三种激发子诱导的过敏性细胞死亡和气孔关闭的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原菌产生的激发子和病程相关分子模式(pathogen-associated molecular patterns, PAMP)是一类重要的信号分子,模仿非亲和互作中植物与病原菌的信号交流,启动不同的级联信号途径,诱发植物的抗病性,导致过敏反应(hypersensitive response,HR)和气孔关闭。本研究采用病毒诱导基因沉默(virus inducing gene silencing, VIGS)技术研究了本氏烟(Nicotiana benthamiana)NADPH氧化酶(respiratory burst oxidase homologues, RBOH)、液泡加工酶(vacuolar processing enzyme, VPE)、异三聚体G蛋白(简称G蛋白)及丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)在不同来源的激发子(harpin、Nep1和boehmerin)诱发的过敏反应和气孔关闭中的功能,这些激发子分别是细菌(Xanthomonas oryzae)、真菌(Magnaporthe oryzae)和卵菌(Phytophthora boehmeriae)的PAMPs.试验证明(?)BOH、VPE和G蛋白参与3种激发子诱导的气孔关闭,MAPKKKa-MEK2-WIPK介导激发子Nep1诱发的HR,而Gα、Gβ2和VPEla参与harpin诱导的HR,表明不同激发子诱发的信号传导途径具有一定保守性,同时不同的激发子诱导的信号传导也存在特异性。
     RBOH是最重要的活性氧(active oxygen species, AOS)来源之一。NbrbohA、NbrbohB单基因沉默,以及NrbohA和NbrbohB双基因沉默显著抑制了boehmerin、INF1和harpin等3种激发子诱发的叶片中H2O2积累,但不影响激发子诱导的HR,且基因沉默对激发子诱发的PR基因的转录没有影响;而这些基因沉默却抑制激发子诱导的气孔关闭,且保卫细胞内NO积累显著减少,但不影响保卫细胞内Ca2+浓度和AOS积累。说明RBOH参与激发子诱导的气孔关闭,但不参与激发子诱导的过敏反应和PR基因的转录;植物体内其它酶催化产生的AOS及AOS/NO平衡可能参与激发子诱发的过敏性细胞死亡。
     VPE是植物液泡的半胱氨酸蛋白酶,具有类似动物caspases-1-like酶活性。本试验发现NbVPE1a和NbVPE1b单基因沉默,及NbVPE1a/1b双基因沉默不影响harpin、boehmerin和Nep1激发子诱发的H2O2积累,NbVPE1a和NbVPE1a/1b沉默却抑制了harpi(?)诱发的HR;而boehmerin和Nep1均可诱发这3种VPE沉默的植株产生正常的HR,表明harpir诱发的HR依赖于VPE,但是VPE不参与boehmerin和Nep1诱发的HR。单基因和双基因沉默均抑制3种激发子诱发的气孔关闭,且抑制了保卫细胞内NO的积累;3种激发子诱导处理后,单基因沉默植株叶片中保卫细胞内活性氧的积累与对照一致,但是双基因沉默植株中保卫细胞内AOS的量显著高于对照和单基因沉默植株中保卫细胞内AOS的量,表明双基因共同作用负调控保卫细胞内AOS的积累。进一步转录分析显示VPE调节了活性氧相关的基因(NbrbohB)和转录因子(WRKY2)的转录。而已证明气孔在植物免疫中具有重要功能,提示VPE参与PAMP触发的抗性(PAMP-triggered immunity,PTI).
     G蛋白连接着细胞表面的受体和下游的效应因子,在植物多种信号途径中具有重要的作用。本研究克隆了N.benthamiana G蛋白Gα、Gβ1和Gβ2等基因及腺苷酸环化酶基因(adenylyl cyclase,AC),Gα和Gβ2沉默抑制细菌蛋白激发子harpin诱导的过敏反应;Gα、Gβ2、AC削弱了3种激发子诱发的H2O2积累。Gα、Gβ1、Gβ2沉默抑制激发子诱发的气孔关闭,且保卫细胞中NO的积累减少。但是AC因沉默对3种激发子诱发过敏反应和气孔关闭及保卫细胞内NO的积累均没有影响。结果表明G蛋白的Gα、Gβ亚基在不同激发子激发过敏反应和气孔关闭及NO和H2O2积累中作用存在差异。
     MAPK信号级联途径包含三个保守的激酶,MAPK kinase kinase(MAPKKK或MEKK)磷酸化MAPK kinase(MAPKK或MEK)又磷酸化MAPK,调节荷尔蒙和其它环境刺激或外源信号。MAPKKKα.MEK2和WIPK沉默烟草抑制了Nep1诱导的HR;MEK1、SIPK和NTF6沉默的本氏烟不影响harpin、Nep1和boehmerin诱导的HR.Nep1处理的基因沉默植株内,转录因子(WRKY2)和防卫基因(PR2b)的表达受抑制。WRKY2沉默后也抑制了Nep1诱导的HR,但不影响boehmerin和harpin诱导的HR。另外,MEK2-NTF6调节激发子诱导的H2O2积累;MEK2-WIPK调节Nep1诱导的NO积累,SIPK沉默削弱了激发子诱导的保卫细胞内NO积累。基因沉默烟草不影响激发子诱导的保卫细胞内Ca2+浓度和AOS积累。结果表明,MAPKKKα、MEK1、MEK2、WIPK、SIPK、NTF6和WRKY2参与调节激发子信号。综上,RBOH.VPE.G蛋白及MAPK调节激发子诱发的信号传递,揭示了不同激发子信号的保守性及复杂性。
Elicitors or pathogen-associated molecular patterns (PAMP) can trigger the plant immune system, leading to rapid programmed cell death (hypersensitive response, HR) and stomatal closure. Here, we describe the role of plant respiratory burst oxidase homologs (RBOH), vacuolar processing enzyme (VPE), heterotrimeric G-proteins (G proteins), and mitogen-activated protein kinase (MAPK) from Nicotiana benthamiana in response to three PAMPs:bacterial harpin, fungal Nepl, and oomycete boehmerin, induced HR and stomatal closure via virus-induced gene silencing. RBOH, VPE, and G protein can function in elicitor-induced stomatal closure. MAPKKKa-MEK2-WIPK play a role in Nepl-triggered HR. Ga, Gβ2, and VPE la are involved in harpin-induced HR. These results indicate signaling component is conserved in different elicitor-triggered stomatal closure. Despite this conservation, the complexity of elicitor signaling also exists.
     RBOH play a prominent role in AOS production. NbrbohA was constitutively expressed at a low level, whereas NbrbohB was induced when protein elicitors exist (such as boehmerin, harpin, or INF1). We examined the HR cell death and pathogenesis-related (PR) gene expression of these single-silenced (NbrbohA or NbrbohB) and double-silenced (NbrbohA and NbrbohB) N. benthamiana plants, induced by various elicitors. The HR cell death and transcript accumulation of genes related to the defense response (PR1) were slightly affected, suggesting that RBOH are not essential for elicitor-induced HR and activation of these genes. Interestingly, gene-silenced plants impaired elicitor-induced stomatal closure and elicitor-promoted nitric oxide (NO) production, but not elicitor-induced cytosolic calcium ion accumulation and elicitor-triggered AOS production in guard cells. These results indicate that RBOH from N. benthamiana function in elicitor-induced stomatal closure, but not in elicitor-induced HR.
     VPE is a cysteine proteinase with the caspase-1-like activity. Although NbVPE silencing didn't affect H2O2 accumulation triggered by boehmerin, harpin, or Nep1, the HR was absent in NbVPE 1a-and NbVPEl a/1b-silenced plants treated with harpin alone. However, NbVPE-silenced plants developed a normal HR after boehmerin and Nepl treatment. These results suggest that harpin-triggered HR is VPE-dependent. Surprisingly, all gene-silenced plants showed significantly impaired elicitor-induced stomatal closure and elicitor-promoted nitric oxide (NO) production in guard cells. Dual-silenced plants showed elicitor-triggered AOS production in guard cells. The accumulation of transcripts associated with defense and cell redox was examined using semi-quantitive RT-PCR, and it was found that an Nbrboh gene and WKRY transcription factor are VPE-regulated. Overall, these results indicate that VPE from N. benthamiana functions not only in elicitor-induced HR, but also in elicitor-induced stomatal closure, suggesting that VPE may be involved in PAMP-triggered immunity (PTI).
     Signaling through G proteins is a conserved mechanism found in all eukaryotes. Here, Ga, Gβ1, Gβ2, and AC cDNA were isolated. The HR was absent in Gα-and Gβ2-silenced plants treated with harpin alone. However, all the gene silenced plants developed a normal HR after boehmerin and Nep1 treatment. These results suggest that harpin-triggered HR is Ga and G02 dependent. Surprisingly, Gα, Gβ1, and Gβ2-silenced plants showed significantly impaired elicitor-induced stomatal closure and elicitor-promoted nitric oxide (NO) production in guard cells. It suggests elicitors signaling mechanisms are different. We show that both Gβsubunits, each provides functional selectivity to the plant heterotrimeric G proteins, revealing a mechanism underlying the complexity of G protein-mediated signaling in plants.
