神经节苷脂GM3通过Arhgdib和TNFα调节细胞的表现型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经节苷脂是脊椎动物细胞膜的主要组成成分,由神经鞘氨醇和脂肪酸组成的神经酰胺组成了神经节苷脂的疏水残基。神经节苷脂已经被确认为肿瘤抗原、微生物及其产生毒素的受体,并且参与了细胞生长、分化。神经节苷脂通过调节细胞与细胞之间的相互作用来进一步调节肿瘤细胞的侵蚀与转移。最近,发现GM3参与小鼠黑色素瘤B16细胞形态、细胞运动性、生长和转移的调节。在半乳糖转移酶-6(B4Gal-T6)顺反cDNA转染的细胞中,初步验证了GM3的生物学功能(SM-1和CSSH-1分别是质粒和B4Gal-T6 cDNA正义链转染的单克隆细胞;CM-1和CAH-3是质粒和B4Gal-T6 cDNA反义链转染的单克隆细胞)。
     另外,通过siRNA沉默GM3也表现出与CAH-3相似的调节细胞形态、细胞运动性和生长的特性。细胞变圆并且按照与对照细胞不同的方式生长。GM3合成酶沉默的单克隆细胞B11通过调节MMP-9的表达来降低细胞的运动性。然而,与对照细胞相比,细胞内的GM3的量降低,细胞的恶性程度加剧。实验表明,GM3沉默的细胞更易于在不含血清的培养基或软琼脂的培养基中生长。
     接下来的实验证明了GM3通过其下游分子Arhgdib来调节细胞的生物学功能。与此同时,经过基因筛选发现,Arhgdib是GM3的效应因子,GM3通过PI3K/Akt/mTOR途径来调节Arhgdib的表达,尤其是PDK1在Arhgdib的调节过程中起到了非常重要的作用。另外,进一步的实验证明了Arhgdib沉默的细胞中细胞的形态、细胞的运动性和生长发生了明显的改变,而这种变化恰恰与GM3沉默的B11细胞相似。这些结果有力的证明了GM3是通过Arhgdib调节细胞生物学功能的。最后发现TNFα是Arhgdib的下游分子。
Glycosphingolipids (GSLs) are characteristic components of vertebrate plasma membranes and have the same hydrophobic residue, ceramide, which consists of a sphingosine and a fatty acid. GSLs have been defined as tumor antigens, receptors for microbes and their toxins, and possible modulators of cell proliferation, differentiation, and cell-cell interactions through which GSLs exert its function on cell invasiveness and metastasis. Recently, we found that GM3 regulated cell behaviors including cell shape, cell motility, proliferation and metastasis in B16 cells by transfering cells with B4Gal-T6 sense or antisense cDNA (SM-1 and CSSH-1 are mock and B4Gal-T6 sense cDNA transfectant monoclonal cell lines respectively; CM-1 and CAH-3 are mock and B4Gal-T6 antisense cDNA transfectant monoclonal cell lines respectively).
     Furthermore, GM3 down-regulation by siRNA targeting St3gal5 (GM3 synthase) resulted in change the cell behaviors including cell shape, cell motility and proliferation. The St3gal5 siRNA transfected cells (one of monoclonal transfectants was B11 cells) were round and refractile and tended to grow distinctly from parental B16 cells. The motility of B11 cells was decreased and cell motlility was possibly mediated by MMP-9. B11 cells proliferated easily in serum free condition or soft agar, possibly because GM3 down regulation enhances its malignancy compared with control cells. Arhgdib was found as a downstream molecule through which GM3 exerts its function on cell behaviors. We further verified that GM3 regulated Arhgdib expression via PI3K/Akt/mTOR pathway. PDK1 in particular was shown to play a critical role in GM3 mediating Arhgdib expression. Moreover, knocking down Arhgdib obviously changed cell shape, modulated cell motility and proliferation just as GM3 expression was suppressed in B16 cells. These results suggested concretely that GM3 modulated cell behaviors via Arhgdib. Finally, TNFαwas screened as a target of Arhgdib.
引文
[1] S. Hakomori, Tumor malignancy defined by aberrant glycosylation and sphingo(glycol) lipid metabolism,Cancer Res. 56(1996) 5309-5318.
    
    [2] S. Hakomori, Cancer-associated glycosphingolipid antigens : their structure, organization, and function,Acta Anat. 161(1998)79-90.
    [3] D. A. Brown, E. London, Functions of lipid rafts in biological membranes, Annu. Rev. Cell. Dev. Biol.14(1998)111-136.
    [4] S. Hakomori, K. Handa, K. Iwabuchi, S. Yamamura, A. Prinetti, New insights in glycosphingolipid function: "glycosignaling domain", a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signalling, Glycobiology. 8(1998) 11-18.
    [5] V. Horejsi, K. Drbal, M. Cebecauer, J. Cerny, T. Brdicka, P. Angelisova, H. Stockinger,GPI-microdomains : a role in signalling via immunoreceptors, Immunol. Today. 20(1999) 356-361.
    [6] K. Simons, D. Toomre, Lipid rafts and signal transduction, Nat. Rev. Mol. Cell. Biol. 1 (2000) 31-39.
    [7] L. A. Liotta, E. C. Kohn, The microenvironment of the tumour-host interface, Nature 411(2001) 375-379.
    [8] C. S. Pukel, K. O. Lloyd, L. R. Travassos, W. G. Dippold, H. F. Oettgen, L. J. Old, GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody, J. Exp.Med. 155(1982)1133-1147.
    [9] K. Furukowa, K. O. Lloyd (Eds.), Gangliosides in Melanoma, Springer-Verlag, Heildeberg, 1990, pp.15-30.
    [10] J. M. Carubia, R. K. Yu, L. J. Macala, J. M. Kirkwood, J. M. Varga, Gangliosides of normal and neoplastic human melanocytes, Biochem. Biophys. Res. Commun. 120(1984) 500-504.
    
    [11] M. H. Ravindranath, T. Tsuchida, D. L. Morton, R. F. Irie, Ganglioside GM3:GD3 ratio as an index for the management of melanoma, Cancer 67(1991) 3029-3035.
    
    [12] A. Merzak, S. Koochekpour, G. J. Pilkington, Cell surface gangliosides are involved in the control of human glioma cell invasion in vitro, Neurosci. Lett. 177(1994) 44-46.
    [13] R. O. Brady, P. H. Fishman, Biosynthesis of glycolipids in virustransformed cells, Biochim. Biophys.Acta. 355(1974) 121—48.
    [14] S. Hakomori, Structures and organization of cell surface glycolipids. Dependency on cell growth and malignant transformation. Biochim. Biophys. Acta. 417(1975) 56-89.
    
    [15] G. Mugnai, R. Coppini, D. Tombaccini, Neutral glycolipids and. gangliosides of concanavalin A-selected SV3T3 revertant cells and. of normal and SV-40-transformed Balb/c 3T3 cells. Biochem. J. 193(1981) 1025-1028.
    [16] L. Calorini, A. Fallani, D. Tombaccini, E. Barletta, G Mugnai, M. F. Di Renzo, P. M. Comoglio, S.Ruggieri, Lipid characteristics of RSV-transformed Balb/c 3T3 cell lines with different spontaneous metastatic potentials, Lipids. 24(1989) 685-690.
    [17] K. Murayama, S. B. Levery, V. Schirrmacher, S. Hakomori, Qualitative differences in position of sialylation and surface expression of glycolipids between murine lymphomas with low metastatic (Eb) and high metastatic (ESb) potentials and isolation of a novel disyaloganglioside (GD1 a) from a Eb cells,Cancer Res 46(1986) 1395-1402.
    [18] S, Laferte, M. N. Fukuda, M. Fukuda, Glycosphingolipids of lectin resistant-mutants of the highly metastatic mouse tumor cell line, MDAY-22, Cancer Res 47(1990) 150-159.
    [19] R. Schwartz, B. Kniep, J. Muthing, P. F. Muhlradt, Glycoconjugates of murine tumor lines with different metastatic capacities. II. Diversity of glycolipid composition, Int. J. Cancer. 36(1985) 601-67.
    [20] S. Hakomori, Glycosphyngolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev.Biochem. 50(1981) 733-64.
    [21] E. Otsuji, Y. S. Park, K. Tashiro, N. Kojima, T. Toyokuni, S. Hakomori, Inhibition of B16 melanoma metastasis by administration of GM3- or Gg3-liposomes: Blocking adhesion of melanoma cells to endothelial cells (anti-adhesion therapy) via inhibition of GM3-Gg3Cer or GM3-LacCer interaction, Int. J.Oncol 6(1995) 319-327.
    [22] N. Kojima, M. Shiota, Y. Sadahira, K. Handa, S. Hakomori, Cell adhesion in a dynamic flow system as compared to static system. Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J. Biol. Chem. 267(1992) 17264-17270.
    [23] N. Kojima, S. Hakomori, Cell adhesion, spreading and motility of GM3-expressing cells based on glycolipid-glycolipid interaction, J. Biol. Chem. 266(1991) 17552-17558.
    [24] N. Kojima, S. Hakomori, Synergistic effect of two cell recognition systems: Glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein,Glycobiology 1(1991) 623-630.
    [25] K. Iwabuchi, S. Yamamura, A. Prinetti, K. Handa, S. Hakomori, GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells, J. Biol. Chem. 273(1998) 9130-9138.
    [26] K. Iwabuchi, K. Handa, S. Hakomori, New insights in glycosphingolipid function: "glycosignaling domain", a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling, J. Biol. Chem. 273(1998) 33766-33773.
    [27] Y. Sadahira, T. Yoshino, N. Kojima. In Vitro Cell. Dev. Biol. 30A (1994), 648-650.
    [28] W. B. Carter, J. B. Hoying, C. Boswell, S. K. Williams, HER2/neu overexpression induces endothelial cell retraction, Int. J. Cancer 91(2001) 295-299.
    [29] S. Yamamura, K. Handa, S. Hakomori, A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: a preliminary note, Biochem. Biophys. Res.Commun. 236(1997) 218-222.
    [30] M. Ono, K. Handa, S. Sonnino, D. A.Withers, H. Nagai, S. Hakomori, GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy, Biochemistry 40(2001) 6414-6421.
    [31] M. Satoh, A. Ito, H. Nojiri, K. Handa, K. Numahata, C. Ohyama, S. Saito, S. Hoshi, S.I. Hakomori, Enhanced GM3 expression, associated with decreased invasiveness, is induced by brefeldinA in bladder cancer cells, Int. J. Oncol. 19(2001) 723-731.
    [32] J. F. Cajot, I. Sordat, T. Silvestre, B. Sordat, Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells, Cancer Res. 57(1997) 2593-2597.
    [33] M. Adachi, T. Taki, Y. Ieki, C. L. Huang, M. Higashiyama, M. Miyake, Correlation of KAI1/CD82 gene expression with good prognosis in patients with non-small cell lung cancer, Cancer Res. 56(1996) 1751-1755.
    [34] Y. Kawakami, K. Kawakami, W. F. Steelant, M. Ono, R. C. Baek, K. Handa, D. A.Withers, S. Hakomori,Tetraspanin CD9 is a "proteolipid", and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility, J. Biol. Chem. 277(2002) 34349-34358.
    [35] Y. Kakugawa, T. Wada, K. Yamaguchi, H. Yamanami, K. Ouchi, I. Sato, T. Miyagi, Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression, Proc. Natl. Acad. Sci. USA. 99(2002) 10718-10723.
    [36] W. F. Steelant, Y. Kawakami, A. Ito, K. Handa, E. A. Bruyneel, M. Mareel, S. Hakomori, Monosialyl-Gb5 organized with Src and FAK in GEM on human breast carcinoma MCF-7 cells defines their invasive properties, FEBS. Lett. 53(2002) 93-98.
    [37] M. G. Manfredi, S. Lim, K. P. Claffey, T. N. Seyfried, Gangliosides influence angiogenesis in an experimental mouse brain tumor, Cancer Res 59(1999) 5392-5397.
    [38] S. Koochekpour, A. Merzak, G. J. Pilkington, Vascular endothelial growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells in vitro, Cancer. Lett. 102(1996) 209-215.
    [39] M. Ziche, L. Morbidelli, G. Alessandri, P. M. Gullino, Angiogenesis can be stimulated or repressed in vivo by a change in GM3:GD3 ganglioside ratio, Lab. Invest. 67(1992) 711-715.
    [40] M. Ziche, G. Alessandri, P. M. Gullino, Gangliosides promote the angiogenic response, Lab. Invest. 61(1989)629-634.
    [41] M. Rusnati, E. Tanghetti, C. Urbinati, G. Tulipano, S. Marchesini, M. Ziche, M. Presta, Interaction of fibroblast growth factor-2 (FGF-2) with free gangliosides: biochemical characterization and biological consequences in endothelial cell cultures, Mol. Biol. Cell. 10(1999) 313-327.
    [42] G. Zeng, D. D. Li, L. Gao, S. Birkle, E. Bieberich, A. Tokuda, R. K.Yu, Alteration of ganglioside composition by stable transfection with antisense vectors against GD3-synthase gene expression,Biochemistry. 38(1999) 8762-8769.
    [43] G. Zeng, L. Gao, R. K. Yu, Reduced cell migration, tumor growth and experimental metastasis of rat F-11 cells whose expression of GD3- synthase is suppressed, Int. J. Cancer. 88(2000) 53-57.
    [44] G. Zeng, L. Gao, S. Birkle, R. K. Yu, Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production, Cancer Res 60(2000)6670-6676.
    
