheng M, et al.The renal expression of heat shock protein 47 and collagens in acute and chronic experimental diabetes in rats.Histochem J.2001;33(11-12):621-628.
    [39]Moriyama T, Kawada N, Ando A, et al.Up-regulation of HSP47 in the mouse kidneys with unilateral ureteral obstruction.Kidney Int.1998;54(1):110-119.
    [40]Razzaque MS, Kumatori A, Harada T, et al.Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy.Nephron.1998;80(4):434-443.
    [41]A N, T N, MS R.Increased expression of collagen-binding heat shock protein 47 in human and experimentally-induced rat crescentic glomerulonephritis:its possible role in fibrotic process.Acta Med Nagasaki Ensia.2000;45(1/2):17-24.
    [42]K A, Ozonoy, M M.Interstitial expression heat shock protein 47 and alpha-smooth muscle aetln in renal allograft failure.Nephrol Dial Tramplmt.2000;15(4):529-535.
    [43]Eddy AA, Fogo AB.Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action.J Am Soc Nephrol.2006;17(11):2999-3012.
    [44]Ha H, Oh EY, Lee HB.The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases.Nat Rev Nephrol.2009;5(4):203-211.
    [45]AA.Plasminogen activator inhibitor-1 and the kidney.Am J Physiol Renal Physiol.2002;283(2):209-220.
    [46]Oda T, Jung YO, Kim HS, et al.PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction.Kidney Int.2001;60(2):587-596.
    [47]Matsuo S, Lopez-Guisa JM, Cai X, et al.Multifunctionality of PAI-1 in fibrogenesis:evidence from obstructive nephropathy in PAI-1-overexpressing mice.Kidney Int.2005;67(6):2221-2238.
    [48]Klahr S, Morrissey J.Obstructive nephropathy and renal fibrosis.Am J Physiol Renal Physiol.2002;283(5):861-875.
    [49]Vongwiwatana A, Tasanarong A, Rayner DC, et al.Epithelial to mesenchymal transition during late deterioration of human kidney transplants:the role of tubular cells in fibrogenesis.Am J Transplant.2005;5(6):1367-1374.
    [50]Chatziantoniou C, Dussaule J-C.Insights into the mechanisms of renal fibrosis:is it possible to achieve regression?Am J Physiol Renal Physiol.2005;289:227-234.
    [51]Kyrlakis MJM, Sato JA, Muragaki Y.Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.J Clin Invest.2003;112(10):1486-1494.
    [52]M H, HJ K, HJ N.TGF-betal siRNA suppresses the tubulointerstitial fibrosis in the kidney of ureteral obstruction.Experimental and molecular pathology.2006; 81(1):48-54.
    [53]Kanalas J, Hopfer U.Effect of TGF-beta 1 and TNF-alpha on the plasminogen system of rat proximal tubular epithelial cells. Journal of the American Society of Nephrology.1997;8:184-192.
    [54]M S, K K, H T.Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephrits. Lab Invest.1998;78(7):967-972.
    [55]Razzaque MS, Shimokawa I, Nazneenl A.Life-long dietary restriction modulates the expression of collagens and collagen-binding heat shock protein 47 in aged Fischer 344 rat kidney.The Histochemical Journal.1999;31(2):123-132.
    [56]Hagiwara S, Iwasaka H, Matsumoto S.Introduction of antisense oligonucleotides to heat shock protein 47 prevents pulmonary fibrosis in lipopolysaccharide-induced pneumopathy of the rat.European Journal of Pharmacology.2007; 564: 174-180.
    [57]Wang Z, Li L.Adenovirus-mediated RNA interference against collagen-specific molecular chaperone 47-KDa heat shock protein suppresses scar formation on mouse wounds.Cell Biology International.2008;32:483-493.
    [58]Chen J-J, Zhao S, Cen Y.Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells.British Journal of Dermatology.2007; 156: 1188-1195.
    [59]Nakayama S, Mukae H, Sakamoto N.Pirfenidone inhibits the expression of HSP47 in TGF-β1-stimulated human lung fibroblasts.Life Sciences.2008;82: 210-217.
    [60]Nishino T, Miyazaki M, Abe K.Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats.Kidney International.2003;64:887-896.