     MAPK cascades are composed of three protein kinase modules:MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs, which are linked in various ways to upstream receptors and downstream targets. Silencing of genes encoding a motigen-activated protein kinase (MAPK) WIPK, an MAPK kinase (MAPKK) MEK2, or an MAPK kinase kinase (MAPKKK) MAPKKKa attenuated Nepl-induced hypersensitive response (HR); two MAPK, SIPK and NTF6, an MAPKK, MEK1-silenced plants developed the normal HR after boehmerin, harpin or Nepl treatment. We also found the transcript accumulations of a WRKY2 transcription factor and a defense-related gene (PR2b) were down-regulated in all the gene-silenced plants after Nepl treatment. WRKY2-silencing also abolished Nepl-triggered HR, but not boehmerin and harpin. We also found MEK2-NTF6 participated in elicitor-induced H2O2 production and SIPK-silencing attenuated elicitor-induced NO production in guard cells.
     Above all, the identification of these genes that play a role in elicitor signaling advances our knowledge of elicitor signaling, and it provides further evidence for the convergence and divergence of downstream signaling of different elicitors.
引文
[1]Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601-611.
    [2]Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572.
    [3]Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268:735-737.
    [4]Allwood EG, Davies DR., Gerrish C, Bolwell GP (2002) Regulation of CDPKs, including identification of PAL kinase, in biotically stressed cells of French bean. Plant Mol Biol 49: 533-544.
    [5]Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783-801.
    [6]Amicucci E, Gaschler K, Ward JM (1999) NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol 1:524-528.
    [7]Apel K, Hirt H (2004) Reactive oxygen species:Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399.
    [8]Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An Iron-induced Nitric Oxide Burst Precedes Ubiquitin-dependent Protein Degradation for Arabidopsis AtFerl Ferritin Gene Expression. J Biol Chem 281:23579-23588.
    [9]Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, et al., (2002) MAP kinase signallingcascade in Arabidopsis innate immunity. Nature 415:977-983.
    [10]Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HML1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated ion channel family. Plant Cell 15:365-379.
    [11]Baker CJ, rlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33: 299-321.
    [12]Beck KF, Eberhardt W, Franck S, Huwiler A, Messmer UK, Miihl H, Pfeilschifter J (1999) Inducible NO synthase:Role in cellular signaling. J Exp Biol 202:645-653.
    [13]Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins:mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266-292.
    [14]Beth Mudgett M (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56:509-531.
    [15]Binet MN, Humbert C, Lecourieux D, Vantard M, Pugin A (2001) Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiol 125:564-572.
    [16]Blume B, Nurnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425-1440.
    [17]Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189-214.
    [18]Bostock RM (2005) Signal crosstalk and induced resistance:Straddling the Line between cost and benefit. Annu Rev Phytopathol 43:545-80.
    [19]Bourque S, Binet MN, Ponchet M, Pugin A, Lebrun-Garcia A (1999) Characterization of the cryptogein binding sites on plant plasma membranes. J Biol Chem 274:34699-34705.
    [20]Bourque S, Lemoine R, Sequeira-Legrand A, Fayolle L, Delrot S, Pugin A (2002) The elicitor cryptogein blocks glucose transport in tobacco cells. Plant Physiol 130:2177-2187.
    [21]Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound induced oxidative cross-linking of a proline-rich plant cell wall protein:A novel, rapid defense response. Cell 70:21-30.
    [22]Brisson LF, Tenhaken R., Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance Plant Cell 6:1703-1712.
    [23]Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275:36734-36740.
    [24]Hoefle C, Huckelhoven R (2008) Enemy at the gates:traffic at the plant cell pathogen interface. Cellular Microbiology 10:2400-2407.
    [25]Chico JM., Raices M, Tellez-Inon MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256-270.
    [26]Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476.
    [27]Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dndl "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323-9328.
    [28]Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM., Sandalio LM., Gomez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136: 2722-2733.
    [29]Dallo SF, Kannan TR, Blaylock MW, Baseman JB (2002) Elongation factor Tu and El beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol46:1041-1051.
    [30]Dat JF, Pellinen R, Beeckman T, Van De Cote B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621-632.
    [31]Daxberger A, Nemak A, Mithofer A, Fliegmann J, Ligterink W, Hirt H, Ebel J (2007) Activation of members of a MAPK module in beta-glucan elicitormediated non-host resistance of soybean. Planta225:1559-1571.
    [32]del Pozo O, Pedley KF, Martin GB (2004) MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072-3082.
    [33]Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390-396.
    [34]Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588.
    [35]Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454-13459.
    [36]Desikan R, Burnett EC, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J Exp Bot 49: 1767-1771.
    [37]Desikan R, Mackerness S, Hancock JT, Neill SJ (2001b) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159-172.
    [38]Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126: 1579-1587.
    [39]Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181-2191.
    [40]Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. ProcNatl Acad Sci USA 95:10328-10333.
    [41]Ebel J, Bhagwat AA, Cosio EG, Feger M, Kissel U, Mithofer A, Waldmuller T (1995) Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defense response. Can J Bot 73:506-510.
    [42]Ekengren SK., Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905-907.
    [43]Espinosa A, Alfano JR (2004) Disabling surveillance:bacterial type Ⅲ secretion system effectors that suppress innate immunity. Cell Microbiol 6:1027-1040.
    [44]Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265-276.
    [45]Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, et al., (2002) NPP1, a Phytophthoraassociated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375-390.
    [46]Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817-824.
    [47]Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, et al., (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin lbeta in salmonella-infected macrophages. Nat Immunol 7:576-582.
    [48]Fritz JH., Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250-1257.
    [49]Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373-378.
    [50]Furman-Matarasso N, Cohen E, Du Q, Chejanovsky N, Hanania U, Avni A (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4-endoxylanase activity but
    not the elicitation activity. Plant Physiol 121:345-351.
    [51]Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, David L, Benoit P, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe In 19:711-724.
    [52]Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol 113:269-279.
    [53]Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227.
    [54]Gomez-Gomez L, Boller T (2000) FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in. Arabidopsis. Mol Cell 5:1003-1011.
    [55]Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160-2169.
    [56]Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation:type Ⅲ effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425-449.
    [57]Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates mand cognate redox signaling in disease resistance. Plant Physiol 124:21-30.
    [58]Groom OJ, Torres MA, Fordham-Skelton P, Hammond-Kosak KE, Robinson NJ, Jones JDG (1996) RbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10: 515-522.
    [59]Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771-785.
    [60]Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100-103.
    [61]Guo FQ, Crawford NM (2005) Arabidopsis nitric ocide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436-3450.
    [62]Ham JH., Kim MG, Lee SY, Mackey D (2007) Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. Phaseolicola Plant J 51:604-616.
    [63]Hann DR, Rathjen JP (2007) Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49:607-618.
    [64]Hauck P, Thilmony R, He SY (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA 100: 8577-8582.
    [65]He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR., et al., (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type Ⅲ effectors and coronatine. Plant J 37:589-602.
    [66]He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microbiology 9:1385-1396.
    [67]Hetherington AM, Brownlee C (2004) The generation of Ca2+signals in plants. Annu Rev Plant Biol 55:401-427.
    [68]Hoefle C, Huckelhoven R (2008) Enemy at the gates:traffic at the plant cell pathogen interface. Cellular Microbiology 10:2400-2407.
    [69]Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH., Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:660-680.
    [70]Hughes FMJ, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567-30576.
    [71]Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2-from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800-4805.
    [72]Jakobek JL, Smith JA, Lindgren PB (1993) Suppression of Bean Defense Responses by Pseudomonas syringae. Plant Cell 5:57-63.
    [73]Jin H, Axtell MJ, Dahlbeck D, Ekwanna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKKl-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3:291-297.
    [74]Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S (2003) Function of a mitogen-activated protein kinase pathway in N-gene mediated resistance in tobacco. Plant J 33:719-731.
    [75]Jones DG, Dangl JL (2006) The plant immune system. Nature 444:323-329.
    [76]Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004) Identification of putative voltage-dependent Ca+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochem Biophys Res Commun 317: 823-830.
    [77]Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, et al., (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086-11091.
    [78]Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K,
    Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103: 230-235.
    [79]Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255-266.
    [80]Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38:142-151.
    [81]Kim MG, da Cunha L, McFall AJ, Belkhadir Y, Debroy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749-759.
    [82]Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. Plant J 26:509-522.
    [83]Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798-809.
    [84]Kunze G, Zipfel C. Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongationfactor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507.
    [85]Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling:The latest news. Curr Opin Plant Biol 7:323-328.
    [86]Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251-275.
    [87]Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516-529.
    [88]Lebrun-Garcia A., Ouaked F, Chiltz A, Pugin A (1998) Activation of MAPK homologues by elicitors in tobacco cells. Plant J 15:773-781.
    [89]Lecourieux-Ouaked F, Pugin A, and Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant-Microbe Interact 13:821-829.
    [90]Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14: 2627-2641.
    [91]Lee J, Klessig DF, Nurnberger T (2001) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-1093.
    [92]Lee SW, Han SW, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzaepv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA 103: 18395-18400.
    [93]Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43:79-96.
    [94]Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X, Zhou JM (2005) Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA 102:12990-12995.
    [95]Ligterink W, Kroj T, zur Nieden U, Hirt H, Scheel D (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054-2057.
    [96]Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921-930.
    [97]Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, et al., (2005) Pre-and postinvasion defensesboth contribute to nonhost resistance in Arabidopsis. Science 310:1180-1183.
    [98]Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386-3399.
    [99]Liu GZ, Pi LY, Walker JC, Ronald PC, Song WY (2002) Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem 277: 20264-20269.
    [100]Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants:Key for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263-271.
    [101]Lum HK, Butt YK, Lo SC (2002) Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide 6:205-213.
    [102]Lurin C, Guclu J, Cheniclet C, Carde JP, Barbier-Brygoo H, Maurel C (2000) CLC-Ntl, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers. BiochemJ 348:291-295.
