卵巢上皮性癌差异蛋白的筛选及信号通路研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是女性生殖系统常见的恶性肿瘤之一,其发病率仅次于宫颈癌与子宫内膜癌位居第三。随着CA125联合经阴道超声筛查技术的应用,阳性诊断率仍仅为50%。迄今,卵巢癌仍为威胁女性健康的最主要的癌症,晚期的卵巢癌患者5年存活率仅为20%~30%。Pathway Array技术是一种具有高度敏感性和特异性的技术。该种方法用于卵巢癌差异表达蛋白的筛查尚未见相关报道。本论文通过Pathway Array技术筛查与卵巢癌发病相关的差异表达蛋白。目的:探索卵巢癌发生发展的信号转导机制,寻找用于卵巢癌早期诊断的生物学标记物及其分子治疗靶点。方法与结果:(1)体外实验:体外培养卵巢癌细胞和正常卵巢细胞,提取细胞总蛋白,用Pathway Array技术进行蛋白表达,用QUANTITY ONE分析软件进行差异蛋白表达谱分析,以卵巢癌细胞系SKOV3细胞为例与正常卵巢细胞系相比,6个蛋白表达水平有明显的升高:p-HER2/ErbB2、p-PDK1(Ser241)、p-Akt(Ser473)、TTF-1、ERK1/2和p-Stat3(Ser727)蛋白,4个蛋白表达水平有明显的降低:p-RB(Ser780)、p-c-Jun(Ser73)、Cdc25B和p-p53(Ser392)蛋白。(2)卵巢癌组织中差异表达蛋白的研究:在卵巢癌组织的高水平表达蛋白共12个,即p-Stat3 (Ser727)、p-PDK1 (Ser241)、p-Akt (Ser473)、p-cdc2 (Tyr15)、PCNA、Cdc2 p34、XIAP、E-cadherin、Cdk2、Mesothelin、p-p38 (pThr180/pTyr1 82)和P53蛋白;卵巢癌组织的低表达蛋白共9个,即ERK1/2、Cdc25C、Wee-1、cdc42、Bax、N-cadherin、α-tubulin、Vimentin和PTEN蛋白。(3)SKOV3细胞与卵巢癌组织的高水平表达蛋白有3个呈一致性高表达,即p-PDK1、p-Akt、p-Stat3;SKOV3细胞与卵巢癌组织的蛋白表达的差异性,显示在体肿瘤发生发展的复杂性,譬如,在SKOV3细胞p-p53的表达水平明显降低,而在卵巢癌组织中p-p53的表达水平则极显著地增高,是机体上调了野生型P53的表达,还是P53发生基因突变了需要进一步研究。对SKOV3细胞与卵巢癌组织中一致的高水平表达蛋白进行了免疫组织化学和Western Blot的验证,与Pathway array技术所获得的结果显示明显的一致性。(4)应用IPA系统分析21个差异表达蛋白相关的经典的信号通路和差异表达蛋白在信号传导中涉及的功能,得到与卵巢癌发生发展相关的信号通路网络。
     结论:初步探讨卵巢癌发生发展的信号传导机制,为寻找新的有效提高卵巢癌早期诊断率的肿瘤标志物和基因治疗的靶点,提供了有益的线索和理论基础。
Epithelial ovarian cancer is the third common cancer in female gynecological malignancies, but the mortality rate of EOC is the first one among the female reproductive tract malignant tumors. The ovarian locates deep in the pelvis, there were not typical early symptoms of the disease or even no obvious symptoms, that is why early diagnosis rate of EOC is not high. Only about 20% patients were diagnosed in stage I, the other 2/3 of patients were diagnosed at stage III or IV. In the recent years, although rapid progress had been made in surgery and chemotherapy following surgery, the advanced EOC patients had poor prognosis, 5-year survival rate was only about 20%, while survival rate of stage I EOC was up to 80-90%. Therefore, the study of ovarian cancer pathogenesis, markers of early diagnosis and treatment methods is of great significance.
     The progress of proteomics helps to provide a theoretical basis and solution to clarify the mechanism of disease and overcome the disease. By comparative proteomics research, the detect of differences from sick individual to the normal individuals, "specific disease-related proteins" could be found out, which can not only serve as markers for early diagnosis of disease, but also can be a molecular target for new drugs. Pathway Array technology systems choose some high-affinity antibodies to analyze over a thousand of proteins in a single sample, including the activated phosphorylated proteins and non-phosphorylated total proteins, to help to find signal transduction molecules changes in more comprehensive way. In Pathway Array technology, protein samples could be extracted from cell lines cultured in vitro and ultra-low temperature frozen tissue samples, then the proteins were separated by SDS-PAGE electrophoresis, transferred to NC membrane and then fixed the NC membrane in a Western blotting manifold that isolates 20 channels across the membrane, then add 600 ul of primary antibodies (diluted in blocking buffer) to each channel, each channel contains two to four antibodies, the molecular weight are significantly different from each other in the same channel, which benefits the access to the image. After hybridization, the NC membranes are analysed by Quantity One software Chemi XRS system to obtain images of different protein bands by chemiluminescence technology reflects the combination of the antibodies by specific proteins, and then by Chemi Doc system to make sure protein molecular weight corresponding to each phosphorylation proteins band or non-phosphorylated proteins band for protein characterization, and get relative expression volume of proteins by analysis of expression volume of each protein compared to the internal reference for quantitative comparison. NC membrane with the antibodies were cleaned by stripping buffer, and then another set of antibodies could be blotted. Phosphorylation antibodies are blotted first in order and then the non-phosphorylated antibodies were blotted. Blotting of non-phosphorylated antibodies can be repeated several times, 300-400 antibodies could be blotted in a single film. The advantages of pathway array technology include:①With pathway array technology, there are more specificity and accuracy in identifying the correct non-phosphorylated proteins and phosphorylated proteins than the traditional protein array technology and reverse protein array approach, only 80% to 90% of proteins detected by pathway array could be identified by traditional Western blot technique,②It is more sensitivity, the sensitivity can reach 1ng each belt when detected by chemiluminescence technology compared to traditional Western blot technique. It has repeatability. Therefore, this study used the following research pathway array technology.