    [61]F M, S P, RG R.Integrin-mediated stimulation of monocyte chemotactic protein-1 expression.FEBS Lett.1997;414:221-225.
    [62]JA G-V, E S, A A.Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by integrin-dependent cell adhesion.Biol Reprod.1999;61:548-552.
    [63]Moriyama T, Kawada N, Ando A.Up-regulation of HSP47 in the mouse kidneys with unilateral uretaral obstruction.kidney internal.1998;54:110-119.
    [64]Brown KE, Broadhurst KA, Mathahs MM.Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver.Laboratory Investigation 2005;85:789-797.
    [65]Banyai L, Trexler M, Koncz S, et al.The collagen-binding site of type-Ⅱ units of bovine seminal fluid protein PDC-109 and fibronectin.Eur J Biochem.1990; 193 (3):801-806.
    [66]Colombi M, Zoppi N, De Petro G, et al.Matrix assembly induction and cell migration and invasion inhibition by a 13-amino acid fibronectin peptide.J Biol Chem.2003;278(16):14346-14355.
    [67]Hocking DC, Smith RK, McKeown-Longo PJ.A novel role for the integrin-binding Ⅲ-10 module in fibronectin matrix assembly. J Cell Biol.1996; 133(2):431-444.
    [68]Owens RJ, Baralle FE.Mapping the collagen-binding site of human fibronectin by expression in Escherichia coli.EMBO J.1986;5(11):2825-2830.
    [69]Kadler KE, Hill A, Canty-Laird EGCollagen fibrillogenesis:fibronectin, integrins, and minor collagens as organizers and nucleators.Curr Opin Cell Biol.2008;20(5):495-501.
    [70]Dzamba BJ, Wu H, Jaenisch R, et al.Fibronectin binding site in type I collagen regulates fibronectin fibril formation.J Cell Biol.1993;121(5):1165-1172.
    [71]Zoppi N, Gardella R, De Paepe A, et al.Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate alpha2betal integrin, and recruit alphavbeta3 Instead of alpha5betal integrin.J Biol Chem.2004;279(18):18157-18168.
    [72]Chernousov MA, Stahl RC, Carey DJ.Schwann cells use a novel collagen-dependent mechanism for fibronectin fibril assembly.J Cell Sci.1998;111 (Pt 18):2763-2777.
    [73]Feder ME, Hofmann GE.Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology.Annu Rev Physiol.1999; 61:243-282.
    [74]Kristensen TN, Sorensen JG, Loeschcke V.Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life.J Genet.2003;82(3):89-94.
    [75]Sasaki H, Sato T, Yamauchi N.Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1.The Journal of Immunology.2002; 168(10):5178-5183.
    [76]Tutar L, Tutar Y.Heat Shock Proteins; An Overview.Curr Pharm Biotechnol.
    [77]Aldrian S, Kindas-Mugge I, Trautinger F, et al.Overexpression of Hsp27 in a human melanoma cell line:regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system.Cell Stress Chaperones.2003;8(3):249-257.
    [78]Uchiyama T, Atsuta H, Utsugi T.HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function. Atherogenesis.2007; 190(2):321-329.
    [79]Zhao R, Shen GX.Involvement of heat shock factor-1 in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 in vascular endothelial cells.Diabetes.2007;56(5):1436-1444.
    [80]Yamamoto K, Takeshita K, Shimokawa T.Plasminogen activator inhibitor-1 is a major stress-regulated gene:Implications for stress-induced thrombosis in aged individuals.PNAS.2002;99(2):893.
    [81]M KJ, J A.Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol Rev.2001;81 (2):807-69.
    [82]Dorion S, Landry J. Activation of the mitogen-activated protein kinase pathways by heat shock.Cell Stress & Chaperones.2002;7(2):200-206.
    [83]Robinson MJ, Cobb MH.Mitogen-activated protein kinase pathways.Current Opinion in Cell Biology.1997;9:180-186.
    [84]Okamoto T, Takahashi S, Nakamura E.Transforming growth factor-bl induces matrix metalloproteinase-9 expression in human meningeal cells via ERK and Smad pathways.Biochemical and Biophysical Research Communications.2009; 383:475-479.
    [85]Verzola D, Villaggio B, Procopio V, et al.Androgen-mediated apoptosis of kidney tubule cells:role of c-Jun amino terminal kinase.Biochem Biophys Res Commun.2009;387(3):531-536.