    [103]Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+elevation is linked to downstream nitric oxide generation through the Action of Calmodulin or a calmodulin-like protein. Plant Physiology 148:818-828.
    [104]Madsen EB, Madsen LH.; Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, et al., (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637-640.
    [105]Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G (2004) Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteom 3:675-691.
    [106]Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467-472.
    [107]Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980.
    [108]Menke FLH, van Pelt JA, Pieterse CMJ, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16:897-809.
    [109]Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39-44.
    [110]Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7: 569-575.
    [111]Mittal S, Davis KR (1995) Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 8:165-171.
    [112]Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen network of plants. Trends Plant Sci 9:490-498.
    [113]Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, and Swanson MS. (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093-1104.
    [114]Montillet JL, Chamnongpol S, Rusterucci C, Dat J, Van De Cotte B, Agnel JP, Battesti C, Inze D, Van Breusegem F, Trianphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516-1526.
    [115]Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358-363.
    [116]Morel J, Fromentin J, Blein JP, Simon-Plas F, Elmayan T (2004) Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J 37:282-293.
    [117]Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702-708.
    [118]Mou Z, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944.
    [119]Murillo I, Jaeck E, Cordero MJ, Secondo BS (2001) Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol Biol 45:145-158.
    [120]Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK activation. J Biol Chem 279:26959-26966.
    [121]Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113-1128.
    [122]Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible Tplant-Pseudomonas syringae interactions. Curr Opin Plant Biol 8:361-368.
    [123]Nurnberger T., Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals:Striking similarities and obvious differences. Immunol Rev 198:249-266.
    [124]Nurnberger T, Nennstiel D, Jabs T, Sacks WR, Halhbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449-460.
    [125]Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759-764.
    [126]Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2: 359-366.
    [127]Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plantspecific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467-1475.
    [128]Pedley KF, Martin GB (2004) Identification of MAPKs and their possible MAPKK activators involved in the Pto-mediated defense response of tomato. J Biol Chem 279:49229-49235.
    [129]Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB,
    Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF. Martienssen R, Mattson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance; Cell 103:1111-1120.
    [130]Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant-Microbe Interact 16: 1094-1105.
    [131]Pugin A, Frachisse JM, Tavernier E, Bligny R, Gout E, Douce R, Guern J (1997) Early events induced by the elicitor cryptogein in tobacco cells:Involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9:2077-2091.
    [132]Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, et al., (2006) Phytotoxicity and innate immune responses induced by Nepl-like proteins. Plant Cell 18: 3721-3744.
    [133]Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, et al., (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585-592.
    [134]Reboutier D, Frankart C, Vedel R, Brault M, Duggleby RG, Rona JP, Barny MA, Bouteau F (2005) A CFTR chloride channel activator prevents HrpNea-induced cell death in Arabidopsis thaliana suspension cells. Plant Physiol Biochem 43:567-572.
    [135]Reddy VS, Reddy AS (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745-1776.
    [136]Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559-565.
    [137]Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1-and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18.
    [138]Ricci P (1997) Induction of the hypersensitive response and systemic acquired resistance by fungal proteins:The case of elicitins. Pages 53-75 in:Plant-Microbe Interactions. Vol.3. G. Stacey and N. T. Keen, eds. Chapman and Hall, New York
    [139]Robatzek S, Chinchilla D, Boller T (2006) Ligandinduced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537-542.
    [140]Romeis T, Piedras P, Jones JDG (2000). Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12:803-815.
    [141]Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556-5567.
    [142]Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604-1615.
    [143]Rowland O, Ludwig AA., Merrick CJ, Baillieul F, Tracy FE, Durrant WE, Fritz-Laylin L, Nekrasov V, Sjolander K, Yoshioka H, Jones JDG (2005) Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell 17:295-310.
    [144]Samuel MA, Ellis BE (2002) Double jeopardy:Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14:2059-2069.
    [145]Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell (Suppl.) 14:S401-417.
    [146]Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11: 263-272.
    [147]Schwessinger B, Zipfel C (2008) News from the frontline:recent insights into PAMP-triggered immunity in plants. Current Opinion in Plant Biology 11:389-395.
    [148]Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H (2003) Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Gen Genomics 269: 583-591.
    [149]Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, et al, (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315: 1098-1103.
    [150]Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137-147.
    [151]Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K,Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770.
    [152]Stab MR, Ebel J (1987) Effects of Ca2+on phytoalexin induction by fungal elicitor in soybean cells. Arch. Biochem. Biophys.257:416-423.
    [153]Stulemeijer IJE, Stratmann JW, Joosten MHAJ (2007) Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiology 144:
    1481-1494.
    [154]Subramanian N, Qadri A (2006) Lysophospholipid sensing triggers secretion of flagellin from pathogenic salmonella. Nat Immunol 7:583-589.
    [155]Suhita D, Raghavendra AS, Kwak JM., Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. Plant Physiol 134:1536-1545.
    [156]Sutter JU, Homann U, Thiel G (2000) Ca2+-Stimulated Exocytosis in Maize Coleoptile Cells. Plant Cell 12:1127-1136.
    [157]Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003). Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44: 342-349.
    [158]Tavernier E, Stallaert V, Blein JP, Pugin A (1995) Changes in lipid composition in tobacco cells treated with cryptogein, an elicitor from Phytophthora cryptogea. Plant Sci 104:117-125.
    [159]Thilmony R, Underwood W, He SY (2006) Genomewide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli 0157:H7. Plant J 46:34-53.
    [160]Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol 13:63-68.
    [161]Ton J, Van Pelt JA., Van Loon LC, Pieterse CM (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact 15:27-34.
    [162]Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in plant defense response. Proc Natl Acad Sci USA 99:517-522.
    [163]Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397-403.
    [164]Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase gp91phox. Plant J 14: 365-370.
    [165]Truman W, de Zabala MT, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46:14-33.
    [166]Tyler BM (2009) Entering and breaking:virulence effector proteins of oomycete plant pathogens. Cellular Microbiology 11:13-20
    [167]Vandelle E, Poinssot B, Wendehenne D, Bentejac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant-Microbe Interact 19:429-440.
    [168]van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant cell 20:697-719.
    [169]Wan J, Zhang S, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5:125-135.
    [170]Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide:A new player in plant signaling and defence responses. Curr Opin Plant Biol 7:449-455.
    [171]Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide:Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177-183.
    [172]Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A (2002) Nitrate anion efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14:1937-1951.
    [173]White PJ, Broadley MR (2003) Calcium in plants. Ann Bot (Lond) 92:487-511.
    [174]Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens:Two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell 8:555-564.
    [175]Xing T, Wang XJ, Malik K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol. Plant-Microbe Interact 14:1261-1264.
    [176]Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase:In vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett.468:89-92.
    [177]Yang KY, Liu YD, Zhang SQ (2001) Activation of a mitogen activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741-746.
    [178]Yoon GM, Cho HS, Ha HJ, Liu JR, Pai HP (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol 39:991-1001.
    [179]Yoshioka K, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol
    Plant-Microbe Interact 14:725-736.
    [180]Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91(phox) homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718.
    [181]Zhang S, Du H, Klessig DF (1998) Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10:435-450.
    [182]Zhang C, Czymmek KJ, Shapiro AD (2003) Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol. Plant-Microbe Interact 16:962-972.
    [183]Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485-499.
    [184]Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767.
    [185]Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760.
    [1]Alfano JR, Collmer A (2004) Type III secretion system sffector proteins:double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385-414.
    [2]Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant eral-2. Plant Cell 14:1649-1662.
    [3]Assmann SM (1999) The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22: 629-637.
    [4]Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MR, Meyerhoff O, Hartung W, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554:119-126.
    [5]Belin C, Franco P-O d, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiology 141:1316-1327.
    [6]Blatt MR (2000) Ca2+signalling and control of guard-cell volume in stomatal movements. Curr Opin Plant Biol 3:196-204.
    [7]Blatt MR, Grabov A (1997) Signal redundancy, gates and the integration in the control of ion channels for stomatal movement. J Exp Bot 48:529-537.
    [8]Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol 132:1011-1019.
    [9]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor:a heat-activated ion channel in the pain pathway. Nature 389:816-824.
    [10]Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651-654.
    [11]Cote F, Hahn MG (1994) Oligosaccharins:stucture and signal transducfion. Plant Mol Biol 26: 1397-1411.
    [12]Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826-833.
    [13]Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314-16318.
    [14]Dong HP, Peng JL, Bao ZL, et al., (2004) Downstream diversity of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology 136:3628-3638.
    [15]Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823-826.
    [16]Garcia-Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196-1204.
    [17]Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790-792.
    [18]Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116-11121.
    [19]Hamilton DW, Hills A, Kohler B, Blatt MR (2000) Ca2+channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967-4972.
    [20]Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196-200.
    [21]Henryk S (1997) New applications of chitin and its derivatives in plant protection. Lancaster: Technomic Publishing Company inc,129-139.
    [22]Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901-908.
    [23]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549-5554.
    [24]Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47-55.
    [25]Iwai S, Shimomura N, Nakashima A, Etoh T (2003) New fava bean guard cell signaling mutant impaired in ABA-induced stomatal closure. Plant Cell Physiol 44:909-913.
    [26]Jeon BW, Hwang JU, Hwang Y, Song WY, Fu Y, Gu Y, Bao F, Cho D, Kwak JM, Yang Z, Lee Y (2008) The Arabidopsis small G protein ROP2 is activated by light in guard cells and inhibits light-induced stomatal opening. Plant Cell 20:75-87.