     Objective:To explore the pathogenesis of ovarian cancer to seek for sensitive specific biological markers for early diagnosis, looking for molecular therapeutic target for ovarian cancer, provide experimental basis and theoretical basis for early diagnosis and treatment of EOC.
     Methods: (1)Research of differential proteomics of EOC were done through pathway array technology. Protein samples include ovarian cancer cell lines cultured in vitro and ultra-low temperature frozen tissue samples, then the proteins were separated by SDS-PAGE electrophoresis, transferred to NC membrane and then fixed the NC membrane with a Western blotting manifold that isolates 20 channels across the membrane, 2-4 kinds of antibodies which molecular weight differs from each other are blotted respectively in each channel, and western blotting were carried on as regular. Chemiluminescene exposure using Immun-StarTM HRP Peroxide Buffer/Immun-StarTM HRP Luminol Enhancer which is mixed together by the ratio of 1:1. Each membrane is evenly covered by 5 ml of the mixture. Capture imaging through one minute per exposure for 10 exposures after incubating with the mixture for 5 minutes. The NC membranes are analysed by Quantity One software Chemi XRS system to obtain images of different protein bands by chemiluminescence technology reflects the combination of the antibodies by specific proteins, and then by Chemi Doc system to make sure protein molecular weight corresponding to each phosphorylation proteins band or non-phosphorylated proteins band for protein characterization, and get relative expression volume of proteins by analysis of expression volume of each protein compared to the internal reference for quantitative comparison. In proteins from cultured cell lines, twice overexpression are defined significant difference while in proteins from tissues of EOC, SAM software are used to define significant difference. (2) Immunohistochemical staining and Western blotting technology were processed to clarify proteins over-expressed both in ovarian cancer tissue and ovarian cell line, which both further verified the results of pathway array.
     Results and discussion:(1)Differential expressed proteins in ovarian cancer cell lines (SKOV3 cells compared with IOSE 386 cells as an example):①6 over-expressed proteins: p-HER2/ErbB2 (Tyr1221/1222), p-PDK1 (Ser241), p-Akt (Ser473), TTF-1, ERK1/2 and p-Stat3 (Ser727) protein;②4 less-expressed proteins:p-RB (Ser780), p-p53 (Ser392), pc-Jun (Ser73), Cdc25B proteins. (2) Differential expressed proteins in ovarian cancer tissues compared with normal ovarian tissues:①12 over-expressed proteins: p-Stat3, p-PDK1, p-cdc2, p-p38, p-Akt, XIAP, PCNA, cdc2p34, p53, Cdk2, Mesothelin, E-cadherin proteins;②9 less-expressed proteins: ERK, Cdc25C, Wee 1, N-cadherin,α-tubulin, Vimentin, cdc42, Bax, PTEN protein levels are significantly decreased. (3)The study also uses immunohistochemical staining and Western blotting technology, further confirmed p-Stat3, Stat3, p-Akt, AKT, p-PDK1 over-expressed in ovarian cancer tissue compared with normal ovarian tissue, which both further verified the protein pathway array results. This shows that in vivo and in vitro ovarian cancer have started the same signaling pathway, the associated proteins should be the most prospects. However, differences proteins in ovarian cancer also showed that the expression of cell adhesion related proteins Mesothelin increased (8.29 fold), E-cadherin expression was increased (2..59 fold), X linked inhibitor of apoptosis protein XIAP expression increased 6.39 fold, the tumor suppressor gene protein P53 expression increased 21.50 fold. As can be seen from the above data the incidence of ovarian cancer in vivo complexity of the body by environmental constraints, so we will focus on the level of expression of ovarian cancer protein further studies to reveal whether there is a significant development value. With immunohistochemistry and Western Blot verification: both in SKOV3 ovarian cancer cell lines and in ovarian tissues, it was consistent with the high level expression of proteins which validate the results obtained with the pathway array. (4) With IPA system,we got top canonical pathways and networks for the 21 proteins.
     Conclusions: (1) Make up a new flat for screening of ovarian cancer by Pathway array technology, (2)12 kinds of differential expressed proteins in cell lines and 21 kinds of proteins in tissues were found by detected of 110 kinds of antibodies, (3) Proteins only expressed in tissue may have more significance for developing of ovarian cancer. (4)Preliminary revealed the signal transduction mechanism in the development of ovarian cancer by pathway array technology: PI3K/Akt pathway, JNK pathway, ERK pathway, p38 MAPK pathway, P53 pathways, cell cycle regulation disorders in the pathogenesis of ovarian cancer, shows the incidence of ovarian cancer involving multiple signal transduction pathways, (5) Akt, PDK1 could be markers for diagnosis.
引文
[1] Auersperg N, Wong AS, Choi KC, et al: Ovarian surface epithelium: Biology, endocrinology, and pathology. Endocr Rev. 2001, 22:255-288.
    [2] Naora H: Developmental patterning in the wrong context: The paradox of epithelial ovarian cancers. Cell Cycle. 2005, 4:1033-1035.
    [3] Kowalski LD, Kanbour AI, Price FV, et al: A case-matched molecular comparison of extraovarian versus primary ovarian adenocarcinoma. Cancer. 1997, 79:1587-94.
    [4] Halperin R, Zehavi S, Hadas E, et al: Immunohistochemical comparison of primary peritoneal and primary ovarian serous papillary carcinoma. Int J Gynecol Pathol .2001,20:341-345.
    [5] Halperin R, Zehavi S, Langer R, et al: Primary peritoneal serous papillary carcinoma: A new epidemiologic trend? A matched-case comparison with ovarian serous papillary cancer. Int J Gynecol Cancer.2001,11:403-408.
    [6] Chen LM, Yamada SD, Fu YS, et al: Molecular similarities between primary peritoneal and primary ovarian carcinomas. Int J Gynecol Cancer.2003. 13:749-755,
    [7] Lacy MQ, Hartmann LC, Keeney GL, et al:C-erbB-2 and p53 expression in fallopian tube carcinoma.Cancer .1995,75:2891-2896.