    [86]m.Kyrlakis J, avruch J.Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation. Physiology reviews.2001;81(2):808-869.
    [87]Ravingerova T, Barancik M, Strniskova M.Mitogen-activated protein kinases:A new therapeutic target in cardiac pathology.Molecular and Cellular Biochemistry.2003;247:26071-26077.
    [88]Robinson MJ, Cobb MH.Mitogen-activated protein kinase pathways.Curr Opin Cell Biol.1997;9(2):180-186.
    [89]Bokemeyer D, Guglielmi KE, McGinty A, et al.Activation of extracellular signal-regulated kinase in proliferative glomerulonephritis in rats.J Clin
    Invest.1997; 100(3):582-588.
    [90]Masaki T, Stambe C, Hill PA, et al.Activation of the extracellular-signal regulated protein kinase pathway in human glomerulopathies.J Am Soc Nephrol.2004;15(7):1835-1843.
    [91]Hayashida T, Poncelet AC, Hubchak SC, et al.TGF-betal activates MAP kinase in human mesangial cells:a possible role in collagen expression.Kidney Int.1999;56(5):1710-1720.
    [92]Suzuki H, Uchida K, Nitta K, et al.Role of mitogen-activated protein kinase in the regulation of transforming growth factor-beta-induced fibronectin accumulation in cultured renal interstitial fibroblasts.Clin Exp Nephrol.2004; 8(3):188-195.
    [93]Mandal SK, Rao LV, Tran TT, et al.A novel mechanism of plasmin-induced mitogenesis in fibroblasts.J Thromb Haemost.2005;3(1):163-9.
    [94]Ma FY, Flanc RS, Tesch GH, et al.A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis.J Am Soc Nephrol.2007;18(2):472-484.
    [95]Park SJ, Jeong KS.Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats.Biochem Biophys Res Commun.2004;323(1):1-8.
    [96]Borst DR, Pratt DW, Schafer M.Molecular recognition in the gas phase. Dipole-bound complexes of benzonitrile with water, ammonia, methanol, acetonitrile, and benzonitrile itself. Phys Chem.2007;9(32):4563-4571.
    [97]Morano KA, Thiele DJ.Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals.Gene Expr.1999; 7(4-6):271-282.
    [98]Pirkkala L, Nykanen P, Sistonen L.Roles of the heat shock transcription factors in regulation of the heat shock response and beyond.FASEB J.2001;15(7): 1118-1131.
    [99]Sakurai H.Control of stress response by heat shock transcription factor. Seikagaku.2005;77(4):347-350.
    [100]Voellmy R.On mechanisms that control heat shock transcription factor activity in metazoan cells.Cell Stress Chaperones.2004;9(2):122-133.
    [101]Chu B, Soncin F, Price BD, et al.Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1.J Biol Chem.1996;271 (48): 30847-30857.
    [102]Davis RJ.Signal transduction by the JNK group of MAP kinases.Cell.2000; 103(2):239-252.
    [103]He B, Meng YH, Mivechi NF.Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock.Mol Cell Biol.1998;18(11):6624-6633.
    [104]Kim J, Nueda A, Meng YH, et al. Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem.1997;67(1):43-54.
    [105]Knauf U, Newton EM, Kyriakis J, et al.Repression of human heat shock factor 1 activity at control temperature by phosphorylation.Genes Dev.1996;10(21):2782-2793.
    [106]Chen YC, Tsai SH, Shen SC, et al.Alternative activation of extracellular signal-regulated protein kinases in curcumin and arsenite-induced HSP70 gene expression in human colorectal carcinoma cells.Eur J Cell Biol.2001;80(3):213-221.
    [107]Hung JJ, Cheng TJ, Lai YK, et al.Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells.J Biol Chem.1998;273(48):31924-31931.
    [108]Y W, C L, X W.Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages.Biochem Biophys Res Commun. 2002;296(3):742-748.
    [109]Park J, Liu AY. JNK phosphorylates the HSF1 transcriptional activation domain:
    role of JNK in the regulation of the heat shock response. J Cell Biochem.2001; 82(2):326-338.
    [110]Adler V, Schaffer A, Kim J, et al.UV irradiation and heat shock mediate JNK activation via alternate pathways.J Biol Chem.1995;270(44):26071-26077.
