Gadd45α在基因组稳定性和基因表达调控中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因组不稳定是人类肿瘤的特征。它的主要类型之一是染色体不稳定(CIN),是由维持细胞基因组完整性的基因发生突变所引起的。多种体内外因素均能使细胞DNA受到损伤,如外界的物理化学因素(放射线、紫外线和多种致癌物)、体内代谢产生的自由基以及自发性DNA复制异常等。DNA在损伤后能否及时得到修复是保障基因组稳定、减少基因突变和肿瘤发生的重要环节。DNA双链断裂修复可通过非同源重组和同源重组方式进行。损伤修复完成的细胞再次进入细胞周期,而无法获得完全修复的细胞则启动细胞凋亡机制,从而维持了细胞群体的基因组稳定性。这一系列自我调节的异常将导致基因组不稳定性的发生,促进细胞的恶性转化。Gadd45α和]BRCA1是两个重要的抑癌蛋白,它们在细胞周期检测点和DNA修复过程中发挥重要作用。
     我们的研究发现,Gadd45α敲除后Y染色体长臂出现大片段的缺失,提示Gadd45α可能与DNA重组修复有关。由于肿瘤抑癌基因BRCA1在DNA损伤后的重组修复中发挥重要作用,我们进一步研究了Gadd45α对BRCA1的调控作用。结果表明,Gadd45α可以在转录水平上调控BRCA1的表达,但是Gadd45α蛋白不影响BRCA1的启动子的活性,而且Gadd45α蛋白并不能与BRCA1的启动子区直接结合。细胞免疫荧光发现,Gadd45α蛋白也不影响BRCA1的亚细胞定位。以上结果表明Gadd45α可以调控BRCA1的表达,维持基因组稳定性,但是其调控的分子机制仍有待于进一步的研究。
The common character of human tumor is genomic instability. One of the major types for genomic instability is chromosomal instability(CIN), which is mainly caused by mutations of genes that maintain cell genomic stability. Of the many intrinsic and extrinsic types of DNA damage that can be created inside mammalian cells, such as exogenous physic and chemical agents (irradiation, UV and certain carcinogens), or cellular sources such as oxidative damage or replication blocks in the DNA. DNA damage is a relatively common event in the life of a cell, and may lead to mutation, carcinogenesis, or cell death. In response to DNA damage, cell will undergo growth arrest, presumably to allow time for DNA repair. There are at least two mechanisms for the repair of DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ). Normally,cells that finish DNA repair return to cell cycle, but other cells without complete DNA repair will be removed by apoptosis before DNA replication or chromosal segregion. However, if apoptosis is inhibited due to inactivation of regulatory machinery. This stuation increases the risk of CIN at several levels, and cells that are sufficiently fit to survive can be at a growth advantage, which lead to cancer. Gadd45a and BRCA1 are two important proteins involved in the control of cell cycle progression and apoptosis, both of them play key roles in homologous recombination.
     In this paper, we have found that when knockdown Gadd45a, a large deletion is shown on Y chromosome long arm(Yq). The Y chromosome is particularly vulnerable to DNA damage, partly because of its genetic structure and partly because it cannot correct double-stranded DNA deletions by homologous recombination. We then further confirmed that Gadd45a can be involved in the regulation of BRCA1 expression at the transcriptional level, but Gadd45a does not increase its promoter activity, Gadd45a protein also can not binding BRCA1 promoter directly. Cell immunofluorescence experiments show that Gadd45a does not affect BRCA1 subcellular localization.
     These studies have demostrated that Gadd45a can regulate BRCA1 expression in mRNA and protein expression level, providing a novel find that BRCA1 may be regulated by its previously-defined downstream gene Gadd45α. However the mechanisms regarding Gadd45a regulation of BRCA1 remain to be defined.
引文
1 Hollander MC, Sheikh MS, Bulavin DV, et al. Genomic instability in Gadd45a-deficient mice. Nat Genet,1999,23(2):176-84.
    2 Sugihara E, Kanai M, Saito S, et al. Suppression of centrosome amplification after DNA damage depends on p27 accumulation. Cancer Res, 2006,66(8):4020-9.
    3 Sensi E, Tancredi M, Aretini P, et al. Clinicopathological significance of GADD45 gene alterations in human familial breast carcinoma. Breast Cancer Res Treat JT-Breast cancer research and treatment,2004,87(2):197-201.