    [8] Pere H, Tapper J, Seppala M, et al: Genomic alterations in fallopian tube carcinoma: Comparison to serous uterine and ovarian carcinomas reveals similarity suggesting likeness in molecular pathogenesis.Cancer Res .1998,58:4274-4276.
    [9] Muto MG, Welch WR, Mok SC, et al: Evidence for a multifocal origin of papillary serous carcinoma of the peritoneum. Cancer Res.1995, 55:490-492.
    [10] Kindelberger DW, Lee Y, Miron A, et al:Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship.Am J Surg Pathol .2007, 31:161-169.
    [11] Fleming JS, Beaugie CR, Haviv I, et al: Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: Revisiting old hypotheses. Mol Cell Endocrinol . 2006,247:4-21.
    [12] Gadducci A, Cosio S, Gargini A, et al: Sexsteroid hormones, gonadotropin and ovarian carcinogenesis:A review of epidemiological and experimental data. Gynecol Endocrinol.2004 ,19:216-228.
    [13] Capen CC: Mechanisms of hormone mediatedcarcinogenesis of the ovary. Toxicol Pathol.2004,32:1-5.
    [14] Fathalla MF: Incessant ovulation: a factor inovarian neoplasia? Lancet. 1971,2:163.
    [15] Whittemore AS, Harris R, Itnyre J: Characteristics relating to ovarian cancer risk: Collaborative analysis of 12 US case-control studies. II. Invasive epithelial ovarian cancers in white women. Am J Epidemiol .1992,136:1184-1203.
    [16] Risch HA, Marrett LD, Howe GR: Parity, contraception, infertility, and the risk of epithelial ovarian cancer. Am J Epidemiol .1994,140:585-597.
    [17] Riman T, Dickman PW, Nilsson S, et al: Risk factors for invasive epithelial ovarian cancer: Results from a Swedish case-control study. Am J Epidemiol. 2002, 156:363-373.
    [18] Gwinn ML, Lee NC, Rhodes PH, et al: Pregnancy,breast feeding, and oral contraceptives and the risk of epithelial ovarian cancer. J Clin Epidemio. 1990,l43:559-568.
    [19] epidemiologic case-control study of ovarian cancer and reproductive factors. Am J Epidemiol .1984,119:705-713.
    [20] Fredrickson TN: Ovarian tumors of the hen.Environ Health Perspect.1987, 73:35-51.
    [21] Land JA: Ovulation, ovulation induction and ovarian carcinoma. Baillieres Clin Obstet Gynaecol .1993,7:455-472.
    [22] Risch HA: Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst. 1998,90:1774-1786.
    [23] Schildkraut JM, Schwingl PJ, Bastos E, et al: Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol .1996,88:554-559.
    [24] Brinton LA, Lamb EJ, Moghissi KS, et al:Ovarian cancer risk after the use of ovulationstimulatingdrugs. Obstet Gynecol. 2004,103:1194-1203.
    [25] Ness RB, Cottreau C: Possible role of ovarian epithelial inflammation in ovariancancer. J Natl Cancer Inst. 1999,91:1459-1467.
    [26] Zheng W, Lu JJ, Luo F, et al: Ovarian epithelial tumor growth promotion by follicle-stimulating hormone and inhibition of the effect by luteinizing hormone.Gynecol Oncol .2000,76:80-88.
    [27] Choi KC, Kang SK, Tai CJ, et al: Folliclestimulating hormone activates mitogen-activated protein kinase in preneoplastic and neoplastic ovarian surface epithelial cells. J Clin Endocrinol Metab .2002,87:2245-2253.
    [28] Choi JH, Choi KC, Auersperg N, et al: Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J Clin Endocrinol Metab .2004,89:5508-5516.
    [29] Tashiro H, Katabuchi H, Begum M, et al: Roles of luteinizing hormone/chorionic gonadotropin receptor in anchorage-dependent and–independent growth in human ovarian surface epithelial cell lines. Cancer Sci.2003, 94:953-959.
    [30] Ji Q, Liu PI, Chen PK, et al: Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells. Int J Cancer.2004,112:803-814.
    [31] Schiffenbauer YS, Abramovitch R, Meir G, et al: Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proc Natl Acad Sci U S A. 1997,94:13203-13208.
    [32] Wang J, Luo F, Lu JJ, et al: VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. Int J Cancer.2002, 97:163-167.
    [33] Schiffenbauer YS, Meir G, Maoz M, et al: Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by alpha(v)-integrin. Gynecol Oncol .2002,84:296-302.
    [34] Rosenberg L, Palmer JR, Zauber AG, et al: A case-control study of oral contraceptive use and invasive epithelial ovarian cancer. Am J Epidemiol. 1994, 139:654-661.
    [35] Gaspard UJ, Romus MA, Gillain D, et al:Plasma hormone levels in women receiving new oral contraceptives containing ethinyl estradiol plus levonorgestrel or desogestrel. Contraception.1983 ,27:577-590.
    [36] Seeger H, Wallwiener D, Mueck AO: Is there a protective role of progestogens on the proliferation of human ovarian cancer cells in the presence of growth factors? Eur J Gynaecol Oncol .2006,27:139-141.
    [37] McNatty KP, Smith DM, Makris A, et al: The microenvironment of the human antral follicle: Interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the Status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab.1979,49:851-860.
    [38] Edmondson RJ, Monaghan JM, Davies BR: The human ovarian surface epithelium is an androgen responsive tissue. Br J Cancer .2002,86:879-885.
    [39] Altinoz MA, Korkmaz R: NF-kappaB, macrophage migration inhibitory factor and cyclooxygenaseinhibitions as likely mechanisms behind the acetaminophen- and NSAID-prevention of the ovarian cancer. Neoplasma. 2004,51:239-247.
    [40] Heller DS, Westhoff C, Gordon RE, et al: The relationship between perineal cosmetic talc usage and ovarian talc particle burden. Am J Obstet Gynecol.1996, 174:1507-1510.