    [27]Ji CY, Li YF, Wang ZZ (2006) Purification and identification of a glycoprotein elicitor (CSBI) from Magnaporthe grisea Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 32:587-92. Chinese.
    [28]Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology 146:623-635.
    [29]Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3-and 4-phosphate are required for normal stomatal movements. Plant Cell 14: 2399-2412.
    [30]Kamoun S (2001) Nonhost resistance to Phytophthora:Novel prospects for a classical problem. Curr Opin Plant Biol 4:295-300
    [31]Kanneganti TD, Huitema E, Cakir C, Kamoun S (2006) Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nepl-like protein PiNPP1.1 and INF1 elicitin. MPMI19:854-863.
    [32]Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656-660.
    [33]Kinoshita T, Emi T, Tominaga M, Sakamoto K, Shigenaga A, Doi M, Shimazaki K (2003) Blue-light-and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol 133:1453-1463.
    [34]Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C (2003) The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33:119-129.
    [35]Kohler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol 131: 385-388.
    [36]Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623-2633.
    [37]Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRacl by abscisic acid is essential for stomatal closure. Genes and development 15:1808-1816.
    [38]Leonhardt N, Kwak J, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596-615.
    [39]Lemtiri-Chlieh F, MacRobbie EAC, Brearley CA (2000) Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc Natl Acad Sci USA 97:8687-8692.
    [40]Lemtiri-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091-10095.
    [41]Leonhardt N, Vavasseur A, Forestier C (1999) ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells. Plant Cell 11:1141-1152.
    [42]Melotto M, Underwood William, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980.
    [43]Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264-266.
    [44]Mills LN, Hunt L, Leckie CP, Aitken FL, Wentworth M, McAinsh MR, Gray JE, Hetherington AM (2004) The effects of manipulating phospholipase C on guard cell ABA-signalling. J Exp Bot 55: 199-204.
    [45]Mithofer A, Mazars C (2002) Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. Biol Proc Online 4:105-118.
    [46]Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biology 4: 1749-1762.
    [47]Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483-486.
    [48]Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13-16.
    [49]Newman MA. Roepenack-Lahaye EV, Parr A, et al., (2002) Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J 29:487-495.
    [50]Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596-599.
    [51]Pandey S, Assmann S (2004) The arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein a subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616-1632.
    [52]Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Letters 581:2325-2336.
    [53]Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92-98.
    [54]Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734.
    [55]Philippar K, Buchsenschutz K, Abshagen M, Fuchs I, Geiger D, Lacombe B, Hedrich R (2003) The K+channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J Biol Chem 278:16973-16981.
    [56]Raschke K (2003) Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate. Planta 217:651-657.
    [57]Raschke K, Shabahang M, Wolf R (2003) The slow and the quick anion conductance in whole guard cells their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217:639-650.
    [58]Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290-294.
    [59]Romeis T, Piedras P, Zhang SQ, Klessig DF, Hirt H, Jones JDG (1999) Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves:Convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11:273-287.
    [60]Schmidt C, Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells (large nitrate permeability). Plant Physiol 106:383-391.
    [61]Schroeder JI (1995) Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Mol Biol 28:353-361.
    [62]Sejalon-Delmas N, Mateos FV, Bottin A, Rickauer M, Dargent R, Esquerre-Tugaye MT (1997) Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87:899-909.
    [63]Sharp JK, Valent B, Albersheim P (1984) Purification and partual characterization of a bata—glucan fragment that elicits phtoalexin accumulation in soybean. J Biol Chem 259: 11312-11320.
    [64]Shibuya N, Minami E (2001) Oligosaccharide signaling for defence responses in plant. Physiological and Molecular plant pathology 59:223-233.
    [65]Talbott LD, Rahveh E, Zeiger E (2003) Relative humidity is a key factor in the acclimation of the stomatal response to CO2. J Exp Bot 54:2141-2147.
    [66]Talbott LD, Shmayevich IJ, Chung Y, Hammad JW, Zeiger E (2003) Blue light and phytochrome-mediated stomatal opening in the npql and photl phot2 mutants of Arabidopsis. Plant Physiol 133:1522-1529.
    [67]Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487-491.
    [68]van der Luit AH, Olivari C, Haley A, Knight MR, AJ T (1999) Distinct signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705-714.
    [69]Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168-175.
    [70]Wandrey M, Trevaskis B, Brewin N, Udvardi MK (2004) Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiol 134:182-183.
    [71]Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292; 2070-2072.
    [72]Wright CA, Beattie GA (2004) Pseudomonas syringae pv.tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc Natl Acad Sci USA 101:3269-3274.
    [73]Yamazaki D, Yoshida S, Asami T, Kuchitsu K (2003) Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant J 35:129-139.
    [74]Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana:Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811-15816.
    [75]Zeiger E, Talbott LD, Frechilla S, Srivastava A, Zhu JX (2002) The guard cell chloroplast:a perspective for the twenty-first century. New Phytol 153:415-424.
    [76]Zhang DP, Wu ZY, Li XY, Zhao ZX (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128: 714-725.
    [77]Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438-1448.
    [78]Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kKinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019-3036.
    [79]Zheng ZL, Nafisi M, Tam A, Li H, Crowell DN, Chary SN, Schroeder JI, Shen J, Yang Z (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14:2787-2797.
    [80]Zimmermann S, Nurnberger T, Frachisse JM, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc Natl Acad Sci USA 94:2751-2755.
    [1]Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109-113.
    [2]Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264-272.
    [3]Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJE (1996) Plant viruses online: descriptions and lists from the VIDE data base. Version:20th August 1996.
    [4]Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734-746.
    [5]Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol.142:21-27.
    [6]Chapman S, Kavanagh T, Baulcombe D (1992) Potato virus X as a vector for gene expression in plants. Plant J 2:549-557.
    [7]Chen JC, Jiang CZ, Gookin TE, Hunter DA, Clark DG, Reid MS (2004) Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol 55:521-530.
    [8]Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40: 622-631.
    [9]Cruz SS, Chapman S, Roberts AG, Roberts IM, Prior DA, Oparka KJ (1996) Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci USA 93:6286-6290.
    [10]Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313: 68-71.
    [11]Ding XS, Schneider WL, Chaluvadi SR, Rouf Mian RM, Nelson RS (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19:1229-1239.
    [12]Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP (2007) A ligation-independent cloning TRV vector for highthrought virus induced gene silencing identifies roles for NbMADS4-1 and-2 in floral development. Plant Physiol 145:1161-1170.
    [13]Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36: 905-917.
    [14]Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507-1523.
    [15]Fofana IB, Sangare A, Collier R, Taylor C, Fauquet CM (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56:613-624.
    [16]Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299-308.
    [17]Fu DQ, Zhu BZ, Zhu HL, Zhang HX, Xie YH, Jiang WB, Zhao XD, Luo KB (2006) Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol Cell 21: 153-160.
    [18]Godge MR, Purkayastha A, Dasgupta I, Kumar PP (2008) Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep 27:209-219
    [19]Gabriels SHEJ, Takken FLW, Vossen JH, de Jong CF, Liu Q, Turk SC, Wachowski LK, Peters J, Witsenboer HM, de Wit PJ, Joosten MH (2006) cDNA-AFLP, combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant-Microbe Interact 19: 567-576.
    [20]Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors:Versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375-383.
    [21]Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana:Its history and future as a model for plant-pathogen interactions. MPMI21:1015-1026.
    [22]Gossele VV, Fache II, Meulewaeter F, Cornelissen M, Metzlaff M (2002) SVISS—a novel transient gene silencing system for gene function discovery and validation in tobacco. Plant J 32: 859-866.
    [23]Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315-327.
    [24]Gould B, Kramer EM (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). BMC Plant Methods 12:6.
    [25]He X, Anderson JC, del Pozo O, Gu YQ, Tang X, Martin GB (2004) Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant J 38:563-577.
    [26]Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum(opium poppy). Plant J 44:334-341.
    [27]Hull R (2002) Matthews'plant virology,4th edn. Academic, New York.
    [28]Kanneganti, T. D., Bai, X., Tsai, C. W., Win, J., Meulia, T., Goodin, M., Kamoun, S., and Hogenhout SA (2007) A functional genetic assay for nuclear trafficking in plants. Plant J 50: 149-158.
    [29]Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209-216.
    [30]Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91-100.
    [31]Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertionalmutagen in Arabidopsis. Plant Cell 11:2283-2290.
    [32]Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92: 1679-1683.
    [33]Lacomme C, Hrubikova K, Hein I (2003) Enhancement of virusinduced gene silencing through viral-based production of inverted-repeats. Plant J 34:543-553.
    [34]Liu Y, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. Plant J 31: 777-786.
    [35]Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002b) Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N mediated resistance to tobacco mosaic virus. Plant J 30:415-429.
    [36]Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567-577.
    [37]Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003a) High throught virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690-5699.
    [38]Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003b) Virus-induced gene silencing in plants. Methods 30:296-303.
    [39]Lucas WJ (2006) Plant viral movement proteins:Agents for cell-to-cell trafficking of viral genomes. Virology 344:169-184.
    [40]MacFarlane SA, Popovich AH (2000) Efficient expression of foreign proteins in roots from tobravirus vectors. Virology 267:29-35.
    [41]Muangsan N, Robertson D (2004) Geminivirus vectors for transient gene silencing in plants. Methods Mol Biol 265:101-115.
    [42]Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3-11.