    [45] P. H. Black, Shedding from normal and cancer-cell surfaces, N. Engl. J. Med. 303(1980) 1415-1416.
    [46] R. Olshefski, S. Ladisch, Intercellular transfer of shed tumor cell gangliosides, FEBS. Lett. 386(1996) 11-14.
    [47] H. Offner, T. Thieme, A. A. Vandenbark, Gangliosides induce selective modulation of CD4 from helper T lymphocytes, J. Immunol. 139(1987) 3295-3305.
    [48] J. W. Chu, F. J. Sharom, Gangliosides interact with interleukin-4 and inhibit interleukin-4-stimulated helper T-cell proliferation, Immunology. 84(1995)396-403.
    [49] G. Grayson, S. Ladisch, Immunosuppression by human gangliosidesII. Carbohydrate structure and inhibition of human NK activity, Cell. Immunol. 139(1992) 18-29.
    [50] E. V. Dyatlovitskaya, L. D. Bergelson, Glycosphingolipids and antitumor immunity, Biochim. Biophys. Acta. 907(1987)125-143.
    
    [51] C. Dumontet, A. Rebbaa, J. Bienvenu, J. Portoukalian, Inhibition of immune cell proliferation and cytokine production by lipoproteinbound gangliosides, Cancer. Immunol. Immunother. 38(1994) 311-316.
    [52] F. J. Sharom, A. L. Chiu, T. E. Ross, Gangliosides and glycophorin inhibit T-lymphocyte activation,Biochem. Cell Biol. 68(1990) 735-744.
    [53] S. Ladisch, H. Becker, L. Ulsh, Immunosuppression by human gangliosides: I. Relationship of carbohydrate structure to the inhibition of T cell responses, Biochim. Biophys. Acta. 1125(1992) 180-188.
    [54] S. Ladisch, L. Ulsh, B. Gillard, C.Wong, Modulation of the immune response by gangliosides. Inhibition of adherent monocyte accessory function in vitro, J. Clin. Invest. 74(1984) 2074-2081.
    [55] H. W. Ziegler-Heitbrock, E. Kafferlein, J. G. Haas, N. Meyer, M. Strobel, C.Weber, D. Flieger, Gangliosides suppress tumor necrosis factor production in human monocytes, J. Immunol. 148(1992) 1753-1758.
    [56] R. McKallip, R. Li, S. Ladisch, Tumor gangliosides inhibit the tumorspecific immune response, J.Immunol. 163(1999)3718-3726.
    [57] J. W. Chu, F. J. Sharom, Interleukin-2 binds to gangliosides in micelles and lipid bilayers, Biochim. Biophys. Acta. 1028(1990) 205-214.
    [58] P. Lu, F. J. Sharom, Gangliosides are potent immunosuppressors of IL-2-mediated T-cell proliferation in a low protein environment, Immunology. 86(1995) 356-363.
    [59] D. N. Irani, Brain-derived gangliosides induce cell cycle arrest in a murine T cell line, J. Neuroimmunol. 87(1998)11-16.
    [60] M. Sorice, A. Pavan, R. Misasi, T. Sansolini, T. Garofalo, L. Lenti, G. M. Pontieri, L. Frati, M. R. Torrisi, Monosialoganglioside GM3 induces CD4 internalization in human peripheral blood T lymphocytes,Scand. J. Immunol. 41(1995) 148-156.
    [61] T. Garofalo, M. Sorice, R. Misasi, B. Cinque, M. Giammatteo, G. M. Pontieri, M. G. Cifone, A. Pavan, A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. Involvement of serine phosphorylation and protein kinase C delta translocation, J. Biol. Chem. 273(1998) 35153-35160.
    [62] G. Floutsis, L. Ulsh, S. Ladisch, Immunosuppressive activity of human neuroblastoma tumor gangliosides,Int. J. Cancer. 43(1989) 6-9.
    [63] P. Wu, P. Wang, T. Nomura, H. Koide, T. Sato, J. Zhang, S. Yamagata, T. Yamagata, Transfection of beta-1,4 galactosyltransferase-VI resulting in increased GM3 expression and suppression of lung metastatic potential of mouse B16 melanoma cells, Manuscript in preparation, (2007).
    [64] L. Wang, S. Takaku, P. Wang, D. Hu, S. Hyuga, T. Sato, S. Yamagata, T. Yamagata, Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells:Augmented expression of caveolin-1 and Stiml in cells with increased GDla content, Glycoconj. J. 23(2006) 303-315.
    [65] Y. Nakamura, N. Colburn, T. Gindhart, Role of reactive oxygen in tumor promotion: implication of superoxide anion in promotion of neoplastic transformation in JB6 cells by TPA, Carcinogenesis. 6(1985) 229-235.
    [66] J. John, M. Gildea, S. Jabed, O. Gary, RhoGDI2 is an invasion and metastasis suppressor gene in human cancer, Cancer Res 62(2002), 6418-6423.
    
    [67] H. Wiegandt, Gangliosides in Glycolipids, New Comprehensive Biochemistry 10(1985) 199-260.
    [68] J. Portoukalian, G. Zwingelstein, J. Dore, Lipid composition of human malignant melanoma tumors at various levels of malignant growth, Eur. J. Biochem. 94(1979) 19-23.
    [69] L. J. Old, Cancer immunology: the search for specificity-GH.A.Clowes memorial lecture, Cancer Res 41(1981)361-375.
    [70] N. V. Cheung, U. M. Sarrinen, J. E. Neely, B. Landmeier, D. Donovan, P. F. Coccia, Expression of a2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines : high level expression in melanomas and up-regulation in activated T lymphocytes, Cancer Res 45(1985) 2642-2649.
    [71] S. Birkle, G. Zeng , L. Gao, R.K. Yu, J. Aubry, Role of tumor-associated gangliosides in cancer progression, Biochimie. 85 (2003) 455-463.
    
    [72] P. H. Fishman, R. O. Brady, Biosynthesis and function of gangliosides, Science. 194(1976) 906-915.
    [73] U. Preuss, X. Gu, T. Gu, R. Yu, Purification and Characterization of CMP-N-acetylneuraminic Acid:Lactosylceramide (a2-3) Sialyltransferase (GM3-synthase) from Rat Brain, J. Biol. Chem. 268(1993) 26273-26278.
    [74] M. Kono, S. Takashima, H. Liu, M. Inoue, N. Kojima, L. Young-Choon, T. Hamamoto, S. Tsuji, Molecular Cloning and Functional Expression of a Fifth-Type a2,3-sialyltransferase (mST3Gal V: GM3 synthase), Biochem. Biophys. Res. Commu. 253(1998) 170-175.
    
    [75] I. Richard, J.r. Duclos, The total synthesis of ganglioside GM3, Carbohydr. Res. 328(2000) 489-507.
    [76] M. Gilbert, R. Bayer, A. M. Cunningham, S. DeFrees, Y. Gao, D. C. Watson, N.M. Young, W. W.Wakarchuk, Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384, Nature. Biotech. 16(1998)769-772.
    [77] S. Hakomori, Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions, J. Biol. Chem. 265(1990) 18713-18716.
    [78] E. Bremer, S. Hakomori, D. F. Bowen-Pope, E. Raines, R. Ross, Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation, J. Biol. Chem. 259(1984) 6818—6825.
    