    [41] Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100:57-70, 2000
    [42] Han L, Landen C, Trevino J, et al: Antiangiogenic and anti-tumor effects of Src inhibition in ovarian carcinoma. Cancer Res .2006,66:8633-8639.
    [43] Ishizawar R, Parsons SJ: C-Src and cooperating partners in human cancer. Cancer Cell .2004,6:209-214.
    [44] Silva CM: Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene .2004,23:8017-8023.
    [45] Wiener JR, Windham TC, Estrella VC, et al: Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. GynecolOncol. 2003, 88:73-79.
    [46] Pengetnze Y, Steed M, Roby KF, et al: Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line.Biochem Biophys Res Commun .2003,309:377-383.
    [47] Bartlett JM, Langdon SP, Simpson BJ, et al: The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.Br J Cancer. 1996,73:301-306.
    [48] Leary JA, Edwards BG, Houghton CR, et al: Amplification of HER-2/neu oncogene in human ovarian cancer. Int J Gynecol Cancer .1992,2:291-294.
    [49] Singer G, Oldt R, 3rd, Cohen Y, et al: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003,95:484-486.
    [50] Suzuki M, Saito S, Saga Y, et al: Mutation of K-RAS protooncogene and loss of heterozygosity on 6q27 in serous and mucinous ovarian carcinomas.Cancer Genet Cytogenet . 2000,118:132-135.
    [51] Landen CN, Klingelhutz A, Coffin JE, et al: Genomic instability is associated with lack of telomerase activation in ovarian cancer. Cancer Biol Ther .2004,3:1250-1253.
    [52] Poremba C, Heine B, Diallo R, et al: Telomerase as a prognostic marker in breast cancer: High-throughput tissue microarray analysis of hTERT and hTR. J Pathol .2002,198:181-189.
    [53] Yang G, Rosen DG, Mercado-Uribe I, et al:Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelialcells. Carcinogenesis .2007,28:174-182.
    [54] Zhou C, Liu J: Inhibition of human telomerase reverse transcriptase gene expression by BRCA1 in human ovarian cancer cells. Biochem Biophys Res Commun .2003, 303:130-136.
    [55] Sui L, Dong Y, Ohno M, et al: Implication of malignancy and prognosis of p27(kip1), Cyclin E, and Cdk2 expression in epithelial ovarian tumors. Gynecol Oncol.2001, 83:56-63.
    [56] Dhar KK, Branigan K, Parkes J, et al: Expression and subcellular localization of cyclin D1 protein in epithelial ovarian tumour cells. Br J Cancer. 1999,81:1174-1181.
    [57] Barrette BA, Srivatsa PJ, Cliby WA, et al: Overexpression of p34cdc2 protein kinase in epithelial ovarian carcinoma. Mayo Clin Proc.1997,72:925-929.
    [58] Bao R, Connolly DC, Murphy M, et al: Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst .2002,94:522-528.
    [59] Yu Y, Xu F, Peng H, et al: NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A .1999,96:214-219.
    [60] Michalovitz D, Halevy O, Oren M: p53 mutations: Gains or losses? J Cell Biochem. 1991,45:22-29.
    [61] Skilling JS, Squatrito RC, Connor JP, et al: p53 gene mutation analysis and antisense-mediated growth inhibition of human ovarian carcinoma cell lines. Gynecol Oncol. 1996,60:72-80.
    [62] Marks JR, Davidoff AM, Kerns BJ, et al: Overexpression and mutation of p53 in epithelialovarian cancer. Cancer Res .1991 ,51:2979-2984.
    [63] Kerner R, Sabo E, Gershoni-Baruch R, et al: Expression of cell cycle regulatory proteins in ovaries prophylactically removed from Jewish Ashkenazi BRCA1 and BRCA2 mutation carriers: Correlation with histopathology. Gynecol Oncol. 2005,99:367-375.
    [64] Cheng JQ, Godwin AK, Bellacosa A, et al:AKT2, a putative oncogene encoding a member of subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A .1992,89:9267-9271.
    [65] Hu L, Hofmann J, Lu Y, et al: Inhibition of phosphatidylinositol 3_-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res. 2002,62:1087-1092.
    [66] Dinulescu DM, Ince TA, Quade BJ, et al: Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian
    [67] cancer. Nat Med .2005,11:63-70.
    [68] Deregowski V, Delhalle S, Benoit V, et al: Identification of cytokine-induced nuclear factorkappaB target genes in ovarian and breast cancer cells. Biochem Pharmacol .2002,64:873-881.
    [69] Huang S, Robinson JB, Deguzman A, et al: Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res .2000,60:5334-5339.
    [70] Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. The genomic landscapes of human breast and colorectal cancers. Science.2007, 318:1108–13.
    [71] Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, et al. Mutational analysis ofthe tyrosine phosphatome in colorectal cancers. Science.2004,304:1164–66.
    [72] Wang TL, Maierhofer C, Speicher MR, Lengauer C, Vogelstein B, et al. Digital karyotyping. Proc.Natl. Acad. Sci. USA.2002,99:16156–61.
    [73] Leary RJ, Cummins J,Wang TL, Velculescu VE. Digital karyotyping. Nat. Protoc. 2007,2:1973–86.
    [74] Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res. 2002, 62:4722–29.
    [75] Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, et al. Gene expression patterns in ovarian carcinomas. Mol. Biol. Cell.2003, 14:4376–86.
    [76] Marquez RT, Baggerly KA, Patterson AP, Liu J, Broaddus R, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin. Cancer Res.2005,11:6116–26.
    [77] Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/β-catenin and PI3K/PTEN signaling pathways. Cancer Cell. 2007,11:321–33.
    [78] Willner J,Wurz K, Allison KH, Galic V, Garcia RL, et al. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum. Pathol. 2007, 38:607–13.
    [79] Shih Ie M, Kurman RJ: Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004,164:1511-1518.
    [80] Gershenson DM, Sun CC, Lu KH, et al: Clinical behavior of stage II-IV low-grade serous carcinoma of the ovary. Obstet Gynecol.2006 ,108:361-368.