    [111]Taylor AR, Robinson MB, Gifondorwa DJ, et al. Regulation of heat shock protein 70 release in astrocytes:role of signaling kinases.Dev Neurobiol.2007; 67(13):1815-1829.
    [112]Natsume H, Adachi S, Takai S, et al.(-)-Epigallocatechin gallate attenuates the induction of HSP27 stimulated by sphingosine 1-phosphate via suppression of phosphatidylinositol 3-kinase/Akt pathway in osteoblasts.Int J Mol Med.2009; 24(2):197-203.
    [113]Oguro A, Sakurai T, Fujita Y, et al.The molecular chaperone HSP47 rapidly senses gravitational changes in myoblasts.Genes Cells.2006;11(11):1253-1265.
    [114]Pan H, Halper J.Regulation of heat shock protein 47 and type Ⅰ procollagen expression in avian tendon cells.Cell Tissue Res.2003;311(3):373-382.
    [115]Sasaki H.Induction of Heat Shock Protein 47 Synthesis by TGF-β1 and IL-1 Via Enhancement of the Heat Shock Element Binding Activity of Heat Shock Transcription Factor 1.The Journal of Immunology.2002;168:5178-5183.
    [116]S(?)rensen JG, Kristensen TN, Loeschckel V.The evolutionary and ecological role of heat shock proteins.Ecology Letters.2003;6:1025-1037.
    [117]Tian Y-C, Chen Y-C, Chang C-T.Epidermal growth factor and transforming growth factor-β1 enhance HK-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway.Experimental cell research.2007;313:2367-2377.
    [118]Yan J-d, Yang S, Zhang J.BMP6 reverses TGF-β1-induced changes in HK-2 cells:implications for the treatment of renal fbrosis.Acta Pharmacologica Sinica.2009;30:994-1000.
    [1]Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs. J Mol Biol.1974;84 (3):389-398.
    [2]Lindquist S, Craig EA. The Heat-Shock Proteins. Annual Review of Genetis. 1988;22:631-677.
    [3]W CS, J DJ, W GE. Heat shock proteins in thermotolerance and other cellular physiological processes. Cancer Research.1987;47:5249-5255.
    [4]钟文英,普雄明.热休克蛋白的分子生物学研究进展.医学综述.2005;11(2):148-150.
    [5]靳远祥,陈玉银.热休克蛋白的研究进展及其应用.科技通报.2002;18(2):157-163.
    [6]Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem.1993;62:349-384.
    [7]Taguchi T, Razzaque MS. The collagen-specific molecular chaperone HSP47:is there a role in fibrosis? Trends in Molecular Medicine.2006;13(2):45-53.
    [8]J LP, R GD. Pretreatment induced thermo tolerance in lighbrown app lemoth and associated induction of heat shock protein synthesis. Entomo logical Society of America.1997;90(1):199-204.
    [9]Sakurai H. Control of stress response by heat shock transcription factor. Seikagaku. 2005;77(4):347-350.
    [10]I MR. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Development.1998;12(24):3788-3796.
    [11]Sorger PK, Nelson HC. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell.1989;59(5):807-813.
    [12]Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones.2004;9(2):122-133.
    [13]Sorger PK, Lewis MJ, Pelham HR. Heat shock factor is regulated differently in yeast and HeLa cells. Nature.1987;329(6134):81-84.
    [14]Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell. 1988;54(6):855-864.
    [15]Jurivich DA, Sistonen L, Kroes RA, et al. Effect of sodium salicylate on the human heat shock response. Science.1992;255(5049):1243-1245.
    [16]Lee BS, Chen J, Angelidis C, et al. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci U S A.1995;92(16):7207-7211.
    [17]Hershko A. Ubiquitin:roles in protein modification and breakdown. Cell. 1983;34(1):11-12.
    [18]Cotto JJ, Kline M, Morimoto RI. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem.1996;271(7):3355-3358.
    [19]Chu B, Soncin F, Price BD, et al. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem. 1996;271(48):30847-30857.
    [20]Chu B, Zhong R, Soncin F, et al. Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem. 1998;273(29):18640-18646.
    [21]Kline MP, Morimoto RI. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol. 1997; 17(4):2107-2015.