    4 Lal A, Gorospe M. Egad, more forms of gene regulation:the gadd45a story. Cell Cycle,2006,5(13):1422-5.
    5 Deng CX, Wang RH. Roles of BRCA1 in DNA damage repair:a link between development and cancer. Hum Mol Genet JT-Human molecular genetics, 2003,12 Spec No 1:R113-23.
    6 Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature JT-Nature, 2007,445(7128):671-5.
    7 Jung HJ, Kim EH, Mun JY, et al. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene,2007,26(54):7517-25.
    8 Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007,445(7128):671-5.
    9 Gao H, Jin S, Song Y, et al. B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem, 2005,280(12):10988-96.
    10 Jin S, Antinore MJ, Lung FD, et al. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem, 2000,275(22):16602-8.
    11 Amanullah A, Azam N, Balliet A, et al. Cell signalling:cell survival and a Gadd45-factor deficiency. Nature JT-Nature,2003,424(6950):741; discussion 742.
    12 Jin S, Tong T, Fan W, et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene,2002,21(57):8696-704.
    13 Hollander MC, Kovalsky O, Salvador JM, et al. Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res,2001,61(6):2487-91.
    14 Maeda T, Hanna AN, Sim AB, et al. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol,2002,119(1):22-6.
    15 Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis,2002,17(2):149-56.
    16 Smith ML, Kontny HU, Zhan Q, et al. Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to u.v.-irradiation or cisplatin. Oncogene,1996,13(10):2255-63.
    17 Zhan Q, Bae I, Kastan MB, et al. The p53-dependent gamma-ray response of GADD45. Cancer Res,1994,54(10):2755-60.
    18 Smith ML, Kontny HU, Zhan Q, et al. Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to u.v.-irradiation or cisplatin. Oncogene JT-Oncogene,1996,13(10):2255-63.
    19 Carey M. The enhanceosome and transcriptional synergy. Cell JT-Cell, 1998,92(1):5-8.
    20 Kearsey JM, Coates PJ, Prescott AR, et al. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene,1995,11(9):1675-83.
    21 Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science, 2002,296(5567):530-4.
    22 Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 1992,258(5083):818-21.
    23 Kallioniemi A, Kallioniemi OP, Piper J, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA,1994,91(6):2156-60.
    24 Rooney PH, Murray GI, Stevenson DA, et al. Comparative genomic hybridization and chromosomal instability in solid tumours. Br J Cancer, 1999,80(5-6):862-73.
    25 Sud R, Wells D, Talbot IC, et al. Genetic alterations in gastric cancers from British patients. Cancer Genet Cytogenet,2001,126(2):111-9.
    26 Bockmuhl U, Petersen S, Schmidt S, et al. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res,1997,57(23):5213-6.
    27 Gebhart E, Liehr T. Patterns of genomic imbalances in human solid tumors (Review). Int J Oncol,2000,16(2):383-99.
    28 Yamasawa K, Nio Y, Dong M, et al. Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin Cancer Res,2002,8(8):2563-9.
    29 Wang W, Huper G, Guo Y, et al. Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene,2005,24(16):2705-14.
    30 Hollander MC, Philburn RT, Patterson AD, et al. Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Natl Acad Sci USA,2005,102(37):13200-5.
    31 Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature,1994,372(6508):773-6.
    32 Gupta M, Gupta SK, Balliet AG, et al. Hematopoietic cells from Gadd45a-and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene JT-Oncogene,2005,24(48):7170-9.
    33 Zhan Q, Lord KA, Alamo I Jr, et al. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol,1994,14(4):2361-71.
    34 Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell, 1998,95(4):521-30.
    35 Jin S, Mazzacurati L, Zhu X, et al. Gadd45a contributes to p53 stabilization in response to DNA damage. Oncogene,2003,22(52):8536-40.
    36 Hildesheim J, Bulavin DV, Anver MR, et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res,2002,62(24):7305-15.
    37 Li G, Mitchell DL, Ho VC, et al. Decreased DNA repair but normal apoptosis in ultraviolet-irradiated skin of p53-transgenic mice. Am J Pathol, 1996,148(4):1113-23.