    [81] Ozols RF, Bundy BN, Greer BE, et al: Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. J Clin Oncol 21:3194-3200
    [82] Armstrong DK, Bundy B, Wenzel L, et al: Intraperitoneal cisplatin and paclitaxel in ovarian cancer.N Engl J Med.2006,354:34-43.
    [83] Malpica A, Deavers MT, Lu K, et al: Grading ovarian serous carcinoma using atwo-tier system. Am J Surg Pathol. 2004,28:496-504.
    [84] Crispens MA, Bodurka D, Deavers M, et al: Response and survival in patients with progressive or recurrent serous ovarian tumors of low malignant potential. Obstet Gynecol .2002,99:3-10.
    [85] Mok SC, Bell DA, Knapp RC, et al: Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res. 1993,53:1489-1492.
    [86] Teneriello MG, Ebina M, Linnoila RI, et al: p53 and Ki-ras gene mutations in epithelial ovarian neoplasms. Cancer Res .1993,53:3103-3108.
    [87] Singer G, Oldt R, 3rd, Cohen Y, et al: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003,95:484-486.
    [88] Kohler MF, Marks JR, Wiseman RW, et al: Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J Natl Cancer Inst.1993,85:1513-1519.
    [89] Kupryjanczyk J, Thor AD, Beauchamp R, et al: p53 gene mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci U S A .1993,90:4961-4965.
    [90] Skilling JS, Sood A, Niemann T, et al: An abundance of p53 null mutations in ovarian carcinoma. Oncogene .1996,13:117-123.
    [91] Cheng JQ, Godwin AK, Bellacosa A, et al: AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A .1992,89:9267-9271.
    [92] Ross JS, Yang F, Kallakury BV, et al: HER-2/ neu oncogene amplification by fluorescence in situ hybridization in epithelial tumors of the ovary. Am J Clin Pathol. 1999,111:311-316.
    [93] Singer G, Rebmann V, Chen YC, et al: HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res .2003,9:4460-4464.
    [94] Bonome T, Lee JY, Park DC, et al: Expression profiling of serous low malignant potential, lowgrade, and high-grade tumors of the ovary. Cancer Res .2005,65:10602-10612.
    [95] Ouellet V, Guyot MC, Le Page C, et al: Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer .2006,119:599-607.
    [96] Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, et al: A distinct molecular profile associated with mucinous epithelial ovarian cancer. Br J Cancer . 2006,94:904-913.
    [97] Wamunyokoli FW, Bonome T, Lee JY, et al: Expression profiling of mucinous tumors of the ovary identifies genes of clinicopathologic importance.Clin Cancer Res .2006,12:690-700.
    [98] Suzuki M, Saito S, Saga Y, et al: Mutation of K-RAS protooncogene and loss of heterozygosity on 6q27 in serous and mucinous ovarian carcinomas.Cancer Genet Cytogenet .2000,118:132-135.
    [99] Obata K, Morland SJ, Watson RH, et al:Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors.Cancer Res .1998,58: 2095-2097.
    [100] Singer G, Stohr R, Cope L, Dehari R, Hartmann A, et al. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a newmodel of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am. J.Surg. Pathol. 2005,29:218–24.
    [101] Willner J,Wurz K, Allison KH, Galic V, Garcia RL, et al. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum. Pathol. 2007,38:607–13.
    [102] Merajver SD, Pham TM, Caduff RF, Chen M, Poy EL, et al. Somatic mutations in the BRCA1gene in sporadic ovarian tumours. Nat. Genet. 1995,9:439–43.
    [103] Nakayama K, Nakayama N, Kurman RJ, Cope L, Pohl G, et al. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol. Ther. 2006, 5:779–85.
    [104] Leitao MM, Soslow RA, Baergen RN, Olvera N, Arroyo C, Boyd J. Mutation and expression of the TP53 gene in early stage epithelial ovarian carcinoma. Gynecol. Oncol. 2004,93:301–6.
    [105] Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am. J. Surg. Pathol. 2007, 31:161–69.
    [106] Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med. 2004,10:789–99.
    [107] Mok SC, Bell DA, Knapp RC, Fishbaugh PM,Welch WR, et al. Mutation of K-ras protooncogenein human ovarian epithelial tumors of borderline malignancy. Cancer Res. 1993,53:1489–9.
    [108] Singer G, Oldt R 3rd, Cohen Y, Wang BG, Sidransky D, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl. Cancer Inst. 2003, 95:484–86.
    [109] Sieben NL, Macropoulos P, Roemen GM, Kolkman-Uljee SM, Jan Fleuren G, et al. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J. Pathol. 2004,202:336–40.
    [110] Mayr D, Hirschmann A, Lohrs U, Diebold J. KRAS and BRAF mutations in ovarian tumors:a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol.Oncol. 2006, 103:883–87.
    [111] Ueda M, Toji E, Noda S. Germ line and somatic mutations of BRAF V599E in ovarian carcinoma.Int. J. Gynecol. Cancer. 2007,17:794–97.
    [112] Wang SE, Narasanna A, Perez-Torres M, Xiang B,Wu FY, et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell.2006,10:25–38.
    [113] Cheng EJ, Kurman RJ, Wang M, Oldt R, Wang BG, et al. Molecular genetic analysis of ovarian serous cystadenomas. Lab. Investig. 2004,84:778–84.
    [114] Ho CL, Kurman RJ, Dehari R,Wang TL, Shih IeM. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 2004, 64:6915–18.
    [115] Hsu CY, Bristow R, Cha MS,Wang BG,HoCL, et al. Characterization of active mitogen-activated protein kinase in ovarian serous carcinomas. Clin. Cancer Res. 2004, 10:6432–36.
    [116] Pohl G,HoCL, Kurman RJ, Bristow R,Wang TL, Shih IeM. Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations. Cancer Res. 2005, 65:1994–2000.
    [117] Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin. Oncol. 2003,30:105–16.