    [43]Parinov S, Sevugan M, Ye D, Yang WC, Kumaran M, Sundaresan V (1999) Analysis of flanking sequences from dissociation insertion lines:a database for reverse genetics in Arabidopsis. Plant Cell 11:2263-2270.
    [44]Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27: 357-366.
    [45]Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237-245.
    [46]Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937-946.
    [47]Ryu CM, Anand A, Kang L, Mysore KS (2004) Agrodrench:a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J 40: 322-331.
    [48]Schob H, Kunz C, Meins F Jr. (1997) Silencing of transgenes introduced into leaves by agroinfiltration:a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet 256:581-585.
    [49]Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199-208.
    [50]Speulman E, Metz PLJ, van Arkel G, Hekkert PTL, Stiekema WJ, Pereira A (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11:1853-1866.
    [51]Tao X, Zhou X (2004) A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38:850-860.
    [52]Thomas CL Jones LDC, Maule AJ (2001) Size constraints for targeting post-transcriptional gene silencing and for using RNA directed methylation in N. benthamiana using a potato virus X vector. Plant J 25:417-425.
    [53]Toth RL, Chapman S, Carr F, Cruz SS (2001) A novel strategy for the expression of foreign genes from plant virus vectors. FEBS Letters 489:215-219.
    [54]Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30:107-117.
    [55]Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136:3999-4009.
    [56]Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686-691.
    [57]van Kammen A (1997) Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci 2:409-411.
    [58]Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of Tomato bushy stunt virus. Plant J33:949-956.
    [59]Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982-5987.
    [1]Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don't have no mercy and neither does calcium:Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19:1081-1095.
    [2]Allan, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572.
    [3]Amicucci E, Gaschler K, Ward JM (1999) NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed(Potamogeton crispus). Plant Biology 1:524-528.
    [4]Apel K, Hirt H (2004) Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373-399.
    [5]Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant cell 20:1390-1406.
    [6]Barcelo AR (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220:747-756.
    [7]Blume B, Nurnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425-1440.
    [8]Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants:a three component system. Journal of Experimental Botany 53:1367-1376.
    [9]Bolwell GP, Davies DR, Gerrish C, Auh CK, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiology 116:1379-1385.
    [10]Bolwell, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defense-abroad perspective. Physiological and Molecular Plant Pathology 51:347-366.
    [11]Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent onH2O2 synthesis. Plant Journal 45:113-122.
    [12]Chen YL, Huang RF, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant physiology 136: 4096-4103.
    [13]Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signalling in plants:interplays with Ca2+and protein kinases. Journal of Experimental Botany 59:155-163.
    [14]Dangl JL (1998) Innate immunity:Plants just say NO to pathogens. Nature 394:525-527.
    [15]Delledonne M, Zeier J, Marocco A, Lamb CJ (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, USA 98:13454-13459.
    [16]Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant desease resistance. Nature 394:585-588.
    [17]Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. Journal of Experimental Botany 55: 205-212.
    [18]Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 99:16314-16318.
    [19]Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327.
    [20]Dorey S, Kopp M, Geoffroy P, Fritig B, Kauffinann S (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiology 121:163-171.
    [21]Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose. Proceedings of the National Academy of Sciences, USA 95: 10328-10333.
    [22]Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, et al. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442-446.
    [23]Frank VB, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiology 141: 384-390.
    [24]Gan YZ, Zhang LS, Zhang ZG, Dong SM, Li J, Wang YC, Zheng XB (2009) The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytologist 181:127-146.
    [25]Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, David L, Benoit P, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19:711-724.
    [26]Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology 128:790-792.
    [27]Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. Journal of Cell Biology 168:17-20.
    [28]Grant M, Lamb C (2006) Systemic immunity. Current Opinion in Plant Biology 9:414-420.
    [29]Grant JJ, Yun BW, Loake GJ (2000a) Oxidative burst and cognate redox signalling reported by luciferase imaging:identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant Journal 24:569-582.
    [30]Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000b) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant Journal 23:441-450.
    [31]Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JD (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant Journal 10:515-522.
    [32]Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855-858.
    [33]Ji R, Zhang ZG, Wang XB, Zheng XB (2005) Phytophthora elicitor PB90 induced apoptosis in suspension cultures of tabacco. Chinese Science Bulletin 50:435-439.
    [34]Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Current Opinion in Plant Biology 6:390-396.
    [35]Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255-266.
    [36]Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065-1080.
    [37]Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant Journal 42:798-809.
    [38]Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48:251-275.
    [39]Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiology 135:516-529.
    [40]Lee S, Choi H, Suh S, Doo IS, Oh KY,Choi EJ, Taylor ATS, Low PS, Lee Y (1999) Oigogalaturoonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen specied from guard cells of tomato and Commelina communis. Plant Physiology 121: 147-152.
    [41]Li J, Zhang ZG, Ji R, Wang YC, Zheng XB (2006) Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in nonheading Chinese cabbage. Physiology and Molecular Plant Pathology 67:220-230.
    [42]Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National Academy of Sciences, USA 102:10736-10741.
    [43]McAinsh MR, Clayon H. Mansfield TA, Hetherington AM (1996) Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology 111: 1031-1042.
    [44]Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9:490-498.
    [45]Miura Y, Yoshioka H, Park HJ, Kawakita K, Doke N (1999) Plasma membrane perturbation in association with calcium ion movement followed by fungal elicitor-stimulated oxidative burst and defense gene activation in potato tuber. Annals of the Phytopathological Society of Japan 65: 447-453.
    [46]Miura Y, Yoshioka H, Doke N (1995) An autophotographic determination of the active oxygen generation in potato tuber discs during hypersensitive response to fungal infection or elicitor. Plant Science 105:45-52.
    [47]Morel J, Fromentin J, Blein JP, Simon-Plas F, Elmayan T (2004) Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant Journal 37:282-293.
    [48]Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology 128:13-16.
    [49]Nell SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plant. Journal of Experimental Botany 53:1237-1247.
    [50]Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: Striking similarities and obvious differences. Immunological Reviews 198:249-266.
    [51]Nurnberger T, Scheel D (2001) Signal transmission in the plant immune response. Trends in Plant Science 6:372-379.
    [52]Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences, USA 98:759-764.
    [53]Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abiscisic acid signaling in guard cells. Nature 406:731-734.
    [54]Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiology 141:351-356.
    [55]Planchet E, Sonada M, Zeier J, Kaiser WM (2006) Nitric oxide (NO) as an intermediate in the cryptogein-induced hypersensitive response-a critical re-evaluation. Plant, Cell and Environment 29:59-69.
    [56]Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Sertz HU, Stahl D, Rauhut T, et al. (2006) Phytotoxicity and innate immune responses induced by Nepl-like proteins. plant cell 18:3721-3744.
    [57]Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616-628.
    [58]Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox)NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiology 126:1281-1290.
    [59]Samuel MA, Hall H, Krzymowska M, Drzewiecka K, Hennig J, Ellis BE (2005) SIPK signaling controls multiple components of harpin-induced cell death in tobacco. Plant Journal 42:406-416.
    [60]Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant
    Cell 14:S401-S417.
    [61]Schulz JB, Weller M, Klochgeter T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons:a sequential requirement for new mRNA and protein synthesis, ICE-like prorease activity, and reactive oxygen species. Journal of Neuroscience 16:4696-4706.
    [62]Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917-932.
    [63]Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H (2003) Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Molecular Genetics and Genomics 269:583-591.
    [64]Shintaro M, Kenji O, Megumi WS, Yoshimasa N,Yasuaki S, Yoshiyuki M (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiology 143:1398-1407.
    [65]Tada Y, Mori T, Shinogi T, Yao N, Takahashi S, Betsuyaku S, SakamotoM, Park P, Nakayashiki H, Tosa Y, et al. (2004) Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Molecular Plant-Microbe Interactions 17:245-253.
    [66]Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiology 141:373-378.
    [67]Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology 8:397-403.
    [68]Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences, USA 99:517-522.
    [69]Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant Journal 14:365-370.
    [70]Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide:a new player in plant signalling and defence responses. Current Opinion in Plant Biology 7:449-455.
    [71]Wright KM, Duncan GH, Pradel KS, Carr F, Wood S, Oparka KJ, Santa Cruz S (2000) Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiology 123:1375-1385.
    [72]Xing T, Wang XJ, Malik K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Molecular Plant-Microbe Interactions 14:1261-1264.
    [73]Yoshie Y, Goto K, Takai R, Iwano M, Takayama S, Isogai A, Che FS (2005) Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnology 22:127-135.
    [74]Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718.
    [75]Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Molecular Plant-Microbe Interactions 14:725-736.
    [76]Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb CJ (2004) Genetic elucidation of nitric oxide signaling in incompatible plant pathogen interactions. Plant Physiology 136: 2875-2886.
    [77]Zhang ZG, Wang YC, Li J, Ji R, Shen G, Wang SC, zhou X, Zheng XB (2004) The role of SA in hypersensitive response and systemic acquired resistance induced by the elicitor PB90 of Phytophthora boehmeriae. Physiological and Molecular Plant Pathology 65:31-38.
    [78]Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23:283-333.
    [79]张正光,王源超,蔡炳江,郑小波(2007) H2O2、NO和Ca2+参与疫病菌激发子PB90诱导烟草气孔的关闭。植物病理学报37:62-68.
    [1]Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don't have no mercy and neither does calcium:Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19:1081-1095.
    [2]Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572.
    [3]Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473-1483.
    [4]Amicucci E, Gaschler K, Ward JM (1999) NADPH oxidase genes from tomato(Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol 1:524-528.
    [5]Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390-1406.