    [79] H. Nojiri, F. Takaku, T. Tetsuka, K. Motoyoshi, Y. Miura, M. Saito, Characteristic expression of glycosphingolipid profiles in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60, Blood. 64(1984) 534-541.
    [80] H. Nojiri, F. Takaku, Y. Terui, Y. Miura, M. Saito, Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937, Proc. Natl. Acad. Sci. U. S. A. 83(1986) 782-786.
    [81] I. Meivar-Levy, H. Sabanay, A. D. Bershadsky, A. H. Futerman, The role of sphingolipids in the maintenance of fibroblast morphology. The inhibition of protrusional activity, cell spreading, and cytokinesis induced by fumonisin B1 can be reversed by ganglioside GM3, J. Biol. Chem. 272(1997) 1558-1564.
    [82] S. Hakomori, S. Yamamura, K. Handa, Signal transduction through glyco (sphingo) lipids:introduction and recent studies on glyco (sphingo):lipid-enriched microdomains, Ann. N. Y. Acad. Sci. 845(1998) 1-10.
    [83] N. Kojima, S. Hakomori, Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein,Glycobiology. 1(1991)623-630.
    [84] G. V. Echten, K. Sandhoff, Ganglioside metabolism: enzymology, topology, and regulation, J. Biol.Chem. 268(1993) 5341-5344.
    [85] R. X. Li, J. Manela, Y. Kong, S. Ladisch, Cellular Gangliosides Promote Growth Factor-induced Proliferation of Fibroblasts, J.Biol.Chem. 275(2000) 34213-34223.
    [86] E. J. Meuillet, R. Kroes, H. Yamamoto, T. G.Warner, J. Ferrari, B. Mania-Farnell, D. George, A. Rebbaa, J. R. Moskal, E. G. Bremer, Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431, Cancer Res 59(1999) 234-240.
    [87] S. Birkle, S. Ren, A. Slominski, G. Zeng, L. Gao, R. K. Yu, Down regulation of the expression of cells: effects on cellular proliferation, differentiation and melanogenesis, J. Neurochem. 72(1999) 954-961.
    [88] J. Zhao, K. Furukawa, S. Fukumoto, M. Okada, R. Furugen, H. Miyazaki, K. Takamiya, S. Aizawa, H. Shiku, T. Matsuyama, Attenuation of interleukin 2 signal in the spleen cells of complex ganglioside-lacking mice, J. Biol.Chem. 274(1999) 13744-13747.
    [89] T. Wada, K. Hata, K. Yamaguchi, K. Shiozaki, K. Koseki, S. Moriya, T. Miyagi. A crucial role of plasma membrane-associated sialidase in the survival of human cancer cells. Oncogene. 26(2007) 2483-2490.
    [90] N. S. Radin, J. A. Shayman, J. Inokuchi, Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances, Adv. Lipid. Res. 26(1993) 183-213.
    [91] A. Abe, N. S. Radin, J. A. Shayman, L. L. Wotring, R. E. Zipkin, R. Sivakumar, J. M. Ruggieri, K. G.Carson, B. Ganem, Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth, J. Lipid. Res. 36(1995) 611-621.
    [92] L. Lee, A. Abe, J. A. Shayman, Improved inhibitors of glucosylceramide synthase, J. Biol. Chem.274(1999)14662-14669.
    [93] F. M. B. Weis, R. J. Davis, Regulation of Epidermal Growth Factor Signal Transduction: Role of Gangliosides, J. Biol. Chem. 265(1990) 12059-12066.
    [94] S. Hakomori, Y. Igarashi, Functional role of glycosphingolipids in cell recognition and signaling, J.Biochem. 118(1995) 1091-1103.
    [95] T. W. Tillack, M. Wong, M. Allietta, T. E. Thompson, Organization of the glycosphingolipid asialo-GM1 in phosphatidylcholine bilayer, Biochim. Biophys. Acta. 691(1982) 261-273.
    [96] T. E. Thompson, M. Allietta, R. E. Brown, M. L. Johnson, T. W. Tillack, Organization of ganglioside GM1 in phosphatidylcholine bilayers, Biochim. Biophys. Acta. 817(1985) 229-237.
    [97] H. Rosner, C. H. Greis, H. P. Rodemann, Density-dependent expression of ganglioside GM3 by human skin fibroblasts in an all-or-none fashion, as a possible modulator of cell growth in vitro, Exp. Cell. Res. 190(1990)161-169.
    [98] M. Sorice, I. Parolini, T. Sansolini, T. Garofalo, V. Dolo, M. Sargiacomo, T. Tai, C. Peschle, M.R. Torrisi, A. Pavan, Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes, J. Lipid. Res. 38(1997) 969-980.
    [99] G. A. Nores, T. Dohi, M. Taniguchi, S. Hakomori, Densitydependent recognition of cell surface GM3 by a certain antimelanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen, J. Immunol. 139(1987) 3171-3176.
    [100] D. A. Brown, J. K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the cell surface, Cell 68(1992) 533-544.
    
    [101] V. Visco, G. Lucania, T. Sansolini, V. Dolo, T. Garofalo, M. Sorice, L. Frati, M. R. Torrisi, A. Pavan,Expression of GM3 microdomains on the surfaces of murine fibroblasts correlates with inhibition of cell proliferation, Histochem. Cell. Biol. 113(2000) 43-50.
    [102] M. S. Toledo, E. Suzuki, K. Handa, S. Hakomori, Cell growth regulation through GM3-enriched microdomain (Glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13, J. Biol. Chem. 279(2004) 34655-24664.
    [103] E. V. Dyatlovitskaya, A. G. Kandyba, Role of biologically active sphingolipids in tumor growth,Biochemistry (Mosc). 71(2006) 10-17.
    [104] S. Spiegel, P. H. Fishman, Gangliosides as bimodal regulators of cell growth, Proc. Natl. Acad. Sci. U. S.A. 84(1987)141-145.
    [105] C. L. Schengrund, R. N. Lausch, A. Rosenberg, Sialidase activity in transformed cells, J. Biol. Chem.248(1973)4424-4428.
    [106] A . N. Houghton, D. Mintzer, C. Cordon-Cardo, S. Welt, B. Fliegel, S. Vadhan, E. Carswell, M. R.Melamed, H. F. Oettgen, L. J. Old, Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma, Proc. Natl. Acad. Sci. USA. 2(1985) 1242-1246.
    [107] R. F. Irie, D. L. Morton, Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2, Proc. Natl. Acad. Sci. U. S. A. 83(1986) 8694-8698.
    [108] R. F. Irie, T. Matsuki, D. L. Morton, Human monoclonal antibody to ganglioside GM2 for melanoma treatment, Lancet. 1(1989) 786-787.
    [109] J. L. Murray, G E. Cunningham, H. Brewer, K. Mujoo, A. A. Zukiwski, D. A. Podoloff, L. P. Kasi, V.Bhadkamkar, H. A. Fritsche, R. S. Benjamin, Phase I trial of murine monoclonal antibody 14G2a administered by prolonged intravenous infusion in patients with neuroectodermal tumors, J. Clin. Oncol. 12(1994) 184-93.
    [110] M. By, F. Ozkaynak, P. M. Sondel, M. D. Krailo, J. Gan, B. R. Javorsky, A. Reisfeld, K. Katherine, G. H. Matthay, R. C. Reaman, Phase I Study of Chimeric Human/Murine Anti-Ganglioside G_(D2) Monoclonal Antibody (ch14.18) With Granulocyte-Macrophage Colony-Stimulating Factor in Children With Neuroblastoma Immediately After Hematopoietic Stem-Cell Transplantation: A Children's Cancer Group Study, J. Clin. Oncology. 18(2000) 4077-4085.
    [111] G. L. Nicolson, Cell surface molecules and tumor metastasis regulation of metastatic phenotypic diversity, Exp. Cell Res. 150(1984) 3-22.
    [112] J. W. Dennis, S. Laferte, Tumor cell surface carbohydrates and metastatic phenotype, Cancer. Metastasis.Reu. 5(1987) 185-204.
    [113] J. W. Dennis, S. Laferte, C. Waghorne, M. L. Breitman, R. S. Kerbel, pl-6Branching of Asn-linked oligosaccharides is directly associated with metastasis, Science 236(1987) 582-585.
    [114] H. B. Bosmann, G. F. Bieber, A. E. Brown, K. R. Case, D. M. Gersten, T. W. Kimmerer, A. Lione, Biochemical parameters. correlated with tumor cell implantation, Nature 246(1973) 487-489.
    [115] G. Yogeeswaran, T. W. Tao, Cell surface sialic acid expression of lectin-resistant variant clones of B16 melanoma with altered metastasizing potential, Biochem. Biophys. Res. Commun. 95(1980) 1452-1460.
    [116] L. Dobrossy, Z. P. Pavelic, R. J. Bernacki, A correlation between cell surface sialyltransferase, sialic acid, and glycosidase activities and the implantability of B16 murine melanoma, Cancer Res. 41(1981) 2262-2266.
    [117] J. G. Collard, J. F. Schijven, A. Bikker, G. L. Riviere, J. G. M. Bolscher, E. Roos, Cell surface sialic acid and metastatic potential, of T-cell U hybridomas, Cancer Res. 46(1986) 3521-3527.
    [118] L. Valentino, T. Moss, E. Olson, H. J. Wang, R. Elashoff, S. Ladisch, Shed tumor gangliosides and progression of human neuroblastoma, Blood 75(1990) 1564-1567.
    [119] Z. L. Wu, E. Schwartz, R. Seeger, S. Ladisch, Expression of GD2 ganglioside by untreated primary human neuroblastomas, Cancer Res. 46(1986) 440-443.
    [120] R. X. Li, S. Ladisch, Shedding of human neuroblastoma gangliosides, Biochim. Biophys. Acta.1083(1991)57-64.
    [121] R. W. Ledeen, R. K. Yu, Gangliosides: structure, isolation, and analysis, Methods Enzymol. 83(1982) 139-191.
    [122] S. Saha, K. C. Mohanty, Enhancement of metastatic potential of mouse B16-melanoma cells to lung after treatment with gangliosides of B16-melanoma cells of higher metastatic potential to lung, Indian J ExpBiol. 41(2003) 1253-1258.
    [123] J. Inokuchi, M. Jimbo, K. Momosaki, H. Shimeno, A. Nagamatsu, N. S. Radin, Inhibition of experimental metastasis of murine Lewis lung carcinoma by an inhibitor of glucosylceramide synthase and its possible mechanism of action, Cancer Res. 50(1990) 6731-6737.
    [124] R. Watanabe, C. Ohyama, H. Aoki, T. Takahashi, M. Satoh, S. Saito, S. Hoshi, A. Ishii, M. Saito, Y.Arai, Ganglioside GM3 overexpression induces apoptosis and reduces malignant potential in murine bladder cancer, Cancer Res.62(2002) 3850-3854.
    [125] M. Weiss, S. Hettmer, P. Smith, S. Ladisch, Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase, Cancer Res. 63(2003) 3654-3658.
    [126] M. R. Gabri, Z. Mazorra, G. V. Ripoll, C. Mesa, L. E. Fernandez, D. E. Gomez, D. F. Alonso, Complete antitumor protection by perioperative immunization with GM3/VSSP vaccine in a preclinical mouse melanoma model, Clin. Cancer. Res. 12(2006) 7092-7098.
    [127] N. Kojima, S. Hakomori, Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells, J. Biol. Chem. 264(1989) 20159-20162.
    [128] N. Kojima, M. Shiota, Y. Sadahira, K. Handa, S. Hakomori, Cell adhesion in a dynamic low system as compared to static system: Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J. Biol. Chem. 267(1992) 17264-17270.
    [129] S. Hakomori, Traveling for the glycosphingolipid path, Glycoconj J. 17(2000) 627-647.
    [130] K. Kasahara, Y. Watanabe, T. Yamamoto, Y. Sanai, Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain: Possible regulation of Lyn by glycosphingolipid in caveolae-like domains,J. Biol. Chem. 272(1997) 29947-29953.
    [131] K. Iwabuchi, K. Handa, S. Hakomori, Separation of glycosphingolipid signaling domain from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling, J. Biol. Chem. 273(1998) 33766-33773.
    