    [118] Worsley SD, Ponder BA, Davies BR. Overexpression of cyclin D1 in epithelial ovarian cancers.Gynecol. Oncol. 1997, 64:189–95.
    [119] Sui L, Tokuda M, Ohno M, Hatase O, Hando T. The concurrent expression of p27(kip1) and cyclin D1 in epithelial ovarian tumors. Gynecol. Oncol. 1999,73:202–9.
    [120] Gilks CB. Subclassification of ovarian surface epithelial tumors based on correlation of histologicand molecular pathologic data. Int. J. Gynecol. Pathol. 2004, 23:200–5.
    [121] Jazaeri AA, Yee CJ, Sotiriou C, et al: Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst.2002,94:990-1000.
    [122] Cass I, Baldwin RL, Varkey T, et al: Improved survival in women with BRCA-associated ovarian carcinoma. Cancer .2003,97:2187-2195.
    [123] Gotlieb WH, Chetrit A, Menczer J, et al: Demographic and genetic characteristics of patients with borderline ovarian tumors as compared to early stage invasive ovarian cancer. Gynecol Oncol .2005,97: 780-783.
    [124] Merajver SD, Pham TM, Caduff RF, et al: Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet .1995,9:439-443.
    [125] Baldwin RL, Nemeth E, Tran H, et al: BRCA1 promoter region hypermethylation in ovarian carcinoma: A population-based study. Cancer Res. 2000,60:5329-5333.
    [126] Esteller M, Silva JM, Dominguez G, et al: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst .2000, 92:564-569.
    [127] Hilton JL, Geisler JP, Rathe JA, et al: Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst . 2002,94:1396-1406.
    [128] Venkitaraman AR: Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell .2002,08:171- 182.
    [129] Yoshida K, Miki Y: Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci .2004,95:866-871.
    [130] Boulton SJ: Cellular functions of the BRCA tumour-suppressor proteins.Biochem Soc Trans .2006,34:633-645.
    [131] Rosen EM, Fan S, Pestell RG, et al: BRCA1 gene in breast cancer. J Cell Physiol .2003,196:19-41.
    [132] Donninger H, Bonome T, Radonovich M, et al: Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene .2004,23:8065-8077.
    [133] Bild AH, Yao G, Chang JT, et al: Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006,439:353-357.
    [134] Shridhar V, Lee J, Pandita A, et al: Genetic analysis of early- versus late-stage ovarian tumors. Cancer Res .2001,61:5895-5904.
    [135] Lancaster JM, Dressman HK, Clarke JP, et al:Identification of genes associated with ovarian cancer metastasis using microarray expression analysis. Int J Gynecol Cancer.2006 ,16:1733-1745.
    [136] Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, et al. Amplicon profiles inovarian serous carcinomas. Int. J. Cancer. 2007,120:2613–17.
    [137] Arboleda MJ,Lyons JF, Kabbinavar FF, BrayMR,Snow BE, et al. Overexpression of AKT2/protein kinase Bβleads to up-regulation ofβ1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 2003, 63:196–206.
    [138] Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J. Biol. Chem. 2004,279:5405–12.
    [139] Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell. Signal. 2006,18:2262–71.
    [140] Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol. Cell Biol. 1997,17:453–59.
    [141] Bedrosian I, Lu KH, Verschraegen C, Keyomarsi K. Cyclin E deregulation alters the biologic properties of ovarian cancer cells. Oncogene . 2004,23:2648–57.
    [142] Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature.1999,401:297–300.
    [143] Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE. p53 and p21 form an inducible barrier that protects cells against cyclin E–cdk2 deregulation. Curr. Biol. 2002,12:1817–27.
    [144] Farley J, Smith LM, Darcy KM, Sobel E, O’Connor D, et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a Gynecologic Oncology Group study. Cancer Res. 2003,63:1235–41.
    [145] Davidson B, Skrede M, Silins I, Shih IeM, Trope CG, Florenes VA. Low-molecular-weight formsof cyclin E differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poorsurvival in ovarian carcinoma. Cancer. 2007,110:1264–71.
    [146] Shih IeM, Sheu JJ, Santillan A, Nakayama K,YenMJ, et al. Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc. Natl. Acad. Sci. USA .2005,02:14004–9.
    [147] Park JT, Li M, Nakayama K, Mao TL, Davidson B, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006,66:6312–18.
    [148] Okawa ER, Gotoh T, Manne J, Igarashi J, Fujita T, et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene. 2008, 27:803–10.
    [149] Bagchi A, Papazoglu C,Wu Y, Capurso D, Brodt M, et al. CHD5 is a tumor suppressor at human 1p36. Cel.,2007,128:459–75.
    [150] Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, et al. p53-mediated activation of miRNA34 candidate tumor suppressor genes. Curr. Biol. 2007, 17:1298–307.
    [151] He X, He L, Hannon GJ. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007,67:11099–101.
    [152] Meinhold-Heerlein I, Bauerschlag D, Hilpert F, Dimitrov P, Sapinoso LM, et al. Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene.2005,24:1053–65.
    [153] Hough CD, Sherman-Baust CA, Pizer ES, Montz FJ, Im DD, et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res. 2000, 60:6281–87.
    [154] Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ. Coordinately up-regulated genes in ovarian cancer. Cancer Res. 2001, 61:3869–76.
    [155] Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res. 2005,65:10602–12.
    [156] Gilks CB, Vanderhyden BC, Zhu S, van de Rijn M, Longacre TA. Distinction between serous tumors of low malignant potential and serous carcinomas based on global mRNA expression profiling. Gynecol. Oncol. 2005, 96:684–94.
    [157] Lande n CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J. Clin. Oncol. 2008,26:995–1005.
    [158] Singer G, Rebmann V, Chen YC, Liu HT, Ali SZ, et al. HLA-G is a potential tumor marker in malignant ascites. Clin. Cancer Res. 2003, 9:4460–64.
    [159] Sheu JJ, Shih IeM. Clinical and biological significance of HLA-G expression in ovarian cancer. Semin. Cancer Biol. 2007, 17:436–43.