    [6]Baillieul F, de Ruffray P, Kauffmann S (2003) Molecular cloning and biological activity of α-, β-and γ-megaspermin, three elicitors secreted by Phytophthora megasperma H20. Plant Physiol 131: 155-166.
    [7]Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol.33: 299-321.
    [8]Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59: 491-499.
    [9]Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113-122.
    [10]Brunner F, Rosahl S, Lee JJ, Geiler C, Kauppinnen S, Rasmussen G, Scheel D, Niirnberger T (2002) Pep-13, a plant defence-inducing pathogen associated pattern from Phytophthora transglutaminases. EMBOJ 21:6681-6688.
    [11]Chen YL, Huang RF, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol 136:4096-4103.
    [12]Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157-171.
    [13]Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16: 857-873.
    [14]Cohen GM (1997) Caspases:the executioners of apoptosis. Biochem J 326:1-16.
    [15]Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471-478.
    [16]Dangl JL (1998) Innate immunity:Plants just say NO to pathogens. Nature 394:525-527.
    [17]Dangl JL, Dietrich RA, Richberg MH (1996) Death don't have no mercy:cell death programs in plant-microbe interactions. Plant Cell 8:1793-1807.
    [18]Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against apoptotic death. J Biol Chem 279: 779-787.
    [19]del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8:1129-1132.
    [20]del Pozo O, Pedley KF, Martin GB (2004) MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072-3082.
    [21]Desikan R, Burnett EC, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J Exp Bot 49: 1767-1771.
    [22]Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314-16318.
    [23]Fan LM, Zhao Z, Assmann SM (2004) Guard cells:a dynamic signaling model. Curr Opinion in Plant Biol 7:537-546.
    [24]Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Stefan Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defence in parsley and Arabidopsis. Plant J 32:375-390.
    [25]Fliegmann J, Mithofer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative β-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 279:1132-1140.
    [26]Gabriels SEJ, Takken FLW, Vossen JH, de Jong CF, Liu Q, Turk SCHJ, Wachowshi LK, Peters J, Witsenboer HMA, de Wit PJGM et al (2006) cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant Microbe In 19:567-576.
    [27]Gan YZ, Zhang LS, Zhang ZG, Dong SM, Li J, Wang YC, Zheng XB (2009) The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytol 181:127-146.
    [28]Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, David L, Benoit P, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe In 19:711-724.
    [29]Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790-792.
    [30]Gijzen M, Nurnberger T (2006) Nepl-like proteins from plant pathogens:recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800-1807.
    [31]Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21-30.
    [32]Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201-211.
    [33]Groom OJ, Torres MA, Fordham-Skelton P, Hammond-Kosak KE, Robinson NJ, Jones JDG (1996) RbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10: 515-522.
    [34]Hara-Nishimura 1, Takeuchi Y, Nishimura Mikio (1993) Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell 5: 1651-1659.
    [35]Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants:vacuole-mediated cell death. Apoptosis 11:905-911.
    [36]Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura Ikuko (2004) A Plant Vacuolar Protease, VPE, Mediates Virus-Induced Hypersensitive Cell Death. Science 305:855-858.
    [37]He R, Drury GE, Rotari VI, Gordon A, Willer M, Tabasum F, Woltering EJ, Gallois P (2007) Metacaspase-8 modulates programmed cell death induced by UV and H2O2 in Arabidopsis. J Biol Chem 283:774-783.
    [38]He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microbiology 9:1385-1:396.
    [39]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F,mPoree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac. H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549-5554.
    [40]Ji R, Zhang ZG, Wang XB, Zheng XB (2005) Phytophthora elicitor PB90 induced apoptosis in suspension cultures of tobacco. Chin Sci Bull 50:435-439.
    [41]Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323-329.
    [42]Kim M, Ahn JW, Jin UH, Chai D, Poek KH, Pai HS (2003) Activation of the programmed cell death by inhibition of proteasome function in plant. J Biol Chem 278:19406-19415.
    [43]Kinoshita T, Nishimura M, Hara-Nishimura I (1995) Homologues of a vacuolar processing enzyme that are expressed in different organs in Arabidopsis thaliana. Plant Mol Biol 29:81-89.
    [44]Kinoshita T, Yamada K, Hiraiwa Nagako, Kondo Maki, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19:43-53.
    [45]Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065-1080.
    [46]Kuroyanagi M, Yamada Kenji, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxininduced cell death in Arabidopsis thaliana. J Biol Chem 280:32914-32920.
    [47]Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623-2633.
    [48]Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling:the latest news. Curr Opin in Plant Biol 7:323-328.
    [49]Lam E (2005) Vacuolar proteases livening up programmed cell death. Trends Cell Biol 15: 124-127.
    [50]Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44:417-28.
    [51]Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853.
    [52]Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu. Rev Plant Physiol Plant Mol Biol 48:251-275.
    [53]Lavrik IN, Golks A, Krammer PH (2005) Caspases:pharmacological manipulation of cell death. J Clin Invest 115:2665-2672.
    [54]MacRobbie EAC (2006) Control of volume and turgor in stomatal guard cells. J Membr Biol 210: 131-142.
    [55]Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23-61.
    [56]Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101-122.
    [57]Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant Stomata function in innate immunity against bacterial invasion. Cell 126:969-980.
    [58]Mithofer A, Fliegmam J, Neuhaus-Url G, Schwarz H, Ebel J (2000) The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family. J Biol Chem 381: 705-713.
    [59]Montillet JL, Chamnongpol S, Rusterucci C, Dat J, Van De Cotte B, Agnel JP, Battesti C, Inze D, Van Breusegem F, Trianphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516-1526.
    [60]Nadeau JA (2008) Stomatal development:new signals and fate determinants. Curr Opin Plant Biol 12:1-7.
    [61]Nakaune S, Yamada K, Kondo Mi, Kato T, Tabata S, Nishimura M, and Hara-Nishimura Ikuko (2005) A vacuolar processing enzyme,8VPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876-887.
    [62]Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M and Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483-486.
    [63]Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11-35.
    [64]Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13-16.
    [65]Nurnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defence responses. Cell 78:449-460.
    [66]Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein a subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16: 1616-1632.
    [67]Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325-2336.
    [68]Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351-356.
    [69]Ponchet M, Panabieres F, Milat ML, Mikes V, Montillet JL, Suty L, Triantaphylides C, Tirilly Y, Blein JP (1999) Are elicitins cryptograms in plant-Oomycete communications? Cellular Mol Life Sci 56:1020-1047.
    [70]Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T et al (2006) Phytotoxicity and innate immune responses induced by Nepl-like proteins. Plant Cell 18:3721-3744.
    [71]Qutob D, Huitema E, Gijzen M, Kamoun S (2003) Variation in structure and activity among elicitins from Phytophthora sojae. Mol Plant Pathol 4:119-124.
    [72]Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano JJ, Baker B (2004) VPE[gamma] exhibits a caspase-like activity that contributes to defense against pathogens. CurrBiol 14:1897-1906.
    [73]Rusterucci C, Montillet JL, Agnel JP, Battesti C, Alonso B, Knoll A, Bessoule J J, Etienne P, Suty L, Blein JP, Triantaphylides C (1999) Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J Biol Chem 274:36446-36455.
    [74]Sasabe M, Takeuchi K, Kamoun S, et al., (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005-5013.
    [75]Schornack S, Ballvora A, Gurlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted nonnuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46-60.
    [76]Schulz JB, Weller M, Klochgeter T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons:a sequential requirement for new mRNA and protein synthesis, ICE-like prorease activity, and reactive oxygen species. JNeurosci 16:4696-4706.
    [77]Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H (2003) Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF 1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics 269: 583-591.
    [78]Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757-765.
    [79]Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:339-340.
    [80]Sun Y, Zhao Y, Hong X, Zhai Z (1999) Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett 42:317-321.
    [81]Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187-1194.
    [82]Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in plant defense response. Proc Natl Acad Sci USA 99:517-522.
    [83]Torres MA, Jones JDG, Dang JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373-378.
    [84]Torres T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255-266.
    [85]Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NAR, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675-1685.
    [86]Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I (1997) The structure and function of a soybean beta-glucan-elicitorbinding protein. Proc Natl Acad Sci USA 94: 1029-1034.
    [87]Vahisalu T, Kollist H, Wang Y, Nishimura N, Chan WYi, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487-491.
    [88]Villaba Mateos F, Rickauer M, Esquerre-Tugaye MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant Microbe In 10:1045-1053.
    [89]Wang YC, Hu DW, Zhang ZG, Ma ZC, Zheng XB, Li DB (2003) Purification and immunocytolocalization of a novel Phytohthora boehmeriae protein inducing the hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiol Mol Plant Pathol 63:223-232.
    [90]Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R (2005) The type Ⅲ-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J Bacteriol 187:2458-2468.
    [91]Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88.
    [92]Woltering EJ, van der Bent A, Hoeberichts FA (2002) Do plant caspases exist? Plant Physiol 130: 1764-1769.
    [93]Yamada K, Shimada T, Kondo M, Nishimura M,and Hara-Nishimura Ikuko (1999) Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme. J Biol Chem 274:2563-2570.
    [94]Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2005) A VPE family supporting various vacuolar functions in plants. Physiol Plant 123:369-375.
    [95]Yoshioka K, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microbe In 14:725-736.
    [96]Zhang HJ, Fang Q, Zhang ZG, Wang YC, Zheng XB (2009) The role of respiratory burst oxidase homologs in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. Journal of Experimental botany doi:doi:10.1093/jxb/erp146.