    [22]Audibert F. Adjuvants for vaccines, a quest. Int Immunopharmacol. 2003;3(8):1187-1193.
    [23]J A, L GA, R V. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science.1986;232:522-524.
    [24]D MD, T KP, D SK. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proceedings of the National Academy of Sciences of United States of America.1990;87(10):3748-3752.
    [25]Sangwan V, Orvar BL, Beyerly J, et al. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J.2002;31(5):629-638.
    [26]Sung DY, Kaplan F, Lee KJ, et al. Acquired tolerance to temperature extremes. Trends Plant Sci.2003;8(4):179-187.
    [27]王海鸿,雷仲仁.昆虫热休克蛋白的研究进展.中国农业科学.2005;38(10):2023-2034.
    [28]Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology.1997;9:180-186.
    [29]范衡宇,超佟,孙青原.丝裂原活化蛋白激酶(MAPK)信号通路的研究进展.动物学杂志.2002;37(5):98-102.
    [30]Ravingerova T, Neckar J, Kolar F. Ischemic tolerance of rat hearts in acute and chronic phases of experimental diabetes. Mol Cell Biochem. 2003;249(1-2):167-174.
    [31]刘辉,董兆君MAPK/ERK信号通路与学习记忆功能.国际神经病学神经外科学杂志.2005;32(5):480-482.
    [32]Bokemeyer D, Guglielmi KE, McGinty A, et al. Activation of extracellular signal-regulated kinase in proliferative glomerulonephritis in rats. J Clin Invest. 1997;100(3):582-588.
    [33]Bokemeyer D, Panek D, Kramer HJ, et al. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2002;13(6):1473-1480.
    [34]Mandal SK, Rao LV, Tran TT, et al. A novel mechanism of plasmin-induced mitogenesis in fibroblasts. J Thromb Haemost.2005;3(1):163-169.
    [35]Masaki T, Stambe C, Hill PA, et al. Activation of the extracellular-signal regulated protein kinase pathway in human glomerulopathies. J Am Soc Nephrol. 2004;15(7):1835-1843.
    [36]Suzuki H, Uchida K, Nitta K, et al. Role of mitogen-activated protein kinase in the regulation of transforming growth factor-beta-induced fibronectin accumulation in cultured renal interstitial fibroblasts. Clin Exp Nephrol. 2004;8(3):188-195.
    [37]t Hart LM, Ruige JB, Dekker JM, et al. Altered beta-cell characteristics in impaired glucose tolerant carriers of a GAA trinucleotide repeat polymorphism in the frataxin gene. Diabetes.1999;48(4):924-926.
    [38]Knauf U, Newton EM, Kyriakis J, et al. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 1996;10(21):2782-2793.
    [39]Kim J, Nueda A, Meng YH, et al. Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem. 1997;67(1):43-54.
    [40]He B, Meng YH, Mivechi NF. Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol.1998;18(11):6624-6633.
    [41]Chen YC, Tsai SH, Shen SC, et al. Alternative activation of extracellular signal-regulated protein kinases in curcumin and arsenite-induced HSP70 gene expression in human colorectal carcinoma cells. Eur J Cell Biol. 2001;80(3):213-221.
    [42]Gupta S, Campbell D, Derijard B, et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science.1995;267(5196):389-393.
    [43]Yang DD, Conze D, Whitmarsh AJ, et al. Differentiation of CD4+ T cells to Thl cells requires MAP kinase JNK2. Immunity.1998;9(4):575-585.
    [44]Dunn C, Wiltshire C, MacLaren A, et al. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal.2002;14(7):585-593.
    [45]Berra L, Panigada M, De Marchi L, et al. New approaches for the prevention of airway infection in ventilated patients. Lessons learned from laboratory animal studies at the National Institutes of Health. Minerva Anestesiol. 2003;69(5):342-347.
    [46]L T, W P, I H. Mitogen-activated protein kinase kinase 7 is activated during low potassium-induced apoptosis in rat cerebel lar granule neurons. Neurosci Lett. 2002;320:29-32.
    [47]Maroney AC, Finn JP, Bozyczko-Coyne D, et al. CEP-1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC 12 cells from death evoked by three distinct insults. J Neurochem. 1999;73(5):1901-1912.