    [132] R. G. W. Anderson, The caveolae membrane system, Annu. Rev. Biochem. 67(1998) 199-225.
    [133] E. G. Bremer, S. Hakomori, Gangliosides as receptor modulators, Adv. Exp. Med. Biol. 174(1984) 381-394.
    [134] V. Gorgoulis, A. Giatromanolaki, A. Karameris, C. Tsatsanis, D. Aninos, B. Ozanne, M. Veslemes, J.Jordanoglou, R. Trigidou, H. Papastamatiou, D. A. Spandidos, Epidermal growth factor receptor expression in squamous cell lung carcinomas: an immunohistochemical and gene analysis in formalin-fixed, paraffin-embedded material, Virchows Archiv A Pathol Anat. 423(1993) 295-302.
    [135] N. Normanno, A. D. Luca, C. Bianco, L. Strizzi, M. Mancino, M. R. Maiello, A. Carotenuto, G. D. Feo,F. Caponigro, D. S. Salomon, Epidermal growth factor receptor (EGFR) signaling in cancer, Gene.366(2006)2-16.
    [136] E. G. Bremer, J. Schlessinger, S. Hakomori, Ganglioside-mediated modulation of cell growth: Specific effects of GM3 on tyrosine phosphorylation of the epidermal factor receptor, J. Biol. Chem. 261(1986) 2334-2440.
    [137] E. G. Bremer, S. Hakomori, GM3 ganglioside induces hamster fibroblast growth factor inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function. Biochem.Biophys. Res. Commun. 106(1982) 711-728.
    [138] S. Barbour, M. Edidin, B. Feldong-Habermann, J. Taylor-Norton, N. Radin, B. Fenderson, Glycolipid depletion using a ceramide analogue (PDMP) alters growth, adhesion, and membrane lipid organization in human A431 cells, J. Cell. Physiol. 150(1992) 610-619.
    [139] J. Schlessinger, A. Ullrich, Growth factor signaling by receptor tyrosine kinase, Neuron. 9(1992) 383-391.
    
    [140] S. E. Egan, R. A. Weinberg, The pathway to signal achievement, Nature 365(1993) 781-783.
    [141] M. Lopez-llasaca, P. Crespo, P. G. Pellici, J. S. Gutkind, R. Wetzker, Linkage of G protein-coupled receptor to the MAPK signaling pathway through PI 3-kinase gamma, Science 275(1997) 394-397.
    [142] P. Sun, X. Q. Wang, K. Lopatka, S. Bangash, A. S. Paller, Ganglioside loss promotes survival primarily by activating integrin-linked kinase/Akt without phosphoinositide 3-OH kinase signaling, J. Invest.Dermatol. 119(2002) 107-117.
    [143] E.G. Bremer, J. Schlessinger, S. Hakomori, Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor, J. Biol. Chem. 261(1986)2434-2140.
    [144] H. J. Choi, T. W. Chung, S. K. Kang, Y. C. Lee, J. H. Ko, J. G. Kim, C. H. Kim, Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression-transcriptional induction of p21WAF1 and p27kip1 by inhibition of PI-3K/AKT pathway, Glycobiology 16(2006) 573-83.
    [145] J. Luo, B. D. Manning, L. C. Cantley, Targeting the PI3K-Akt pathway in human cancer: rationale and promise, Cancer Cell 4(2003) 257-262.
    
    [146] J. Downward, PI 3-kinase, Akt and cell survival, Semin Cell Dev Biol 15(2004) 177-182.
    [147] D. D. Sarbassov, D. A. Guertin, S. M. Ali, D. M. Sabatini, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science 307(2005) 1098-1101.
    [148] T. Gao, F. Furnari, A. C. Newton, PHLPP: A novel phosphatase that directly dephosphorylates Akt,promotes apoptosis, and supresses tumour growth, Mol. Cell. 18(2005) 13-24.
    [149] M. P. Scheid, P. A. Marignani, J. R. Woodgett, Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B, Mol. Cell. Biol. 22(2002) 6247-6260.
    [150] A. Toker, A. C. Newton, Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site, J. Biol. Chem. 275(2000) 8271-8274.
    [151] D. R. Alessi, M. Andjelkovic, B. Caudwell, P. Cron, N. Morrice, P. Cohen, B. A. Hemmings,Mechanism of activation of protein kinase B by insulin and IGF-1, EMBO J. 15(1996) 6541-6551.
    
    [152] B. J. Collins, M. Deak, J. S. Arthur, L. J. Armit, D. R. Alessi, In vivo role of the PIF-binding docking site of PDK1 defined by knockin mutation, EMBO J. 22(2003) 4202-4211.
    [153] J. R. Woodgett, Recent advances in the protein kinase B signaling pathway, Curr. Opin. Cell. Biol.17(2005) 150-157.
    [154] R. M. Biondi, A. Kieloch, R. A. Currie, M. Deak, D. R. Alessi, The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB, EMBO J. 20(2001) 4380-4390.
    [155] M. Frodin, T. L. Antal, B. A. Dummler, C .J. Jensen, M. Deak, S. Gammeltoft, R. M. Biondi, A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation, EMBO J. 21(2002) 5396-5407.
    [156] D. R. Alessi, S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffhey, C. B. Reese, P. Cohen,Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha, Curr. Biol. 7 (1997) 261-269.
    [157] J. Yang, P. Cron, V. M. Good, V. Thompson, B. A. Hemmings, D. Barford, Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP, Nat. Struct. Biol.9(2002a) 940-944.
    [158] J. Yang, P. Cron, V. Thompson, V. M. Good, D. Hess, B. A. Hemmings, D. Barford, Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation, Mol.Cell.9(2002b)1227-1240.
    [159] I. Vivanco, C. L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer, Nat. Rev.Cancer. 2(2002) 489-501.
    [160] P. Rodriguez-Viciana, C. Sabatier, F. McCormick, Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate, Mol. Cell Biol. 24(2004) 49434954.
    [161] W. Li, T. Zhu, K. L. Guan, Transformation potential of Ras isoforms correlates with activation of phosphatidylinositol 3-kinase but not ERK, J. Biol. Chem. 279(2004) 37398-37406.
    [162] D. C. Fingar, J. Blenis, Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression, Oncogene 23(2004) 3151-3171.
    [163] D. H. Kim, D. D. Sarbassov, S. M. Ali, J. E. King, R. R. Latek, H. Erdjument-Bromage, P. Tempst, D.M. Sabatini, mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery, Cell 110 (2002) 163-175.
    [164] R. Loewith, E. Jacinto, S. Wullschleger, A. Lorberg, J. L. Crespo, D. Bonenfant, W. Oppliger, P. Jenoe,M. N. Hall, Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control, Mol Cell 10(2002) 457-468.
    [165] K. Hara, Y. Maruki, X. Long, K. Yoshino, N. Oshiro, S. Hidayat, C. Tokunaga, J. Avruch, K.Yonezawa, Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action, Cell 110(2002) 177-189.
    [166] J. Brugarolas, K. Lei, R. L. Hurley, B. D. Manning, J. H. Reiling, E. Hafen, L. A. Witters, L. W. Ellisen, W. G. Jr. Kaelin, Regulation of mTOR function in response to hypoxia by REDDl and the TSC1/TSC2 tumor suppressor complex, Genes Dev. 18(2004) 2893-2904.
    [167] M. N. Corradetti, K. Inoki, K. L. Guan, The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway, J Biol Chem. 280(2005) 9769 - 9772.
    [168] K. Inoki, T. Zhu, K. L. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell 115(2003) 577-590.
    [169] B. D. Manning, L. C. Cantley, Rheb fills a GAP between TSC and TOR, Trends Biochem. Sci. 28(2003) 573-576.
    [170] K. Inoki, Y. Li, T. Zhu, J. Wu, K. L. Guan, TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling, Nat. Cell Biol. 4(2002) 648-657.
    [171] X. Gao, D. Pan, TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth, Genes Dev. 15(2001) 1383-1392.
    [172] N. Ito, G. M. Rubin, Gigas, a drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle, Cell 96 (1999) 529-539.
    [173] C. J. Potter, H. Huang, T. Xu, Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size, Cell 105(2001) 357-368.
    [174] N. Tapon, N. Ito, B. J. Dickson, J. E. Treisman, I. K. Hariharan, The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation, Cell 105(2001) 345-355.
    [175] H. C. Welch, W. J. Coadwell, L. R. Stephens, P. T. Hawkins, Phosphoinositide 3-kinase-dependent activation of Rac, FEBS Lett. 546(2003) 93-97.
    [176] T. Hellwig-Burgel, D. P. Stiehl, D. M. Katschinski, J. Marxsen, B. Kreft, W. Jelkmann, VEGF production by primary human renal proximal tubular cells: requirement of HIF-1, PI3-kinase and MAPKK-1 signaling, Cell Physiol. Biochem. 15(2005) 99-108.
    [177] A. M. Arsham, D. R. Plas, C. B. Thompson, M. C. Simon, Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription, J. Biol. Chem. 277(2002) 15162-15170.
    [178] J. Graells, A.Vinyals, A. Figueras, A.Llorens, A. Moreno, J. Marcoval, F. J. Gonzalez, A. Fabra,Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling, J. Invest. Dermatol. 123(2004) 1151-1161.
    [179] M. A. Lawlor, D. R. Alessi, PKB/Akt: a key mediator of cell proliferation survival and insulin responses? J. Cell Sci. 114(2001) 2903-2910.
    [180] H. Tran, A. Brunet, E. C. Griffith, M. E. Greenberg, The many forks in FOXO's road." Sci STKE.172(2003)RE5.
    