    [160] Vassilopoulos I, Korkolopoulou P, Konstantinidou AE, Patsouris E, Eftichiadis C, et al. Evaluation of the cyclin-dependent kinase inhibitor p21Cip1 in epithelial ovarian tumors of low malignant potential and adenocarcinomas. Histol. Histopathol. 2003, 18:761–70.
    [161] Cannistra SA. 2007. BRCA-1 in sporadic epithelial ovarian cancer: lessons learned from the genetics of hereditary disease. Clin. Cancer Res. 13:7225–7
    [162] Wang C, Horiuchi A, Imai T, Ohira S, Itoh K, et al. Expression of BRCA1 protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA1 gene. J. Pathol. 2004,202:215–23.
    [163] Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000, 60:5329–33.
    [164] Press JZ, De Luca A, Boyd N, Young S, Troussard A, et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer.2008, 8:17.
    [165] Acs G, Pasha T, Zhang PJ. WT1 is differentially expressed in serous,endometrioid, clear cell, and mucinous carcinomas of the peritoneum, fallopian tube, ovary, and endometrium. Int. J. Gynecol. Pathol. 2004,23:110–18.
    [166] O’Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An immunohistochemical comparison between low-grade and high-grade ovarian serous carcinomas: significantly higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in high-grade neoplasms. Am. J. Surg. Pathol. 2005,29:1034–41.
    [167] Sorlie T, Perou CM, Tibshirani R, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A .2001,98:10869-10874.
    [168] Wang E, Ngalame Y, Panelli MC, et al: Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res.2005,11:113-122.
    [169] Folkman J: Angiogenesis in cancer, vascular,rheumatoid and other disease. Nat Med .1995,1:27-31.
    [170] Folkman J: The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992,3:65-71.
    [171] Frumovitz M, Sood A: Vascular Endothelial Growth Factor (VEGF) Pathway as a Therapeutic Target in Gynecologic Malignancies. Gynecol Oncol. 2007,104:768-778.
    [172] Connolly DT, Heuvelman DM, Nelson R, et al: Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest . 1989,84:1470-1478.
    [173] Senger DR, Galli SJ, Dvorak AM, et al: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983,219:983-985.
    [174] Yoneda J, Kuniyasu H, Crispens MA, et al:Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst .1998,90:447-454.
    [175] Paley PJ, Staskus KA, Gebhard K, et al: Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer .1997,80:98-106.
    [176] Cooper BC, Ritchie JM, Broghammer CL, et al: Preoperative serum vascular endothelial growth factor levels: Significance in ovarian cancer. Clin Cancer Res .2002, 8:3193-3197.
    [177] Xu L, Fidler IJ: Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res . 2000,12:97-106.
    [178] Lokshin AE, Winans M, Landsittel D, et al:Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol . 2006,102:244-251.
    [179] Davidson B, Goldberg I, Reich R, et al: AlphaV- and beta1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol .2003,90:248-257.
    [180] Thaker PH, Deavers M, Celestino J, et al: EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res .2004,10:5145-5150.
    [181] Landen CN, Jr., Chavez-Reyes A, Bucana C,et al: Therapeutic EphA2 Gene Targeting In vivo Using Neutral Liposomal Small Interfering RNA Delivery. Cancer Res .2005,65:6910-6918.
    [182] Landen CN, Jr., Lu C, Han LY, et al: Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst .2006,98: 1558-1570.
    [183] Jung YD, Ahmad SA, Akagi Y, et al: Role of the tumor microenvironment in mediating response to anti-angiogenic therapy. Cancer Metastasis Rev. 2000,19:147-157.
    [184] Lu C, Bonome T, Li Y, et al: Gene alterations identified by expression profiling in tumorassociated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007,67:1757-1768.
    [185] Belotti D, Paganoni P, Manenti L, et al: Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: Implications for ascites formation. Cancer Res .2003,63:5224- 5229.
    [186] Naylor MS, Stamp GW, Davies BD, et al:Expression and activity of MMPS and their regulators in ovarian cancer. Int J Cancer .1994,58:50-56.
    [187] Herrera CA, Xu L, Bucana CD, et al: Expressionof metastasis-related genes in human epithelialovarian tumors. Int J Oncol .2002,20:5-13.
    [188] Kamat AA, Fletcher M, Gruman LM, et al:The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin Cancer Res. 2006,12:1707- 1714.
    [189] Huang S, Van Arsdall M, Tedjarati S, et al:Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst .2002,94:1134-1142.
    [190] Thaker PH, Han LY, Kamat AA, et al: Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006,12:939-944.
    [191] Sood AK, Bhatty R, Kamat AA, et al: Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res .2006,12:369-375.
    [192] Antoni MH, Lutgendorf SK, Cole SW, et al:The influence of bio-behavioral factors on tumor biology: Pathways and mechanisms. Nat Rev Cancer. 2006,6:240-248.
    [193] Ben-Hur H, Gurevich P, Huszar M, et al:Apoptosis and apoptosis-related proteins (Fas, Fas ligand, Blc-2, p53) in lymphoid elements of human ovarian tumors. Eur J Gynaecol Oncol .2000,21:141-145.
    [194] Paul P, Rouas-Freiss N, Khalil-Daher I, et al:HLA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A. 1998,95:4510-4515.
    [195] Bukovsky A: Immune system involvement in the regulation of ovarian function and augmentation of cancer. Microsc Res Tech .2006,69:482-500.
    [196] Nash MA, Ferrandina G, Gordinier M, et al:The role of cytokines in both the normal and malignant ovary. Endocr Relat Cancer .1999,6:93-107.
    [197] Zhang L, Conejo-Garcia JR, Katsaros D, et al:Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med .2003,348:203-213.
    [198] Coukos G, Conejo-Garcia JR, Roden RB, et al: Immunotherapy for gynaecological malignancies.Expert Opin Biol Ther. 2005,5:1193-1210.
    [199] Fidler IJ: The pathogenesis of cancer metastasis:The‘seed and soil’hypothesis revisited. Nat Rev Cancer .2003,3:453-458.