    [48]Troy CM, Rabacchi SA, Xu Z, et al. beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem.2001;77(1):157-164.
    [49]Xu Z, Kukekov NV, Greene LA. Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feed-forward loop. Mol Cell Biol. 2005;25(22):9949-9959.
    [50]Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239-252.
    [51]Wilhelm M, Xu Z, Kukekov NV, et al. Proapoptotic Nix activates the JNK pathway by interacting with POSH and mediates death in a Parkinson disease model. J Biol Chem.2007;282(2):1288-1295.
    [52]Flanc RS, Ma FY, Tesch GH, et al. A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis. Kidney Int.2007;72(6):698-708.
    [53]Ma FY, Flanc RS, Tesch GH, et al. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J Am Soc Nephrol. 2007;18(2):472-484.
    [54]Park SJ, Jeong KS. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats. Biochem Biophys Res Commun.2004;323(1):1-8.
    [55]Stambe C, Atkins RC, Tesch GH, et al. The role of p38alpha mitogen-activated protein kinase activation in renal fibrosis. J Am Soc Nephrol.2004;15(2):370-379.
    [56]Dai R, Frejtag W, He B, et al. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem.2000;275(24):18210-18218.
    [57]Wang Y, Li C, Wang X. Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages. Biochemical and Biophysical Research Communications 2002;296(3):742-748.
    [58]Park J, Liu AY. JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response. J Cell Biochem. 2001;82(2):326-338.
    [59]Adler V, Schaffer A, Kim J, et al. UV irradiation and heat shock mediate JNK activation via alternate pathways. J Biol Chem.1995;270(44):26071-26077.
    [60]Taylor AR, Robinson MB, Gifondorwa DJ, et al. Regulation of heat shock protein 70 release in astrocytes:role of signaling kinases. Dev Neurobiol. 2007;67(13):1815-1829.
    [61]Gabai V, Yaglom Ja, volloch v. Hsp72-Mediated Suppression of c-Jun N-Terminal Kinase Is Implicated in Development of Tolerance to Caspase-Independent Cell Death. Molecular and cellular biology.2000;21(18):6826-6836.
    [62]HS P, JS L, SH H. Hsp72 fuctions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J.2001;20:446-456.
    [63]yoshiko M, motoko T, park Ys. Acrolein induces Hsp72 via both PKC/JNK and calcium signaling pathways in human umbilical vein endothelial cells. Free radical research. Free radical research 2005;39(5):507-512.
    [64]李茂深.结缔组织生化.医学生物化学.1998:834-53.
    [65]M K, A T, JI G. Cell surface-associated proteins which bind native type IV collagen or gelatin. J Biol Chem.1984;259:5912-5922.
    [66]Hirayoshi K, Kudo H, Takechi H, et al. HSP47:a tissue-specific, transformation-sensitive, collagen-binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol.1991;11(8):4036-4044.
    [67]Hosokawa N, Hohenadl C, Satoh M, et al. HSP47, a collagen-specific molecular chaperone, delays the secretion of type Ⅲ procollagen transfected in human embryonic kidney cell line 293:a possible role for HSP47 in collagen modification. J Biochem.1998;124(3):654-662.
    [68]K H, H K, H T. HSP47:A tissue-specific transformation-sensitive, collagen-binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol. 1991;11:4036-4044.
    [69]Satoh M, Hirayoshi K, Yokota S, et al. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol. 1996;133(2):469-483.
    [70]Hosokawa N, Takechi H, Yokota S, et al. Structure of the gene encoding the mouse 47-kDa heat-shock protein (HSP47). Gene.1993;126(2):187-193.
    [71]Hendershot LM, Bulleid NJ. Protein-specific chaperones:the role of hsp47 begins to gel. Curr Biol.2000; 10(24):912-915.
    [72]Koide T, Takahara Y, Asada S, et al. Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J Biol Chem. 2002;277(8):6178-6182.
    [73]T K, S A, Y T. Specific recognition of the collagen triple helix by chaperone HSP47:minimal structura requirement and spatial molecular orientation. J Biol Chem2006;281 (66):3432-3438.
    [74]Koide T, Asada S, Nagata K. Substrate recognition of collagen-specific molecular chaperone HSP47. Structural requirements and binding regulation. J Biol Chem. 1999;274(49):34523-34526.