    [181] N. Hay, N. Sonenberg, Upstream and downstream of mTOR, Genes Dev. 18 (2004) 1926-1945.
    [182] A. Hahn-Windgassen, V. Nogueira, C. C. Chen, J. E. Skeen, N. Sonenberg, N. Hay, Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity, J. Biol. Chem. 280(37)32081-32089.
    
    [183] D. J. Kwiatkowski, Tuberous sclerosis: from tubers to mTORAnn. Hum. Genet. 67(2003) 87-96.
    [184] T. Radimerski, J. Montagne, F. Rintelen, H. Stocker, J. van Der Kaay, C. P. Downes, E. Hafen, G.Thomas, dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1, Nat. Cell Biol.4(2002)251-255.
    [185] L. S. Harrington, G. M. Findlay, R. F. Lamb, Restraining PI3K: mTOR signalling goes back to the membrane, Trends Biochem. Sci. 30(2005) 35-42.
    [186] H. Zhang, G. Cicchetti, H. Onda, H. B. Koon, K. Asrican, N. Bajraszewski, F. Vazquez, C. L. Carpenter,D. J. Kwiatkowski, Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR, J. Clin. Invest. 112(2003) 1223-1233.
    [187] E. Jacinto, R. Loewith, A. Schmidt, S. Lin, M. A. Ruegg, A. Hall, M. N. Hall, Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive, Nat. Cell Biol. 6 (2004) 1122-1128.
    [188] D. D. Sarbassov, S. M. Ali, D. H. Kim, D. A. Guertin, R. R. Latek, H. Erdjument- Bromage, P. Tempst, D. M. Sabatini, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton, Curr. Biol. 14(2004) 1296-1302.
    [189] H. G. Wendel, E. De Stanchina, J. S. Fridman, A. Malina, S. Ray, S. Kogan, C. Cordon-Cardo, J.Pelletier, S. W. Lowe, Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy, Nature 428(2004) 332-337.
    [190] V. K. Rajasekhar, A. Viale, N. D. Socci, M. Wiedmann, X. Hu, E. C. Holland, Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes, Mol. Cell 12(2003) 889-901.
    
    [191] C. Vezina, A. Kudelski, S. N. Sehgal, Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28(1975) 721-726.
    [192] S. N. Sehgal, H. Baker, C. Vezina, Rapamycin (AY-22,989), a new antifungal antibiotic. II.Fermentation, isolation and characterization. J. Antibiot. 28(1975) 727-732.
    [193] R. R. Martel, J. Klicius, S. Galet, Inhibition of the immune response by rapamycin, a new antifungal antibiotic, Can. J. Physiol. Pharmacol. 55(1977) 48-51.
    [194] C. P. Eng, S. N. Sehgal, C. Vezina Activity of rapamycin (AY-22,989) against transplanted tumors, J.Antibiot 37(1984) 1231-1237.
    [195] F. J. Dumont, M. R. Melino, M. J. Staruch, S. L. Koprak, P. A. Fischer, N. H. Sigal. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells, J. Immunol 144(1990) 1418-1424.
    [196] D. A. Fruman, C. B. Klee, B. E. Bierer, S. J. Burakoff, Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A, Proc. Natl. Acad. Sci. USA 89(1992) 3686-3690.
    [197] C. J. Kuo, J. Chung J, D. F. Fiorentino, W. M. Flanagan, J. Blenis, G. R. Crabtree, Rapamycin selectively inhibits interleukin-2 activation of p70S6 kinase, Nature 358(1992) 70-73.
    [198] V. Calvo, C. M. Crews, T. A. Vik, B. E. Bierer, Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin, Proc. Natl. Acad. Sci. U.S.A. 89(1992) 7571-7575.
    [199] T. Peng, T. R. Golub, D. M. Sabatini, The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol. Cell Biol. 22(2002) 5575-5584.
    [200] C. J. Sherr, Cancer cell cycles, Science 274(1996) 1672-1677.
    [201] M. Grewe, F. Gansauge, R. M. Schmid, G. Adler, T. Seufferlein, Regulation of cell growth and cyclin Dl expression by the constitutively active FRAP-S6K pathway in human pancreatic cancer cells, Cancer Res. 59(1999)3581-3587.
    [202] T. Seufferlein, E. Rozengurt, Rapamycin inhibits constitutive S6K phosphorylation, cell proliferation,and colony formation in small cell lung cancer cells, Cancer Res. 56(1996) 3895-3897.
    [203] S. M. Moore, R. C. Rintoul, T. R. Walker, E. R. Chilvers, C. Haslett, T. Sethi, The presence of a constitutively active phosphoinositide 3-kinase in small cell lung cancer cells mediates anchorage-independent proliferation via a protein kinase B and S6K-dependent pathway, Cancer Res.58(1998)5239-5247.
    
    [204] F. J. Couch, X. Y. Wang, G. J. Wu, J. Qian, R. B. Jenkins, C. D. James. Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer, Cancer Res. 59(1999) 1408-1411.
    [205] M. Barlund, F. Forozan, J. Kononen, L. Bubendorf, Y. Chen , M. L. Bittner , J. Torhorst, P. Haas , C. Bucher , G. Sauter , O. P. Kallioniemi , A. Kallioniemi, Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis, J. Natl. Cancer Inst. 92(2000) 1252-1259.
    [206] M. B. Dilling, G. S. Germain, L. Dudkin, A. L. Jayaraman, X. Zhang, F. C. Harwood, P. J. Houghton,4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin, J. Biol. Chem. 277(2002) 13907-13917.
    [207] I. B. Rosenwald, A. Lazaris-Karatzas, N. Sonenberg, E. V. Schmidt, Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E, Mol. Cell Biol. 13(1993) 7358-7363.
    [208] A. De Benedetti, A. L. Harris, eIF4E expression in tumors: its possible role in progression of malignancies, Int. J. Biochem. Cell Biol. 31(1999) 59-72.
    [209] I. B. Rosenwald, J. J. Chen, S. Wang, L. Savas, I. M. London, J. Pullman, Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis, Oncogene 18(1999) 2507-2517.
    [210] B. D. Li, L. Liu, M. Dawson, A. De Benedetti, Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma, Cancer 79(1997) 2385-2390.
    [211] B. D. Li, J. C. McDonald, R. Nassar, A. De Benedetti, Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression, Ann. Surg. 227(1998) 756-761.
    [212] C. A. Nathan, L. Liu, B. D. Li, F. W. Abreo, I . Nandy, A. De Benedetti, Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer, Oncogene 15(1997)579-584.
    [213] M. R. Smith, M. Jaramillo, Y. L. Liu, T.E. Dever, W. C. Merrick, H. F. Kung, N. Sonenberg. Translation initiation factors induce DNA synthesis and transform NIH 3T3 cells, New Biol, 2(1990) 648-654.
    [214] D. Rousseau, A. C. Gingras, A. Pause, N. Sonenberg, The eIF4Ebinding proteins 1 and 2 are negative regulators of cell growth, Oncogene 13(1996) 2415-2420.
    [215] Y. Miyagi, A. Sugiyama, A. Asai, T. Okazaki, Y. Kuchino, S. J. Kerr, Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines, Cancer Lett. 91(1995)247-252.
    [216] D. P. Houchens, A. A. Ovejera, S. M. Riblet, D. E. Slagel, Human brain tumor xenografts in nude mice as a chemotherapy model, Eur. J. Cancer Clin. Oncol. 19(1983) 799-805.
    [217] L. Dudkin, M. B. Dilling, P. J. Cheshire, F. C. Harwood, M. Hollingshead, S. G. Arbuck, R. Travis, E. A. Sausville, P. J. Houghton, Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition, Clin. Cancer Res. 7(2001) 1758-1764.
    [218] B. Geoerger, K. Kerr, C. B. Tang, K. M. Fung, B. Powell, L. N. Sutton, P. C. Phillips, A. J. Janss,Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy, Cancer Res. 61(2001) 1527-1532.
    [219] K. Yu, L. Toral-Barza, C. Discafani, mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer, Endocr. Relat. Cancer 8(2001) 249-258.
    [220] M. S. Neshat, I.K. Mellinghoff, C. Tran, B. Stiles, G. Thomas, R. Petersen, P. Frost, J. J. Gibbons, H. Wu, C. L. Sawyers, Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR, Proc. Natl. Acad. Sci. USA 98 (2001)10314-10319.
    [221] K. Podsypanina, Lee, Politis C, An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice, Proc. Natl. Acad. Sci. U. S. A. 98(2001) 10320-10325.
    [222] V. Grunwald, L. DeGraffenried, D. Russel, W. E. Friedrichs, R. B. Ray, M. Hidalgo, Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells, Cancer Res. 62(2002)6141-6145.
    [223] Y. Shi, J. Gera, L. Hu, J. H. Hsu, R. Bookstein, W. Li, A. Lichtenstein, Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779, Cancer Res. 62(2002) 5027-5034.
    [224] E. Penuel, G. S. Martin, Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways, Mol. Biol. Cell 10(1999) 1693-1703.
    [225] I. D. Louro, P. McKie-Bell, H. Gosnell, B. C. Brindley, R. P. Bucy, J. M. Ruppert, The zinc finger protein GLI induces cellular sensitivity to the mTOR inhibitor rapamycin, Cell Growth Differ. 10 (1999) 503-516.
    [226] M. Aoki, E. Blazek, P. K. Vogt, A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt, Proc. Natl. Acad. Sci. U.S.A. 98(2001) 136-141.
    [227] M. Nomura, Z. He, I. Koyama, W. Y. Ma, K. Miyamoto, Z. Dong, Involvement of the Akt/mTOR pathway on EGF-induced cell transformation, Mol. Carcinog. 38(2003)25-32.
    