    38 Tront JS, Hoffman B,Liebermann DA. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res JT-Cancer research,2006,66(17):8448-54.
    39 Hildesheim J, Belova GI, Tyner SD, et al. Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene,2004,23(10):1829-37.
    40 Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction,2001,122(4):497-506.
    41 Gvozdev VA, Kogan GL,Usakin LA. The Y chromosome as a target for acquired and amplified genetic material in evolution. Bioessays,2005,27(12):1256-62.
    42 Nathanson KL, Kanetsky PA, Hawes R, et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet, 2005,77(6):1034-43.
    43 Bianchi NO, Richard SM,Pavicic W. Y chromosome instability in testicular cancer. Mutat Res,2006,612(3):172-88.
    44 Shen SX, Weaver Z, Xu X, et al. A targeted disruption of the murine BRCA1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene JT-Oncogene,1998,17(24):3115-24.
    45 Okada S, Ouchi T. Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem, 2003,278(3):2015-20.
    46 Wang X, Wang RH, Li W, et al. Genetic interactions between BRCA1 and Gadd45a in centrosome duplication, genetic stability, and neural tube closure. J Biol Chem,2004,279(28):29606-14.
    47 MacLachlan TK, Somasundaram K, Sgagias M, et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem,2000,275(4):2777-85.
    48 Press JZ, De Luca A, Boyd N, et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer, 2008,8:17.
    49 Park MA, Seok YJ, Jeong G, et al. SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy. Nucleic Acids Res,2008,36(1):263-83.
    50 Shen SX, Weaver Z, Xu X, et al. A targeted disruption of the murine BRCA1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene,1998,17(24):3115-24.
    51 Deng CX, Wang RH. Roles of BRCA 1 in DNA damage repair:a link between development and cancer. Hum Mol Genet,2003,12 Spec No 1:R113-23.
    52 MacLachlan TK, Dash BC, Dicker DT, et al. Repression of BRCA1 through a feedback loop involving p53. J Biol Chem,2000,275(41):31869-75.
    53 Bird AP. CpG-rich islands and the function of DNA methylation. Nature JT Nature,1986,321(6067):209-13.
    54 Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell,2002,108(2):171-82.
    55 Kowalczykowski SC. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci,2000,25(4):156-65.
    56 Baumann P, Benson FE,West SC. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell, 1996,87(4):757-66.
    57 Scully R, Chen J, Plug A, et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell,1997,88(2):265-75.
    58 Venkitaraman AR. Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J Cell Sci,2001,114(Pt 20):3591-8.
    59 Powell SN, Willers H,Xia F. BRCA2 keeps Rad51 in line. High-fidelity homologous recombination prevents breast and ovarian cancer?. Mol Cell, 2002,10(6):1262-3.
    60 Ma JL, Kim EM, Haber JE, et al. Yeast Mrel 1 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol,2003,23(23):8820-8.
    61 Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature,2000,408(6811):429-32.
    62 Irminger-Finger I, Siegel BD,Leung WC. The functions of breast cancer susceptibility gene 1 (BRCA1) product and its associated proteins. Biol Chem, 1999,380(2):117-28.
    63 Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet,1999,23(3):281-5.
    64 Jhanwar-Uniyal M. BRCA1 in cancer, cell cycle and genomic stability. Front Biosci,2003,8:s1107-17.
    65 Wei M, Grushko TA, Dignam J, et al. BRCA1 promoter methylation in sporadic breast cancer is associated with reduced BRCA1 copy number and chromosome 17 aneusomy. Cancer Res,2005,65(23):10692-9.
    66 Rosen EM, Fan S,Goldberg ID. BRCA1 and prostate cancer. Cancer Invest, 2001,19(4):396-412.
    67 Thakur S, Croce CM. Positive regulation of the BRCA1 promoter. J Biol Chem, 1999,274(13):8837-43.
    68 Wang A, Schneider-Broussard R, Kumar AP, et al. Regulation of BRCA1 expression by the Rb-E2F pathway. J Biol Chem,2000,275(6):4532-6.
    69 Rauch T, Zhong X, Pfeifer GP, et al.53BP1 is a positive regulator of the BRCA 1 promoter. Cell Cycle,2005,4(8):1078-83.