    [75]Ellis RJ, Hartl FU. Principles of protein folding in the cellular environment. Curr Opin Struct Biol.1999;9(1):102-110.
    [76]Nagata K. Expression and function of heat shock protein 47:A collagen-specific molecular chaperone in the endoplasmic Matrix Biol.1998; 16:379-386.
    [77]Nagata K. Hsp47:a collagen-specific molecular chaperone. Trends Biochem. 1996;21:21-26.
    [78]Satoh M, Hirayoshi K, Yokota S. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol.1996; 133: 469-483.
    [79]Thomson CA, s V. Ananthanarayanan. Structure-function studies on Hsp47: pH-dependent inhibition of collagen fibril formation in vitro. Biochem J. 2000;349:877-883.
    [80]K N. Expression and function of heat shock protein 47:A collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol.1998;16(7):379-386.
    [81]Sauk JJ, Nikitakis N, Siavash H. HSP47:a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Frontiers in Bioscience.2005; 10(2) :107-118.
    [82]Nagai N, Hosokawa M, Itohara S. Embryonic lethality of molecular chaperone HSP47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol.2000;150(6):1499-1505.
    [83]Marutani T, Yamamoto A, Nagai N. Accumulation of type Ⅳ collagen in dilated ER leads to apoptosis in HSP47-knockout mouse embryos via induction of CHOP. Journal of Cell Science.2004;117(24):5913-5922.
    [84]Ishida Y, Kubota H, Yamamoto A. Type Ⅰ collagen in HSP47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol BiolCell.2006;175(5):2346-2355.
    [85]Rocnik EF, Veer Evd, Cao. H. Functional Linkage between the Endoplasmic Reticulum Protein HSP47 and Procollagen Expression in Human Vascular Smooth Muscle Cells. The journal of biological chemistry.2006;277(41):38574-38578.
    [86]Nikitakis N, Siavash H. HSP47:a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Frontiers in Bioscience.2005; 10(2):107-118.
    [87]Brown KE, Broadhurst KA, Mathahs MM. Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver. Lab Invest. 2002;85(6):789-797.
    [88]M N, N H, H K. Upregulation of HSP47 and collagen type Ⅲ in the dermal fibrotic disease. Biochem Biophys Res Commun.2001;280(5):1316-1322.
    [89]D L, MS R, A N. Role of heat shock protein 47 on tubulointerstitium in experimental radiation nephropathy. Pathol Int.2002;52(5-6):340-347.
    [90]M C, MS R, A N. Expression of the heat shock protein 47 in gentamicin-treated rat kidneys. Int J Exp Pathol.1998;79(3):125-132.
    [91]MS R, N A, T T. Heat shock protein 47 in renal scarring. Nephron. Nephron. 2000;86(3):339-341.
    [92]Razzaque MS, Taguchi T. Collagen-binding heat shock protein 47 expression anti-thymocyte serum(ATS)-induced glomerulonephritis. Journal of pathology. 1997;183(1):24-29.
    [93]M S, K K, N I. Expression of heat shock protein 47 is increased in remnant kidney and correlates with disease progression. International journal of experimental pathylogy.1998;79(3):133-140.
    [94]Liu D, Razzaque MS. The renal expression of heat shock protein 47 and collagens in acute and chronic experimental diabetes in rats. The Histochemical Journal. 2001;33(11-12):621-628.
    [95]MS R, A A, T S. Factors regulating the progression of hypertensive nephrosclerosis. Contrib Nephrol.2003; 139:173-186.
    [96]Razzaque MS, Shimokawa I, Nazneenl A. Life-long dietary restriction modulates the expression of collagens and collagen-binding heat shock protein 47 in aged Fischer 344 rat kidney. The Histochemical Journal.1993;31(2):123-132.
    [97]T M, N K, A A. Up-regulation of HSP47 in the mouse kidneys with unilateral ureteral obstruction. Kiney international.1998;54(1):110-119.
    [98]Our 2-year old grandson will stay with us for a couple of weeks this summer. He tends to have tantrums. Any advice on how to handle these? Mayo Clin Health Lett.1998;16(7):8.
    [99]A N, T N, MS R. Increased expression of collagen-binding heat shock protein 47 in human and experimentally-induced rat crescentic glomerulonephritis:its possible role in fibrotic process. Acta Med Nagasaki Ensia.2000;45(1/2):17-24.