    [97]Zhang ZG, Wang YC, Li J, Ji R, Shen G, Wang SC, Zhou X, Zheng XB (2004) The role of SA in hypersensitive response and systemic acquired resistance induced by the elicitor PB90 of Phytophthora boehmeriae. Physiol Mol Plant Pathol 65:31-38.
    [98]Zhao JT, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283-333.
    [1]Adjobo-Hermans MJW, Goedhart J, Gadella TWJ Jr (2006) Plant G protein heterotrimers require dual lipidation motifs of Ga and Gβ and do not dissociate upon activation. J Cell Sci 119: 5087-5097.
    [2]Aharon GS, Snedden WA, Blumwald E (1998) Activation of a plant plasma membrane Ca2+ channel by TGα1, a heterotrimeric G protein a-subunit homologue. FEB S Lett 424:17-21.
    [3]Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572.
    [4]Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473-1483.
    [5]Alvarez ME, Penell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773-784.
    [6]Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815.
    [7]Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390-1406.
    [8]Ashikari M, Wu JZ, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellininsensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP binding protein. Proc Natl Acad Sci USA 96: 10284-10289.
    [9]Assmann SM (2004) Plant G proteins, phytohormones, and plasticity:three questions and a speculation. Sci STKE 2004:re20.
    [10]Assmann SM (2005) G protein regulation of disease resistance during infection of rice with rice blast fungus. Sci STKE.15:cml3.
    [11]Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol.33: 299-321.
    [12]Balcueva EA, Wang Q, Hughes H, Kunsch C, Yu ZH, Robishaw JD (2000) Human G protein gamma(11) and gamma(14) subtypes define a new functional subclass. Exp Cell Res 257:310-319.
    [13]Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109-113.
    [14]Bolwell GP (1999) Role of active oxygen species and NO in plant defense responses. Curr Opin Plant Biol 2:287-294.
    [15]Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113-122.
    [16]Burton RA, Bibeaut DM, Bacic A, Findlay K, Roberts K, Hamilton A, Baulcombe DC, FincherGB (2000) Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12:691-705.
    [17]Chen YL, Huang R, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiology 136: 4096-4103
    [18]Chen JG, Pandey S, Huang JR, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135:907-915.
    [19]Chen JG (2008) Heterotrimeric G-proteins in plant development. Frontiers in Bioscience 13: 3321-3333.
    [20]Chen Y, Ji F, Xie H, Liang J, Zhang J (2006) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140:302-310.
    [21]Clapham D, Neer E (1993) New roles for G-protein bg-dimers in transmembrane signalling. Nature 365:403-406.
    [22]Coursol S, Liu-Min F, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651-654.
    [23]Cooke JP (2003) Flow, NO, and atherogenesis. Proc Natl Acad Sci USA 100:768-70.
    [24]Dangl JL, Dietrich RA, Richberg MH (1996) Death don't have no mercy:cell death programs in plant-microbe interactions. Plant Cell 8:1793-1807.
    [25]Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme:nitrate
    reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314-16318.
    [26]Digby GJ, Lober RM, Sethi PR, Lambert NA (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci USA 103:17789-17794.
    [27]Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM (2008) Abscisic acid regulation of guard-cell K+and anion channels in Gβ-and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci USA 105:8476-8481.
    [28]Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families:phylogenetic analysis, paralogous groups, and fingerprints. Mol Pharmacol 63:1256-1272.
    [29]Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA 96:7575-758.
    [30]Gan YZ, Zhang LS, Zhang ZG, Dong SM, Li J, Wang YC, Zheng XB (2009) The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytol 181:127-146.
    [31]Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, David L, Benoit P, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe In 19:711-724.
    [32]Garcia-Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196-1204.
    [33]Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790-792.
    [34]Gautam N, Downes GB, Yan K, Kisselev O (1998) The G-protein complex. Cell Signal 10: 447-455.
    [35]Gilman AG (1987) G proteins:transducers of receptor-generated signals. Annu Rev Biochem 56: 615-649.
    [36]Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201-211.
    [37]Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669-672.
    [38]Holk A, Rietz S, Zahn M, Quader H, Scherer GF (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90-101.
    [39]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, mPoree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549-5554.
    [40]Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugarsignaling mechanism in Arabidopsis. Plant Cell 18:1226-1238.
    [41]Jones AM (2002) G-protein-coupled signaling in Arabidopsis. Curr Opin Plant Biol 5:402-407.
    [42]Jones AM, Assmann SM (2004) Plants:the latest model system for G-protein research. EMBO Rep 5:572-578.
    [43]Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323-329.
    [44]Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein a and β Subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957-970.
    [45]Komatsu S, Yang G, Hayashi N, Kaku H, Umemura K, Iwasaki Y (2004) Alterations by a defect in a rice G protein a subunit in probenazole and pathogen-induced responses. Plant Cell Environ 27: 947-957.
    [46]Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623-2633.
    [47]Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853.
    [48]Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251-275.
    [49]Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirinl interacts with the G protein a-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15:1578-1590.
    [50]Li J, Zhang ZG, Ji R, Wang YC, Zheng XB (2006) Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in nonheading Chinese cabbage. Physiology and Molecular Plant Pathology 67:220-230.
    [51]Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423-52.
    [52]Llorente F, Alonso-Blanco C, Sanchez-Rodriguez C, Jorda L, Molina A (2005) ERECTA
    receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J 43:165-180.
    [53]Ma CJ (2008) Cellulase elicitor induced accumulation of capsidiol in Capsicum annumm L. suspension cultures. Biotechnol Lett.30:961-5.
    [54]Ma H, Yanofsky MF, Meyerowitz EM (1990) Molecular cloning and characterization of GPA1, a G protein a subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA 87:3821-3825.
    [55]Ma H (1994) GTP-binding proteins in plants:new members of an old family. Plant Mol Biol 26: 1611-1636.
    [56]MacRobbie EAC (2006) Control of volume and turgor in stomatal guard cells. J Membr Biol 210: 131-142.
    [57]Marrari Y, Crouthamel M, Irannejad R,Wedegaertner PB (2007) Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46:7665-7677.
    [58]Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23-61.
    [59]Mason MG, Botella JR (2000) Completing the heterotrimer:isolation and characterization of an Arabidopsis thaliana G protein g-subunit cDNA. Proc Natl Acad Sci USA 97:14784-14788.
    [60]MasonMG, Botella JR (2001) Isolation of a novel G-protein g-subunit from Arabidopsis thaliana and its interaction with Gb. Biochim Biophys Acta 1520:147-153.
    [61]McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62:551-577.
    [62]Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant Stomata function in innate immunity against bacterial invasion. Cell 126:969-980.
    [63]Mirshahi T, Jin T, Logothetis DE (2003) Gβγ and KACh:old story, new insights. Sci STKE 194: PE32.
    [64]Moutinho A, Hussey PJ, Trewavas AJ, Malho R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481-10486.
    [65]Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483-486.
    [66]Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13-16.
    [67]Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants.Journal of Experimental Botany 53:1237-1247.
    [68]Neubig RR, Siderovski DP (2002) Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 1:187-197.
    [69]Okamoto H, Matsui M, Deng XW (2001) Overexpression of the heterotrimeric G-protein α-subunit enhances phytochrome-mediated inhibition of hypocotyl elongation in Arabidopsis. Plant Cell 13: 1639-1652.
    [70]Oki K, Fujisawa Y, Kato H, Iwasaki Y (2005) Study of the constitutively active form of the a subunit of rice heterotrimeric G proteins. Plant Cell Physiol 46:381-386.
    [71]Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein a subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16: 1616-1632.
    [72]Pandey S, Chen J-G, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141:243-256.
    [73]Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Letters 581:2325-2336.
    [74]Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719-731.
    [75]Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639-650.
    [76]Robishaw JD, Berlot CH (2004) Translating G protein subunit diversity into functional specificity. Curr. Opin Cell Biol.16:206-209.
    [77]Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calciumdependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556-5567.
    [78]Saitoh H, Terauchi R (2002) Virus-induced silencing of FtsH gene in Nicotiana benthamiana causes a striking bleached leaf phenotype. Genes Genet Syst 77:335-340.
    [79]Schmidt CJ, Thomas TC, Levine MA, Neer EJ(1992) Specificity of G protein b subunit and g subunit interactions. J Biol Chem 267:13807-13810.
    [80]Schornack S, Ballvora A, Gurlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted nonnuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46-60.
    [81]Schulz JB, Weller M, Klochgeter T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons:a sequential requirement for new mRNA and protein synthesis, ICE-like prorease activity, and reactive oxygen species. J Neurosci 16:4696-4706.
    [82]Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein a subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99:13307-13312.
    [83]Temple BRS, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249-66.
    [84]Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187-1194.
    [85]Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G-proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210-220.
    [86]Trusov Y, Zhang W, Assmann SM, Botella JR (2008) Gγ1+Gγ2≠Gβ:Heterotrimeric G protein Gy-deficient mutants do not recapitulate all phenotypes of Gp-deficient mutants. Plant Physiology, 147:636-649.
    [87]Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant dl, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97:11638-11643.
    [88]Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897-907.
    [89]Vahisalu T, Kollist H, Wang Y, Nishimura N, Chan WYi, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487-491.
    [90]Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The Ga protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510-1523.
    [91]Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17: 449-459.
    [92]Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, Marzluff WF, Jones AM (2006) A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell 17:4257-4269.
    [93]Wang S, Narendra S, Fedoroff N (2007) Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. PNAS 104:3817-3822.
    [94]Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5: 408-414.
    [95]Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070-2072.