    70 Glait C, Ravid D, Lee SW, et al. Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett, 2006,580(22):5268-74.
    71 Arizti P, Fang L, Park I, et al. Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol,2000,20(20):7450-9.
    72 Molli PR, Singh RR, Lee SW, et al. MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene,2008,27(14):1971-80.
    73 Baker KM, Wei G, Schaffner AE, et al. Ets-2 and components of mammalian SWI/SNF form a repressor complex that negatively regulates the BRCA1 promoter. J Biol Chem,2003,278(20):17876-84.
    74 Tan-Wong SM, French JD, Proudfoot NJ, et al. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc Natl Acad Sci USA,2008,105(13):5160-5.
    75 Merajver SD, Pham TM, Caduff RF, et al. Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet,1995,9(4):439-43.
    76 Berchuck A, Heron KA, Carney ME, et al. Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res,1998,4(10):2433-7.
    77 Bird AP. CpG-rich islands and the function of DNA methylation. Nature, 1986,321 (6067):209-13.
    78 Sheikh MS, Hollander MC,Fornance AJ Jr. Role of Gadd45 in apoptosis. Biochem Pharmacol,2000,59(1):43-5.
    79 Tutt A, Gabriel A, Bertwistle D, et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol JT-Current biology:CB,1999,9(19):1107-10.
    80 Thangaraju M, Kaufmann SH,Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem, 2000,275(43):33487-96.
    81 Yarden RI, Brody LC. BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 1999,96(9):4983-8.
    82 Fuks F, Milner J,Kouzarides T. BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene JT-Oncogene,1998,17(19):2531-4.
    83 Milner J, Fuks F, Hughes-Davies L, et al. The BRCA2 activation domain associates with and is phosphorylated by a cellular protein kinase. Oncogene JT-Oncogene,2000,19(38):4441-5.
    84 Moynahan ME, Chiu JW, Roller BH, et al. BRCA1 controls homology-directed DNA repair. Mol Cell JT-Molecular cell,1999,4(4):511-8.
    85 Gowen LC, Avrutskaya AV, Latour AM, et al. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science JT-Science (New York, N.Y.),1998,281(5379):1009-12.
    86 Chapman MS, Verma IM. Transcriptional activation by BRCA1. Nature JT Nature,1996,382(6593):678-9.
    87 Anderson SF, Schlegel BP, Nakajima T, et al. BRCA1 protein is linked to the RNA polymerase Ⅱ holoenzyme complex via RNA helicase A. Nat Genet JT Nature genetics,1998,19(3):254-6.
    88 Milner J, Ponder B, Hughes-Davies L, et al. Transcriptional activation functions in BRCA2. Nature JT-Nature,1997,386(6627):772-3.
    89 Harkin DP, Bean JM, Miklos D, et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell JT-Cell,1999,97(5):575-86.
    90 Bochar DA, Wang L, Beniya H, et al. BRCA1 is associated with a human SWI/SNF-related complex:linking chromatin remodeling to breast cancer. Cell, 2000,102(2):257-65.
    91 Chi H, Lu B, Takekawa M, et al. GADD45beta/GADD45gamma and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNgamma
    production in T cells. EMBO J JT-The EMBO journal,2004,23(7):1576-86.
    92 Vairapandi M, Balliet AG, Fornace AJ Jr, et al. The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene JT-Oncogene, 1996,12(12):2579-94.
    93 Smith ML, Chen IT, Zhan Q, et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science JT-Science (New York, N.Y.),1994,266(5189):1376-80.
    94 Smith ML, Ford JM, Hollander MC, et al. p53-mediated DNA repair responses to UV radiation:studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol JT-Molecular and cellular biology,2000,20(10):3705-14.
    95 Zhang W, Bae I, Krishnaraju K, et al. CR6:A third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene JT-Oncogene,1999,18(35):4899-907.
    96 Beadling C, Johnson KW,Smith KA. Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 1993,90(7):2719-23.
    97 Liebermann DA, Hoffman B. MyD genes in negative growth control. Oncogene JT-Oncogene,1998,17(25):3319-29.
    98 Wang XW, Zhan Q, Coursen JD, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3706-11.
    99 Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell JT-Cell,1998,95(4):521-30.
    100 Selvakumaran M, Lin HK, Sjin RT, et al. The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol Cell Biol JT-Molecular and cellular biology,1994,14(4):2352-60.