    [228] M. Guba, P. von Breitenbuch, M. Steinbauer, G. Koehl, S. Flegel, M. Hornung, C. J. Bruns, C. Zuelke, S. Farkas, M. Anthuber, K. W. Jauch, E. K. Geissler, Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor, Nat. Med. 8(2002) 128-135.
    [229] F. Vinals, J. C. Chambard, J. Pouyssegur, p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation, J. Biol. Chem. 274(1999) 26776-26782.
    [230] Y. Yu, J. D. Sato, MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor, J. Cell Physiol. 178(1999) 235-246.
    [231] H. Zhong, K. Chiles, D. Feldser, E. Laughner, C. Hanrahan, M. M. Georgescu, J. W. Simons, G. L.Semenza, Modulation of hypoxiainducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells:implications for tumor angiogenesis and therapeutics, Cancer Res. 60 (2000) 1541-1545.
    [232] C. Treins, S. Giorgetti-Peraldi, J. Murdaca, G. L. Semenza, E. van Obberghen, Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway, J. Biol. Chem. 277(2002) 27975-27981.
    [233] M. Mayerhofer, P. Valent, W. R. Sperr, J. D. Griffin, C. Sillaber. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha,through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin, Blood 100(2002)3767-3775.
    [234] C. C. Hudson, M. Liu, G. G. Chiang, D.M. Otterness, D.C. Loomis, F. Kaper, A. J. Giaccia, R. T.Abraham, Regulation of hypoxiainducible factor 1alpha expression and function by the mammalian target of rapamycin, Mol. Cell Biol. 22(2002) 7004-7014.
    
    [235] E. Sahai, Mechanisms of cancer cell invasion, review. Curr. Opin. Genet. Dev. 15(2005) 1-10.
    [236] H. Nagase, J. F. Jr Woessner, Matrix Metalloproteinases, J. Biol. Chem. 274(1999) 21491-21494.
    [237] J. A. Allan, A. J. Docherty, P. J. Barker, N. S. Huskisson, J. J. Reynolds, G. Murphy, Binding of gelatinases A and B to type-I collagen and other matrix components, Biochem. J. 309(1995) 299-306.
    [238] A. A. Thant, A. Nawa, F. Kikkawa, Y. Ichigotani, Y. Zhang, T. T. Sein, A. R. Amin, M. Hamaguchi, Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-AKT pathways in ovarian cancer cells, Clin. Exp. Metastasis 18(2000) 423-428.
    [239] G. A. Bannikov, T. V. Karelina, I. E. Collier, B. L. Marmer, G. I. Goldberg, Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide, J. Biol. Chem. 277 (2002)16022-16027.
    [240] S. Amano, N. Akutsu, Y. Matsunaga, T. Nishiyama, M. F. Champliaud, R. E. Burgeson, E. Adachi,Importance of balance between extracellular matrix synthesis and degradation in basement membrane formation, Exp. Cell Res. 271(2001) 249-262.
    [241] L. L. Chen, R. Narayanan, M. S. Hibbs, P. A. Benn, M. L. Clawson, G. Lu, J. S. Rhim, B. Greenberg, J.Mendelsohn, Altered epidermal growth factor signal transduction in activated Ha-ras-trans-. formed human keratinocytes, Biochem. Biophys. Res. Commun. 193(1993) 167-174.
    [242] S. B. Kondapaka, R. Fridman, K. B. Reddy, Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9(MMP-9) in human breast cancer cells, Int. J. Cancer. 70 (1997) 722-726.
    [243] O. Alper, E. S. Bergmann-Leitner, T. A. Bennett, N. F. Hacker, K. Stromberg, W. G. Stetler-Stevenson, Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells, J.Natl. Cancer Inst. 93(2001) 1375-1384.
    [244] G. Cox, J. L. Jones, K. J. O'Byme, MMP-9 and the epidermal growth factor receptor signal pathway in operable non-small cell lung cancer, Clin. Cancer Res. 245(2000) 2349-2355.
    [245] S. M. Ellerbroek, J. M. Halbleib, M. Benavidez, J. K. Warmka, E. V. Wattenberg, M. S. Stack, L. G. Hudson, Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association, Cancer Res. 61 (2001) 1855-1861.
    [246] S. M. Ellerbroek, L. G. Hudson, M. S. Stack, Proteinase requirements of epidermal growth factor-induced ovarian cancer invasion, Int. J. Cancer. 78(1998) 331-337.
    [247] J. F. Santibanez, J. Guerrero, M. Quintanilla, A. Fabra, J. Martinez, Transforming growth factor-betal modulates matrix metalloproteinase-9 production through the Ras/MAPK signaling pathway in transformed keratinocytes, Biochem. Biophys. Res. Commun. 296(2002) 267-273.
    [248] P. O-Charoenrat, P. H. Rhys-Evans, S. A. Eccles, Expression of matrix metalloproteinases and their inhibitors correlates withinvasion and metastasis in squamous cell carcinoma of the head and neck, Arch.Otolaryngol. Head Neck Surg. 127(2001) 813-820.
    [249] A. Franchi, M. Santucci, E. Masini, I. Sardi, M. Paglierani, O. Gallo, Expression of matrix metalloproteinase 1,matrix metalloproteinase 2,and matrix metalloproteinase 9 in carcinoma of the head and neck, Cancer 95(2002) 1902-1910.
    [250] H. E. Saqr, D. K. Pearl, A. J. Yates, Areview and predictive models of ganglioside uptake by biological membranes, J. Neurochem. 61(1993) 395-411.
    
    [251] S. Ladisch, R. Li, E. Olson, Ceramide structure predicts tumor ganglioside immunosuppressive activity, Proc. Natl. Acad. Sci. U. S. A. 91(1994) 1974-1978.
    [252] E. G. Bremer, S. Hakomori, D. F. Bowen-Pope, E. Raines, R. Ross, Ganglioside-mediated modulation of cell growth, growth factor binding and receptor phosphorylation, J. Biol. Chem. 259(1984) 6818-6825.
    [253] Y. Nakatsuji, R. H. Miller, Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3, Exp. Neurol. 168(2001) 290-299.
    [254] J.E. Skeen, P.T. Bhaskar, C. C. Chen ,W. S. Chen, X. D. Peng, V. Nogueira, A. Hahn-Windgassen,H . Kiyokawa, N. Hay, Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1 -dependent manner. Cancer Cell 10 (2006) 269-280.
    [255] T. H . Chuang, B. P Bohl, G. M. Bokoch, Biologically active lipids are regulators of Rac.GDI complexation, J. Biol. Chem. 268(1993) 26206-26211.
    [256] N. Bourmeyster, M. J. Stasia, J. Garin, J. Gagnon, P. Boquet, P. V. Vignais, Copurification of rho protein and the rho-GDP dissociation inhibitor from bovine neutrophil cytosol. Effect of phosphoinositides on rho ADP-ribosylation by the C3 exoenzyme of Clostridium botulinum.Biochemistry 31(1992) 12863-12869.
    [257] J. Faure, P. V.Vignais, M. C. Dagher, Phosphoinositide-dependent activation of RhoA involves partial opening of the RhoA/Rho-GDI complex, Eur. J. Biochem. 262(1999) 879-889.
    [258] P. J. Parker, Intracellular signaling: PI 3-kinase puts GTP on the Rac. Curr. Biol. 5 (1995) 577-579.
    [259] A. L. Bishop, A. Hall, Rho GTPases and their effector proteins, Biochem. J. 348(2000) 241-255.
    [260] E. G. Bremer, J.Schlessinger, S. Hakomori, Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to Rhob p20; a Ras p21-like GTP-binding protein. J. Biol. Chem. 265(1990) 9373-9380.
    [261] M. B. Jones, H. Krutzsch, H. Shu, Y. Zhao, L. A. Liotta, E. C. Kohn, E. F. 3rd Petricoin, Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer.Proteomics 2(2002) 76-84.
    [262] J. J. Gildea, M. J. Seraj, G. Oxford, M. A. Harding, G. M. Hampton, C. A. Moskaluk, H. F. Frierson, M.R. Conaway, D. Theodorescu, RhoGDI2 is an invasion and metastasis suppressor gene in human cancer,Cancer Res. 62(2002) 6418-6423.
    [263] W. G. Jiang, G. Watkins, J. Lane, G. H. Cunnick, A. Douglas-Jones, K. Mokbel, R. E. Mansel,Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers, Clin. Cancer Res. 9(2003) 6432-6440.
    