    [96]Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein Gα-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140:844-855.
    [97]Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143:1590-1600.
    [98]Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R (2005) The type Ⅲ-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J Bacteriol 187:2458-2468.
    [99]Weiss C, Garnaat C, Mukai K, Hu Y, Ma H (1994) Isolation of cDNAs encoding guanine nucleotide-binding protein b-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA 91:9554-9558.
    [100]Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159-1204.
    [101]Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718.
    [102]Zaninotto F, Camera SL, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379-383.
    [103]Zhang HJ, Fang Q, Zhang ZG, Wang YC, Zheng XB (2009) The role of respiratory burst oxidase homologs in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. Journal of Experimental botany doi:doi:10.1093/jxb/erpl46.
    [104]Zhang L, Hu G, Cheng Y, Huang J (2008) Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Developmental Biology 324: 68-75.
    [105]Zhang Y, DeVries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2:88-99.
    [106]Zhang ZG, Wang YC, Li J, Ji R, Shen G, Wang SC, Zhou X, Zheng XB (2004) The role of SA in hypersensitive response and systemic acquired resistance induced by the elicitor PB90 of Phytophthora boehmeriae. Physiological and Molecular Plant Pathology 65:31-38.
    [107]Zhao JT, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283-333.
    [108]张正光,王源超,蔡炳江,郑小波(2007) H2O2、NO和Ca2+参与疫病菌激发子PB90诱导烟草气孔的关闭。植物病理学报37:62-68.
    [1]Agrawal GK, Iwahashi H, Rakwal R.(2003) Rice MAPKs. Biophys Res Commun 302:171-180.
    [2]Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don't have no mercy and neither does calcium:Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19:1081-1095.
    [3]Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390-1406.
    [4]Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26: 339-350.
    [5]Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109-113.
    [6]Bright J, Desikan R, Hancock JT, Weir I, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113-122.
    [7]Chen W, Provart NJ, Glazebrook J et al., (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559-574.
    [8]Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back:Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667-677.
    [9]Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature. 411:826-833.
    [10]Dat J, Vandenabeele S, Vranova E, van Montagu M, Inze D, van Breusegem F (2000) Dual action of the active oxygen species during plant stress response. Cellular and Molecular Life Sciences 57: 779-795.
    [11]Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588.
    [12]Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454-13459.
    [13]Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol.8:390-396.
    [14]Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants:The biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1-4.
    [15]del Pozo O, Pedley KF, Martin GB (2004) MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072-3082.
    [16]Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404-2409.
    [17]Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345-357.
    [18]Dorey S, Kopp M, Geoffroy P, Fritig B, Kauffmann S (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiology 121:163-171.
    [19]Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose. Proc Natl Acad Sci USA 95:10328-10333.
    [20]Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JD (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963-977.
    [21]Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J.36: 905-917.
    [22]Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:491-497.
    [23]Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet. 16:449-455.
    [24]Frank VB, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiology 141, 384-390.
    [25]Gan YZ, Zhang LS, Zhang ZG, Dong SM, Li J, Wang YC, Zheng XB (2009) The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytologist 181:127-146.
    [26]Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, David L, Benoit P, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19:711-724.
    [27]Godge MR, Purkayastha A, Dasgupta I, Kumar PP (2008) Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep 27:209-219
    [28]Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441-450.
    [29]Grun S, Lindermayr C, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57: 507-516.
    [30]Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100-103.
    [31]Hammond-Kosack K, Jones JDG (2000) Response to plant pathogens. In Biochemistry and Molecular Biology of Plants (Buchanan, B., Gruissem, D. and Jones, R.. Rockville, MD:American Society of Plant Physiologists 1102-1156.
    [32]Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (MAPK group) (2002) Mitogen activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci 7:301-308.
    [33]Ikner A, Shiozaki K (2005) Yeast signaling pathways in the oxidative stress response. Mutation Research 569:13-27.
    [34]Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Developmental Cell 3:291-297.
    [35]Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S (2003) Function of a mitogen-activated protein kinase pathway in N gene mediated resistance in tobacco. Plant J 33:719-731.
    [36]Katou S, Yamamoto A, Yoshioka H, Kawakita K, Doke N (2003) Functional analysis of potato mitogen-activated protein kinase kinase, StMEKl. J Gen Plant Pathol 69:161-168.
    [37]Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JDG, Mori H, Doke N (2005) Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol 139:1914-1926.
    [38]Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J 22:2623-2633.
    [39]Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Bio 48:251-275.
    [40]Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516-529.
    [41]Lebrun-Garcia A, Ouaked F, Chiltz A, Pugin A (1998) Activation of MAPK homologues by elicitors in tobacco cells. Plant J 15:773-781.
    [42]Lee J, Rudd JJ, Macioszek VK, Scheel D (2004) Dynamic changes in the localization of MAP kinase cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J Biol Chem 279:22440-22448.
    [43]Li J, Zhang ZG, Ji R, Wang YC, Zheng XB (2006) Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in nonheading Chinese cabbage. Physiological and Molecular Plant Pathology 67:220-230.
    [44]Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31: 777-786.
    [45]Liu Y, Jin H, Yang KY, Kim CY, Baker B, Zhang S (2003) Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J 34:149-160.
    [46]Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38:800-809.
    [47]Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26: 403-410.
    [48]MAPK Group (2002) Mitogen-activated protein kinase cascades in plants:A new nomenclature. Trends Plant Sci 7:301-308.
    [49]Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23-61.
    [50]Mcdowell, Dangl (2000) signal transduction in plant immune response. Trends Biochem Sci 25: 79-82.
    [51]Miles G, Samuel MA, Zhang Y, Ellis BE (2005) RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environmental Pollution 138:230-237.
    [52]Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics 452:55-68.
    [53]Montillet JL, Chamnongpol S, Rusterucci C, Dat J, Van De Cotte B, Agnel JP, Battesti C, Inze D, Van Breusegem F, Trianphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516-1526.
    [54]Mysore KS, Crasta OR, Tuori RP, Folkerts O, Swirsky PB, Martin G.B (2002) Comprehensive transcript profiling of Pto-and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J 32:299-315.
    [55]Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339-346.
    [56]Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein Kinase kinase kinase Mediates reactive oxygen species homeostasis in arabidopsis. J Boil Chem. 281:38697-38704.
    [57]Naoumkina MA, He XZ, Dixon RA (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology 8:132
    [58]Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol.37:113-116.
    [59]Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol 41:1187-1192.
    [60]Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol 8:541-547.
    [61]Planchet E, Sonada M, Zeier J, Kaiser WM (2006) Nitric oxide (NO) as an intermediate in the cryptogein-induced hypersensitive response-a critical re-evaluation. Plant, Cell and Environment 29:59-69.
    [62]Ren D, Yang H, Zhang S (2002) Cell death mediated byMAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559-565.
    [63]Rentel MC, Lecourieux D, Ouaked F, Usher S, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burstmediated
    signalling in Arabidopsis. Nature 427:858-861.
    [64]Rockville MD:American Society of Plant Physiologists pp.1102-1156.
    [65]Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid avr-9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves:convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11:273-288.
    [66]Rusterucci C, Montillet JL, Agnel JP, Battesti C, Alonso B, Knoll A, Bessoule J J, Etienne P, Suty L, Blein JP, Triantaphylides C (1999) Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J Biol Chem 274:36446-36455.
    [67]Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005-5013.
    [68]Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004-1014.
    [69]Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655-11660.
    [70]Schulz JB, Weller M, Klochgeter T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons:a sequential requirement for new mRNA and protein synthesis, ICE-like prorease activity, and reactive oxygen species. J Neurosci 16:4696-4706.
    [71]Schwartz MA, Madhani HD (2004) Principles of MAP kiriase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38:725-748.
    [72]Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase:a possible mediator in wound signal transduction pathways. Science 270:1988-1992.
    [73]Seo S, Sano H, Ohashi Y (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen activated protein kinase. Plant Cell 11:289-298.
    [74]Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H (2003) Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Molecular Genetics and Genomics 269:583-591.
    [75]Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEKl is a MAPKK that acts in the NPK1 MAPKKKmediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055-1067.
    [76]Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241-1244.
    [77]Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiology 128:1271-1281.
    [78]Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in plant defense response. Proc Natl Acad Sci USA 99:517-522.
    [79]Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiology 141:373-378.
    [80]Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y.2004. Plant MAPK Phosphatase Interacts with Calmodulins. J Biol Chem 279:928-936.
    [81]Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741-746.
    [82]Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718
    [83]Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb CJ (2004) Genetic elucidation of nitric oxide signaling in incompatible plant pathogen interactions. Plant Physiology 136: 2875-2886.
    [84]Zhang C, Czymmek KJ, Shapiro AD (2003) Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant Microbe Interact 16:962-972.
    [85]Zhang S, Klessig DF (1997) Salicylic acid activates a 48 kD MAP kinase in tobacco. Plant Cell 9: 809-824.
    [86]Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520-527.
    [87]Zhang S, Liu Y (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877-1889.
    [88]Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WTPK activation during the induction of cell death by fungal elicitins. Plant J 23:339-347.
    [89]Zhang ZG, Wang YC, Li J, Ji R, Shen G, Wang SC, zhou X, Zheng XB (2004) The role of SA in hypersensitive response and systemic acquired resistance induced by the elicitor PB90 of Phytophthora boehmeriae. Physiological and Molecular Plant Pathology 65:31-38.
    [90]Zhou J, Tang X, Frederick R, Martin G (1998) Pathogen recognition and signal transduction by the Pto kinase. J Plant Sci Res 111:353-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700