    101 Zhang W, Hoffman B,Liebermann DA. Ectopic expression of MyD118/Gadd45/CR6 (Gadd45beta/alpha/gamma) sensitizes neoplastic cells to genotoxic stress-induced apoptosis. Int J Oncol JT-International journal of oncology,2001,18(4):749-57.
    102 Yoo J, Ghiassi M, Jirmanova L, et al. Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem JT-The Journal of biological chemistry, 2003,278(44):43001-7.
    103 Vairapandi M, Azam N, Balliet AG, et al. Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control. J Biol Chem JT-The Journal of biological chemistry,2000,275(22):16810-9.
    104 Azam N, Vairapandi M, Zhang W, et al. Interaction of CR6 (GADD45gamma) with proliferating cell nuclear antigen impedes negative growth control. J Biol Chem JT-The Journal of biological chemistry,2001,276(4):2766-74.
    105 Kojima S, Mayumi-Matsuda K, Suzuki H, et al. Molecular cloning of rat GADD45gamma, gene induction and its role during neuronal cell death. FEBS Lett JT-FEBS letters,1999,446(2-3):313-7.
    106 Hildesheim J, Bulavin DV, Anver MR, et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res JT-Cancer research,2002,62(24):7305-15.
    107 Gupta M, Gupta SK, Hoffman B, et al. Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem JT-The Journal of biological chemistry,2006,281(26):17552-8.
    108 De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature JT-Nature, 2001,414(6861):308-13.
    109 Hollander MC, Sheikh MS, Bulavin DV, et al. Genomic instability in Gadd45a-deficient mice. Nat Genet JT-Nature genetics,1999,23(2):176-84.
    110 Fan W, Jin S, Tong T, et al. BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs. J Biol Chem JT-The Journal of biological chemistry,2002,277(10):8061-7.
    111 Zheng L, Pan H, Li S, et al. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell JT-Molecular cell,2000,6(4):757-68.
    112 Bernstein C, Bernstein H, Payne CM, et al. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways:fail-safe protection against carcinogenesis. Mutat Res JT-Mutation research,2002,511(2):145-78.
    113 MacLachlan TK, Takimoto R,El-Deiry WS. BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol JT-Molecular and cellular biology, 2002,22(12):4280-92.
    114 MacLachlan TK, Dash BC, Dicker DT, et al. Repression of BRCA1 through a feedback loop involving p53. J Biol Chem JT-The Journal of biological chemistry,2000,275(41):31869-75.
    115 Merajver SD, Pham TM, Caduff RF, et al. Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet JT-Nature genetics, 1995,9(4):439-43.
    116 Berchuck A, Heron KA, Carney ME, et al. Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res JT-Clinical cancer research:an official journal of the American Association for Cancer Research, 1998,4(10):2433-7.
    1 Ishikawa K, Ishii H,Saito T. DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol JT-DNA and cell biology, 2006,25(7):406-411.
    2 Kitanovic A, Walther T, Loret MO, et al. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. FEMS Yeast Res JT-FEMS yeast research, 2009.
    3 Friedberg EC. DNA damage and repair. Nature,2003,421(6921):436-440.
    4 Rassool FV. DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett,2003,193(1):1-9.
    5 Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol,2003,21 (6):1174-1179.
    6 Jiricny J, Marra G. DNA repair defects in colon cancer. Curr Opin Genet Dev, 2003,13(1):61-69.
    7 Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature JT-Nature, 2004,432(7015):316-323.
    8 Cimprich KA, Cortez D. ATR:an essential regulator of genome integrity. Nat Rev Mol Cell Biol JT-Nature reviews. Molecular cell biology, 2008,9(8):616-627.
    9 Liu J, Lin A. Role of JNK activation in apoptosis:a double-edged sword. Cell Res JT-Cell research,2005,15(1):36-42.
    10 Abdollahi A, Lord KA, Hoffman-Liebermann B, et al. Sequence and expression of a cDNA encoding MyD118:a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene,1991,6(1):165-167.
    11 Fan W, Richter G, Cereseto A, et al. Cytokine response gene 6 induces p21 and regulates both cell growth and arrest. Oncogene JT-Oncogene, 1999,18(47):6573-6582.