    [264] B. Kasper, T. Nicola, G. Dirk,W. Karl, Differential expression and regulation of GTPases (RhoA and Rac2) with GDI is (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia, Blood 95 (2000) 2947-2953.
    [265] S. Na, T .H. Chuang, A. Cunningham, T. G. Turi, J. H. Hanke, G. M. Bokoch, D. E. Danley, D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis, J. Biol. Chem. 271(1996) 11209-11213.
    [266] D. E. Danley, T. H. Chuang, G. M. Bokoch, Defective Rho GTPase regulation by IL-1 beta-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor, J. Immunol. 157(1996) 500-503.
    [267] B. Olofsson, Rho guanine dissociation inhibitors: Pivotal molecules in cellular signalling, Cell. Signal.11(1999)545-554.
    [268] G. Zalcman, O. Dorseuil, J. A. Garcia-Ranea, G. Gacon J. Camonis RhoGAPs and RhoGDIs,(His)stories of two families, Prog. Mol. Subcell. Biol. 22(1999) 85-113.
    [269] G. R. Hoffman, N. Nassar, R. A. Cerione, Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI, Cell 100(2000) 345-356.
    [270] K.Longenecker, P. Read, U. Derewenda, Z. Dauter, X. Liu, S. Garrard, L .Walker, A. V. Somlyo, R. K. Nakamoto, A. P. Somlyo, Z. S. K. Derewenda, How RhoGDI binds Rho, Acta Crystallogr. D Biol.Crystallogr. 55(1999) 1503-1515.
    [271] S .Grizot, J. Faure, F. Fieschi, P. V. Vignais, M. C. Dagher, E. Pebay-Peyroula Crystal structure of the Rac1-RhoGDI complex involved in NADPH oxidase activation, Biochemistry 40(2001) 10007-10013.
    [272] K . Scheffzek, I. Stephan, O. N. Jensen, D. Illenberger, P. Gierschik, The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI, Nat. Struct. Biol. 7(2000) 122-126.
    [273] Y. Q. Gosser, T. K. Nomanbhoy, B. Aghazadeh, D. Manor, C. Combs, R. A . Cerione, C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases, Nature 387(1997) 814-819.
    [274] N. H. Keep, M. Barnes, I. Barsukov, R. Badii, L-.Y Lian, A. W. Segal, P. C. E. Moody, G. C. K. Roberts, A modulator of Rho family G proteins, RhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm, Structure 5 (1997) 623-633.
    [275] K. Robbe, A. Otto-Bruc, P. Chardin, B. Antonny, Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam, J. Biol. Chem. 278(2003) 4756-4762.
    [276] T. Sasaki, Y. Takai, The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem, Biophys. Res. Commun. 245(1998) 641-645.
    [277] L. Van Aelst, C. D'Souza-Schorey, Rho GTPases and signaling networks. Genes Dev. 11(1997) 2295-2322.
    [278] G. M. Bokoch, B. P. Bohl, T. H. Chuang, Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins, J. Biol. Chem. 269(1994) 31674-31679.
    [279] T. H. Chuang, B. P. Bohl, G. M. Bokoch, Biologically-active lipids are regulators of Rac-GDI complexation, J. Biol. Chem. 268(1993) 26206-26211.
    [280] N. Bourmeyster, Copurification of Rho protein and the Rho-GDP dissociation inhibitor from bovine meutrophil cytosol, Biochemistry 31(1992) 12863-12869.
    [281] J. Faure, P. V. Vignais, M. C. Dagher, Phosphoinositide-dependent activation of A involves partial opening of the RhoA/Rho-GDI complex, Eur. J. Biochem. 262(1999) 879-889.
    [282] K. F. Tolias, A. D. Couvillon, L. C. Cantley, C. L. Carpenter, Characterization ofa Racl-and RhoGDI associated lipid kinase signaling complex, Mol. Cell. Biol. 18(1998) 762-770.
    [283] N. Bourmeyster, P. V. Vignais, Phosphorylation of Rho GDI stabilizes the RhoA-Rho GDI complex in neutrophil cytosol, Biochem. Biophys. Res. Commun. 218(1996) 54-60.
    [284] J. P. Gorvel, T. C. Chang, J. Boretto, T. Azuma, P. Chavrier, Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and Rho GTPase selectivity, FEBS Lett. 422(1998) 269-273.
    [285] P. Scherle, T. Behrens, L. M. Staudt, Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes, Proc. Natl. Acad. Sci. U. S. A. 90(1993) 7568-7572.
    [286] M. Groysman, I. Homstein, A. Alcover, S. Katzav, Vavl and Ly-GDI two regulators of Rho GTPases, function cooperatively as signal transducers in T cell antigen receptor-induced pathways, J. Biol. Chem. 277(2002) 50121-50130.
    [287] D. Mehta, A. Rahman, A. B. Malik, Protein kinase C-alpha signals Rho-guanine nucleotide dissociation inhibitor phosphorylation and Rho activation and regulates the endothelial cell barrier function, J. Biol. Chem. 276(2001) 2261 4-22620.
    [288] L. Guan, K. Song, M. A. Pysz, K. J. Curry, A. A. Hizli, D. Danielpour, A. R. Black, J. D. Black, Protein Kinase C-mediated Down-regulation of Cyclin D1 Involves Activation of the Translational Repressor 4E-BP1 via a Phosphoinositide 3-Kinase/Akt-independent, Protein Phosphatase 2A-dependent Mechanism in Intestinal Epithelial Cells, J. Biol. Chem. 282(2007), 14213-14225.
    [289] P. Lang, F. Gesbert, M. Delespine-Carmagnat, R. Stancou, M. Pouchelet, J. Bertoglio, Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes, EMBO J. 15(1996) 510-519.
    [290] M. A. Forget, R. R. Desrosiers, D. Gingras, R. Beliveau, Phosphorylation states of Cdc42 and A regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes,Biochem. J. 361(2002) 243-254.
    [291] S. Tu, W. J. Wu, J. Wang, R. A. Cerione, Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase, J. Biol. Chem. 278(2003) 49293-49300.
    [292] C. DerMardirossian, A. Schnelzer, G M. Bokoch, Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase, Mol. Cell. 15 (2004) 117-27.
    [293] S. J. Yoon, K. Nakayama, T. Hikita, K. Handa, S. Hakomori, Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor, Proc. Natl. Acad.Sci. U. S. A. 103 (2006) 18987-18991.
    [294] J. Inokuchi, N. S. Radin, Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-l-propanol, inhibitor of murine glucocerebroside synthetase, J.Lipid Res. 28 (1987) 565-571.
    [295] A. Shisheva, T. C. Sudhof, M. P. Czech, Cloning, characterization, and expression of a novel GDP dissociation inhibitor isoform from skeletal muscle, Mol. Cell. Biol. 14(1994) 3459-3468.
    [296] I. Janoueix-Lerosey, F. Jollivet, J. Camonis, P. N. Marche, B. Goud, Two-hybrid system screen with the small GTP-binding protein Rab6. Identification of a novel mouse GDP dissociation inhibitor isoform and two other potential partners of Rab6, J. Biol. Chem. 270(1995) 14801-14808.
    [297] G. Zalcman, V. Closson, J. Camonis, N. Honore, M. Rousseau-Merck, A. Tavitian, B. Olofsson,RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG, J. Biol. Chem. 271(1996) 30366-30374.
    [298] C. J. Vlahos, W. F. Matter, K. Y. Hui, R. F. Brown, A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), J. Biol. Chem. 269(1994) 5241-5248.
    [299] A. S. Kristof, G. Pacheco-Rodriguez, B. Schremmer, J. Moss, LY303511 acts via PI3- kinase independent pathways to inhibit cell proliferation via TOR- and non mtordependent mechanisms, J.Pharmacol. Exp. Ther. 314(2005) 1134-1143,
    [300] A. M. Pasapera, J. Limon. Herrera-Munoz, R. Gutierrez-Sagal, A. Ulloa-Aguirre, The phosphatidylinositol 3-kinase inhibitor Ly294002 binds the estrogen receptor and inhibits 17beta-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene, Mol Cell Endocrinol. 200(2003) 199-202.
    [301] B. Salh, R. Wagey, A. Marotta, J. S. Tao, S. Pelech, Activation of phosphatidylinositol 3-kinase, protein kinase B, and p70 S6 kinases in lipopolysaccharide-stimulated Raw 264.7 cells: differential effects of rapamycin, Ly294002, and wortmannin on nitric oxide production, J. Immunol. 161(1998) 6947-6954.
    [302] M. Yang, W. Wu, C. J. Mirocha, Wortmannin inhibits the production of reactive oxygen and nitrogen intermediates and the killing of the Saccharomyces cerevisiae by isolated chicken macrophages,Immunopharmacol Immunotoxicol. 18(1996) 597-608.
    [303] N. Hay, The Akt-mTOR tango and its relevance to cancer Nissim Hay Cancer Cell, Cancer Cell 8(2005) 179-183.
    [304] M. M. Chou, J. Blenis, The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Racl, Cell 85(1996) 573-583.
    [305] L. Yan, G. M. Findlay, R. Jones, J. Procter, Y. Cao, R. F. Lamb, Hyperactivation of mammalian target of rapamycin (mTOR) signaling by a gain-of-function mutant of the Rheb GTPase, J. Biol. Chem.281(2006) 19793-19797.
    [306] P. Wang, X. Yang, P. Wu, J. Zhang, T. Sato, S. Yamagata, T. Yamagata, GM3 signals regulating TNF -alpha mediated by Rictor and Arhgdib in mouse melanoma B16 cells, Oncology(2007), submitted for publication.
    [307] H. Harada, J. S. Andersen, M. Mann, N. Terada, S. J. Korsmeyer, p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD, Proc. Natl. Acad. Sci. U.S.A. 98(2001) 9666-9670.
    [308] D. Theodoreseu, L.M. Sapinoso, M.R. Conaway, Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer, Clin. Cancer Res. 10(2004) 3800-3806.
    [309] J. J. Gildea, M .J. Seraj, G. Oxfor, RhoGDI2 is an invasion and metastasis suppressor gene in human cancer, Cancer Res. 62(2002) 6418-6423.
    [310] F. Bazzoni, B. Beutler, The tumor necrosis factor ligand and receptor families, N. Engl. J. Med.334(1996) 1717-1725.
    [311] R. M. Locksley, N. Killeen, M. J. Lenardo, The TNF a and TNF a receptor superfamilies: integrating mammalian biology, Cell 104(2001) 487-501.
    [312] E. A. Carswell, L. J. Old, R. L. Kassel, S. Green, N, Fiore, B. Williamson, An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. U.S.A. 72(1975) 3666-3670.
    
    [313] L. J. Old, Tumor necrosis factor (TNF ), Science 230(1985) 630-632.
    [314] M. H. Bemelmans, L. J. Van Tits, W. A. Buurman, Tumor necrosis factor: function, release and clearance, Crit. Rev. Immunol. 16(1996) 1-11.
    [315] A. Asher, J. J. Mule, C. M. Reichert, E. Shiloni, S. A. Rosenberg, Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo, J.Immunol. 138(1987)963-974.
    [316] R. K. Lee, J. Spielman, D. Y. Zhao, K. J. Olsen, E. R. Podack, Perform, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells, J. Immunol.157(1996)1919-1925.
    [317] A. Ratner, W. R. Clark, Role of TNF -α in CD8+ cytotoxic T lymphocyte-mediated lysis, J. Immunol.150(1993)4303-4314.
    [318] C. N. Baxevanis, M. Papamichail, Characterization of the anti-tumor immune response in human cancers and strategies for immunotherapy, Crit. Rev. Oncol. Hematol. 16(1994) 157-179.
    [319] H. Jiang, C. A. Stewart, D. J. Fast, R. W. Leu, Tumor target-derived soluble factor synergizes with IFN-gamma and IL-2 to activate macrophages for tumor necrosis factor and nitric oxide production to mediate cytotoxicity of the same target, J. Immunol. 149(1992) 2137-2146.
    [320] A. Zganiacz, M. Santosuosso, J. Wang, T. Yang, L. Chen, M. Anzulovic, S. Alexander, B. Gicquel, YH.Wan, J. Bramson, M. Inman, Z. Xing, TNF-a is a critical negative regulator of type 1 immune activation during intracellular bacterial infection, J. Clin. Invest. 113(2004) 401-413.
    [321] P. W. Szlosarek, M. J. Grimshaw, H. Kulbe, J. L. Wilson, G. D. Wilbanks, F. Burke, F. R. Balkwill,Expression and regulation of tumor necrosis factor-a in normal and malignant ovarian epithelium, Mol.Cancer Ther. 5(2006) 382-390.
    [322] D. Gaiotti, J. Chung, M. Iglesias, M. Nees, P. D. Baker, C. H. Evans, C. D. Woodworth, Tumor necrosis factor-α promotes human papillomavirus (HPV) E6/E7 RNA expression and cyclin-dependent kinase activity in HPV-immortalized keratinocytes by a ras-dependent pathway, Mol. Carcinog. 27(2000) 97-109.
    [323] S. Wu, C. M. Boyer, R. S. Whitaker, A. Berchuck, J. R. Wiener, J. B. Weinberg, R. C. Jr. Bast, Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression, Cancer Res. 53(1993) 1939-1944.
    [324] M. Maeda, N. Watanabe, T. Okamoto, N. Tsuji, Y. Niitsu, Endogenous tumor necrosis factor functions as a resistant factor against adriamycin, Int. J. Cancer 58(1994) 376-379.
    [325] A. Murakami, K. Kawabata, T. Koshiba, G. Gao, Y. Nakamura, K. Koshimizu, H. Ohigashi, Nitric oxide synthase is induced in tumor promoter-sensitive, but not tumor promoter-resistant, JB6 mouse epidermal cells cocultured with interferon-gamma-stimulated RAW264.7 cells: the role of tumor necrosis factor-α,Cancer Res. 60(2000) 6326-6331.
    [326] E. J. Battegay, E. W. Raines, T. Colbert, R. Ross, TNF-α stimulation of fibroblast proliferation.Dependence on platelet-derived growth factor (PDGF) secretion and alteration of PDGF receptor expression, J. Immunol. 154(1995) 6040-6047.
    [327] T. M. Leber, F. R. Balkwill, Regulation of monocyte MMP-9 production by TNF -a and a tumour-derived soluble factor (MMPSF), Br. J. Cancer. 78(1998) 724-732.
    [328] E. M. Rosen, I. D. Goldberg, D. Liu, E. Setter, M. A. Donovan, M. Bhargava, M. Reiss, B. M. Kacinski,Tumor necrosis factor stimulates epithelial tumor cell motility, Cancer Res. 51(1991) 5315-5321.
    [329] T. Hagemann, J. Wilson, H. Kulbe, N. F. Li, D. A. Leinster, K. Charles, F. Klemm, T. Pukrop, C. Binder, F. R. Balkwill, Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK, J.Immunol. 175(2005) 1197-1205.
    [330] R. C. Bates, A. M. Mercurio, Tumor necrosis factor-a stimulates the epithelial-to-mesenchymal transition of human colonic organoids, Mol. Biol. Cell 14(2003) 1790-800.
    [331] P. Vandenabeele, W. Declercq, R. Beyaert, W. Fiers, Two tumour necrosis factor receptors: structure and function, Trends Cell Biol. 5(1995) 392-399.
    