    [100]K A, Ozonoy, M M. Interstitial expression heat shock protein 47 and alpha-smooth muscle aetln in renal allograft failure. Nephrol Dial Tramplmt. 2000;15(4):529-535.
    [101]Nagata K. Hsp47:a collagen-specific molecular chaperone. Trends Biochem Sci. 1996;21:22-26.
    [102]Oguro A, Sakurai T, Fujita Y. The molecular chaperone HSP47 rapidly senses gravitational changes in myoblasts. Genes to Cells.2006; 11:1253-1265.
    [103]Pan H, Halper J. Regulation of heat shock protein 47 and type I procollagen expression in avian tendon cells. Cell Tissue Res.2003;311:373-382.
    [104]Moriyama T, Kawada N, Ando A. Up-regulation of HSP47 in the mouse kidneys with unilateral uretaral obstruction. kidney internal.1998;54:110-119.
    [105]Ohashi S, Abe H, Takahashi T. Advanced Glycation End Products Increase Collagen-specific Chaperone Protein in Mouse Diabetic Nephropathy. The journal of biological chemistry.2004;279(19):19816-19823.
    [106]Airapetian A, Akopov N, Akopov Z, et al. Evidence for quark-hadron duality in the proton spin asymmetry A1. Phys Rev Lett.2003;90(9):42-45.
    [107]AR A, MS R, YJ D. Effects of IL-13 on fibroblasts isolated from conjunctivae of control and cicatricial pemphigoid. Invest Ophthalmol Vis Sci. 2004;45:E-Abstract 1490-B301.
    [108]Wang JF, Olson ME, Ball DK, et al. Recombinant connective tissue growth factor modulates porcine skin fibroblast gene expression. Wound Repair Regen. 2003;11(3):220-229.
    [109]Sasaki H, Sato T, Yamauchi N. Induction of Heat Shock Protein 47 Synthesis by TGF-β and IL-1β Via Enhancement of the Heat Shock Element Binding Activity of Heat Shock Transcription Factor 1. The Journal of Immunology. 2002;168(10):5178-5183.
    [110]Hatakeyama D, Kozawa O, Niwa M, et al. Upregulation by retinoic acid of transforming growth factor-beta-stimulated heat shock protein 27 induction in osteoblasts:involvement of mitogen-activated protein kinases. Biochim Biophys Acta.2002;1589(1):15-30.
    [111]Natsume H, Mizutani J, adachi S. Involvement of Rho-kinase in TGF-β stimulated heat shock protein 27 induction in osteoblasts Molecular Medicine reports 2009;2:687-691.
    [112]Yan J-d, Yang S, Zhang J. BMP6 reverses TGF-β1-induced changes in HK-2
    cells:implications for the treatment of renal fbrosis. Acta Pharmacologica Sinica. 2009;30:994-1000.
    [113]M S, K K, H T. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonep-hrits. Lab Invest.1998;78(7):967-972.
    [114]Xia Z, Abe K, Furusu A, et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am J Nephrol. 2008;28(1):34-46.
    [115]Razzaque MS, Shimokawa I, Nazneenl A. Life-long dietary restriction modulates the expression of collagens and collagen-binding heat shock protein 47 in aged Fischer 344 rat kidney. The Histochemical Journal.1999;31(2):123-132.
    [116]Thomson CA, Atkinson HM, S V. Ananthanarayanan. Identification of Small Molecule Chemical Inhibitors of the Collagen-Specific Chaperone HSP47. Journal of Medicinal Chemistry.2005;48(5):1680-1684.
    [117]Hagiwara S, Iwasaka H, Matsumoto S. Introduction of antisense oligonucleoti-des to heat shock protein 47 prevents pulmonary fibrosis in lipopolysaccharide-induced pneumopathy of the rat. European Journal of Pharmacology.2007; 564: 174-180.
    [118]Wang Z, Li L. Adenovirus-mediated RNA interference against collagen-specific molecular chaperone 47-KDa heat shock protein suppresses scar formation on mouse wounds. Cell Biology International.2008;32:483-493.
    [119]Nishino T, Miyazaki M, Abe K. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. Kidney International.2003;64:887-896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700