    12 Vairapandi M, Balliet AG, Hoffman B, et al. GADD45b and GADD45g are cdc2/cyclinBl kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol JT-Journal of cellular physiology, 2002,192(3):327-338.
    13 Yoo J, Ghiassi M, Jirmanova L, et al. Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem JT-The Journal of biological chemistry, 2003,278(44):43001-43007.
    14 Jung HJ, Kim EH, Mun JY, et al. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene JT-Oncogene,2007,26(54):7517-7525.
    15 Desjardins S, Ouellette G, Labrie Y, et al. Analysis of GADD45A sequence variations in French Canadian families with high risk of breast cancer. J Hum Genet JT-Journal of human genetics,2008,53(6):490-498.
    16 Zhan Q. Gadd45a, a p53-and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res JT-Mutation research, 2005,569(1-2):133-143.
    17 Wang XW, Zhan Q, Coursen JD, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3706-3711.
    18 Chung HK, Yi YW, Jung NC, et al. CR6-interacting factor 1 interacts with Gadd45 family proteins and modulates the cell cycle. J Biol Chem JT-The Journal of biological chemistry,2003,278(30):28079-28088.
    19 Han C, Demetris AJ, Michalopoulos GK, et al. PPARgamma ligands inhibit cholangiocarcinoma cell growth through p53-dependent GADD45 and p21 pathway. Hepatology JT-Hepatology (Baltimore, Md.),2003,38(1):167-177.
    20 Smith GB, Mocarski ES. Contribution of GADD45 family members to cell death suppression by cellular Bcl-xL and cytomegalovirus vMIA. J Virol JT Journal of virology,2005,79(23):14923-14932.
    21 Liebermann DA, Hoffman B. Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis JT-Blood cells, molecules & diseases, 2007,39(3):329-335.
    22 Ying J, Srivastava G, Hsieh WS, et al. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res JT Clinical cancer research:an official journal of the American Association for Cancer Research,2005,11(18):6442-6449.
    23 Hoffman B, Liebermann DA. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells. J Cell Physiol JT-Journal of cellular physiology, 2009,218(1):26-31.
    24 Tront JS, Hoffman B,Liebermann DA. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res JT-Cancer research,2006,66(17):8448-8454.
    25 Candal E, Thermes V, Joly JS, et al. Medaka as a model system for the characterisation of cell cycle regulators:a functional analysis of Ol-Gadd45gamma during early embryogenesis. Mech Dev JT-Mechanisms of development,2004,121 (7-8):945-958.
    26 Maeda T, Espino RA, Chomey EG, et al. Loss of p21WAF1/Cip1 in Gadd45-deficient keratinocytes restores DNA repair capacity. Carcinogenesis JT-Carcinogenesis,2005,26(10):1804-1810.
    27 Vairapandi M, Balliet AG, Fornace AJ Jr, et al. The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene JT-Oncogene, 1996,12(12):2579-2594.
    28 Gupta SK, Gupta M, Hoffman B, et al. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene JT-Oncogene,2006,25(40):5537-5546.
    29 Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature JT-Nature, 2007,445(7128):671-675.
    30 Bulavin DV, Kovalsky O, Hollander MC, et al. Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol JT-Molecular and cellular biology, 2003,23(11):3859-3871.
    31 Hollander MC, Fornace AJ Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene JT-Oncogene, 2002,21(40):6228-6233.
    32 Wang X, Wang RH, Li W, et al. Genetic interactions between Brcal and Gadd45a in centrosome duplication, genetic stability, and neural tube closure. J Biol Chem JT-The Journal of biological chemistry, 2004,279(28):29606-29614.
    33 Hollander MC, Philburn RT, Patterson AD, et al. Genomic instability in Gadd45a-/-cells is coupled with S-phase checkpoint defects. Cell Cycle, 2005,4(5):704-709.
    34 Bishop AJ, Hollander MC, Kosaras B, et al. Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res,2003,63(17):5335-5343.
    35 Lundberg AS, Hahn WC, Gupta P, et al. Genes involved in senescence and immortalization. Curr Opin Cell Biol JT-Current opinion in cell biology, 2000,12(6):705-709.
    36 Tront JS, Hoffman B,Liebermann DA. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res, 2006,66(17):8448-8454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700