    [332] L. A. Tartaglia, D. V. Goeddel, Two TNF receptors, Immunol. Today 13(1992) 151-153.
    [333] B. B. Aggarwal, Signalling pathways of the TNF α superfamily: a doubleedged sword, Nat. Rev.Immunol. 3(2003) 745-756.
    
    [334] A. Ashkenazi, V. M. Dixit, Death receptors: signaling and modulation, Science 281(1998) 1305-1308.
    [335] S. J. Baker, E. P. Reddy, Modulation of life and death by the TNF a receptor superfamily, Oncogene 17(1998)3261-3270.
    [336] J. R. Muppidi, J. Tschopp, R. M. Siegel, Life and death decisions: secondary complexes and lipid rafts in TNF a receptor family signal transduction, Immunity 21(2004) 461-465.
    [337] H. Takada, N. J. Chen, C. Mirtsos, S. Suzuki, N. Suzuki, A. Wakeham, T. W. Mak, W. C. Yeh, Role of SODD in regulation of tumor necrosis factor responses, Mol Cell Biol 23(2003) 4026-4033.
    [338] P. C. Rath, B. B. Aggarwal, TNF a-induced signaling in apoptosis, J. Clin. Immunol. 19(1999) 350-364.
    [339] A. Degterev, M. Boyce, J. Yuan, A decade of caspases, Oncogene 22(2003) 8543-8567.
    
    [340] G. Natoli, A. Costanzo, A. Ianni, D. J. Templeton, J. R. Woodgett, C. Balsano, M. Levrero, Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway, Cell Signal 275(1997)200-203.
    [341] A. Devin, A. Cook, Y. Lin, Y. Rodriguez, M. Kelliher, Z. Liu, The distinct roles of TRAF2 and RIP in IKK activation by TNF -Rl1 TRAF2 recruits IKK to TNF -R1 while RIP mediates IKK activation, Immunity 12(2000)419-429.
    [342] A. A. Beg, D. Baltimore, An essential role for NF-kappaB in preventing TNF -alpha-induced cell death, Science 274(1996) 782-784.
    [343] X. Dolcet, D. Llobet, J. Pallares, X. Matias-Guiu, NF-kB in development and progression of human cancer, Virchows Arch. 446(2005) 475-482.
    
    [344] A. Lin, M. Karin, NF-kappaB in cancer: a marked target, Semin. Cancer Biol. 13(2003) 107-114.
    [345] D. N. Irani, K. I. Lin, D. E. Griffin, Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells, J. Immunol. 157 (1996) 4333-4340.
    [346] H. Pyo, E. Joe, S. Jung, S. H. Lee, I. Jou, Gangliosides activate cultured rat brain microglia, J. Biol.Chem. 274 (1999) 34584-34589.
    [347] I. Jou, J. H. Lee, S. Y. Park, H. J. Yoon, E-H. Joe, E. J. Park, Gangliosides trigger inflammatory responses via TLR4 in brain glia, Am. J. Pathol. 168 (2006) 1619-1630.
    [348] K. Hazeki, S. Kinoshita, T. Matsumura, K. Nigorikawa, H. Kubo, O. Hazeki, Opposite effects of wortmannin and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride on toll-like receptor-mediated nitric oxide production: negative regulation of nuclear factor-KB by phosphoinositide 3-kinase, Mol. Pharmacol. 69 (2006) 1717-1724.
    [349] K. Pahan, J. R. Raymond, I. Singh, Inhibition of phosphatidylinositol 3-kinase induces nitric oxide synthase in lipopolysaccharide- or cytokine-stimulated C6 glial cell, J. Biol. Chem. 274 (1999) 7528-7536.
    [350] Y. C. Park, C. H. Lee, H. S. Kang, H. T. Chung, H. D. Kim, Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, enhances LPS-induced NO production from murine peritoneal macrophages, Biochem. Biophys. Res. Commun. 240 (1997) 692-696.
    [351] K. Pahan, X. Liu, C. Wood, J. R. Raymond, Expression of a constitutively active form of phosphatidylinositol 3-kinase inhibits induction of nitric oxide synthase in human astrocytes, FEBS Lett.472 (2000) 203-207.
    [352] S. K. Arnold, P. R. Gustavo, S. Bruno, M. Joel, LY303511 (2-Piperazinyl-8-phenyl-4H-1-benzopyran-4-one) acts via phosphatidylinositol 3-kinase-independent pathways to inhibit cell proliferation via mammalian target of rapamycin (mTOR)- and non-mTOR-dependent mechanisms, J. Pharmacol. Exp Then 314 (2005) 1134-1143.
    [353] R. X. Guo, L. H. Wei, Z. Tu, P. M. Sun, J. L. Wang, D. Zhao, X. P. Li, J. M. Tang, 17β-Estradiol activates PI3K/Akt signaling pathway by estrogen receptor (ER)-dependent and ER-independent mechanisms in endometrial cancer cells. J. Steroid Biochem. Mol. Biol. 99 (2006) 9-18.
    [354] D. D. Sarbassov, S. M. Ali, D. M. Sabatini, Growing roles for the mTOR pathway, Curr. Opin. Cell Biol.17(2005a)596-603.
    [355] D. A. Guertin, D. M. Sabatini, An expanding role for mTOR in cancer, Trends Mol. Med. 11(2005) 353-361.
    [356] G. V. Thomas, mTOR and cancer, Reason for dancing at the crossroads? Curr. Opin. Genet. Dev.16(2006)78-84.
    [357] E. Jacinto, V. Facchinetti, D. Liu, N. Soto, S. Wei, S. Y. Jung, Q. Huang, J. Qin, B. Su, SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity,Cell 127(2006) 125-137.
    [358] T. Mutoh, A. Tokuda, J. Inokuchi, M. Kuriyama, Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells, J. Biol. Chem. 273 (1998) 26001-26007.
    [359] J. Ding, C. J. Vlahos, R. Liu, R. F. Brown, J. A. Badwey, Antagonists of phosphatidylinositol 3-kinase block activation of several novel protein kinases in neutrophils, J. Biol. Chem. 270 (1995) 11684-11691.
    [360] A. S. Kristof, G Pacheco-Rodriguez, B. Schremmer, J. Moss, LY303511 (2-piperazinyl-8-phenyl-4H-1-benzopyran-4-one) acts via phosphatidylinositol 3-kinase-independent pathways to inhibit cell proliferation via mammalian target of rapamycin (mTOR)- and non-mTOR-dependent mechanisms, J. Pharmacol. Exp. Ther. 314 (2005) 1134-43
    [361] T. Yamashita, A. Hashiramato, M. Haluzik, H. Mizukami, S. Beck, N. Norton, M. Kono, S. Tsuji, J.L.Daniotti, N. Werth, R. Sandhoff, K. Sandhoff, R.L. Proia, Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 3445-3449.
    [362] S. Hyuga, S. Yamagata, Y. Takatsu, M. Hyuga, H. Nakanishi, K. Furukawa, T. Yamagata, Suppression of FBJ-LL cell adhesion to vitronectin by ganglioside GD1a and loss of metastatic capacity, Int. J. Cancer 83(1999)685-691.
    [363] H. Higashi, T. Yamagata, Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme: Modulation of calmodulin-dependent cyclic nucleotide phosphodiesterase activity through binding of gangliosides to calmodulin and the enzyme, J. Biol. Chem. 267 (1992) 9839-9843.
    [364] R. T. Peterson, S. L. Schreiber, Kinase phosphorylation: Keeping it all in the family, Curr. Biol. 9 (1999) 521-524.
    [365] J. R. Woodgett, Recent advances in the protein kinase B signaling pathway, Curr. Opin. Cell Biol. 17 (2005)150-157.
    [366] R. M. Biondi, Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation, Trends Biochem. Sci. 29 (2004) 136-142.
    [367] J. E. Skeen, P. T. Bhaskar, C-C. Chen, W. S. Chen, X-D. Peng, V. Nogueira, A. Hahn-Windgassen, H. Kiyokawa, N. Hay, Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner, Cancer Cell 10 (2006) 269-280.
    [368] B. M. Burgering, P. J. Coffer, Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction, Nature 376(1995) 599-602.
    [369] T. F. Franke, S. Yang, T. O. Chan, K. Datta, A. Kazlauskas, D. K. Morrison, D. R. Kaplan, P. N.Tsichlis, The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase, Cell 81(1995) 727-736.
    [370] B. Titus, H. F. Frierson, Jr. M. Conaway, K. Ching, T. Guise, J. Chirgwin, G Hampton, D. Theodorescu,Endothelin Axis Is a Target of the Lung Metastasis Suppressor Gene RhoGDI2, Cancer Res. 65(2005) 7320-7327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700