    [200] Emerich J, Konefka T, Dudziak M, et al: [Thevalue of peritoneal cytology in the staging of ovarian cancer]. Ginekol Pol.1997 ,68:74-77.
    [201] Hood JD, Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer.2002, 2:91-100.
    [202] Carreiras F, Rigot V, Cruet S, et al: Migrationproperties of the human ovarianadenocarcinoma cell line IGROV1: importance of alpha(v) beta3 integrins and vitronectin. Int J Cancer .1999,80:285-294.
    [203] Sundfeldt K: Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol Cell Endocrinol .2003,202:89-96.
    [204] Halder J, Kamat AA, Landen CN, Jr., et al:Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res .2006,12: 4916-4924.
    [205] Sundfeldt K, Piontkewitz Y, Ivarsson K, et al:E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer .1997,74:275-280.
    [206] Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell.2002, 1:53–62.
    [207] Connolly DC, Bao R, Nikitin AY, Stephens KC, Poole TW, et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 2003, 63:1389–97.
    [208] Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 2003,63:3459–63.
    [209] Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 2005, 11:63–70.
    [210] Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene .2005, 24:7455–64.
    [211] Powis G, Ihle N, Kirkpatrick DL. Practicalities of drugging the phosphati- dylinositol-3-kinase/Aktcell survival signaling pathway. Clin. Cancer Res. 2006, 12:2964–66.
    [212] Inoki K, Ouyang H, Zhu T, Lindvall C,Wang Y, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell.2006, 126:955–68.
    [213] Rubio-Viqueira B, Hidalgo M. Targeting mTOR for cancer treatment. Curr. Opin.Investig. Drugs .2006,7:501–12.
    [214] Safran M, Kim WY, Kung AL, Horner JW, DePinho RA, Kaelin WG Jr. Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging .2003,2:297–302.
    [215] Crum CP, Drapkin R, Miron A, Ince TA, Muto M, et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr. Opin. Obstet. Gynecol. 2007,19:3–9.
    [216] Kurman RJ, Visvanathan K, Roden R,Wu TC, Shih IeM. Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am. J. Obstet. Gynecol. 2008,198:351–56.
    [217] Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int. J.Gynecol. Pathol. 2004, 23:41–44.
    [218] Jacobs IJ, Skates SJ, MacDonald N, Menon U, Rosenthal AN, et al. Screening for ovarian cancer:a pilot randomised controlled trial. Lancet .1999,353:1207–10.
    [219] Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J. Clin. Oncol. 2002,20:1248–59.
    [220] Salani R, Kurman RJ, Giuntoli R 2nd, Gardner G, Bristow R, et al. Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int. J. Gynecol. Cancer .2008,8:487–91.
    [221] Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res. 2008, 68:946–55.
    [222] Chaga GS.Antibody arrays for determination of relative protein abundances. Methods Mol Biol. 2008, 441:129-51.
    [223] Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science. 2001, 292(5518):929- 34.
    [224] Jie Shen, Carmen Behrens, Ignacio I. Wistuba,et al. Identification and Validation of Differences in Protein Levels in Normal, Premalignant, and Malignant Lung Cells andTissues Using High-Throughput Western Array and Immunohistochemistry. Cancer Res. 2006, 66 (23) :11194 -206
    [225] Berglund L, Bj?rling E, Oksvold P, et al. A genecentric Human Protein Atlas for expression profiles based on antibodies.Mol Cell Proteomics. 2008, 7(10):2019-27.
    [226] Pontén F, Jirstr?m K, Uhlen M. The Human Protein Atlas--a tool for pathology. J Pathol. 2008, 216(4):387-93.
    [227] Zhao Y, Simon R. BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource.Cancer Inform. 2008; 6: 9-15. Epub 2008 Apr 21
    [228] Hwang JT, Liu P. Optimal tests shrinking both means and variances applicable to microarray data analysis.Stat Appl Genet Mol Biol. 2010;9(1):Article36
    [229] Yoruk E, Ochs MF, Geman D, et al. A Comprehensive Statistical Model for Cell Signaling. IEEE/ACM Trans Comput Biol Bioinform. 2010 Sep 8. [Epub ahead of print]
    [230] Zhan X, Desiderio M, et al. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Medical Genomics 2010, 3(13):1-26.
    [231] Moreno CS, Evans CO, Zhan X, et al: Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 2005, 65(22):10214-22.
    [232] Hudson LG, Gale JM, Padilla RS, et al. Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes.Mol Carcinog. 2010, 49(7):619-29.
    [1]Song G, Ouyang G L, Bao S D. The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med, 2005,9(1):59-71.
    [2]McGuire V, Jesser CA, Whittemore AS, et al. Survival amongUS woman with invasive ep ithelial ovarian cancer[J]. Gynecol Oncol, 2002, 84 (3):399-403.
    [3]JonesMB, Krutzsch H, Shu H, et al. Proteomics analysis and identification of new biomarkers and therapeutic targets for invasive ovari an cancer [J]. Proteomics, 2002, 2 (1) : 76-84.
    [4]Gonrads TP , ZhouM, Petricoin EF 3 rd, et al. Cancer diagnosis using proteomics patterns[J]. Expert Rev Mol Diagn, 2003, 3 ( 4) :411-420.
    [5]Zuo KQ, Zhang XP, Zou J, et al. Establishment of a Paclitaxel Resistant Human Breast Cancer Cell Strain (MCF-7/Taxol) and Intracellular Paclitaxel Binding Protein Analysis. J Int Med Res. 2010, 38(4):1428-35.
    [6]Davidson B, Reich R, Trope CG, et al. New determinates of disease progression and outcome in metaStatic ovarian carcinoma. Histol Histopathol. 2010 Dec;25(12):1591- 609.
    [7]Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci, 2002;59:126-42
    [8]Wang D, Patil S, Li W,et al.Activation of the TGFa autocrine loop is downstream of IGF I receptor activation during mitogenesis in growth factor dependent human colon carcinoma cells[J]. Oncogene, 2002;21(18):2785-96
    [9]Venkateswarlu S, Dawson DM, St Clair P,et al.Autocrine heregulin generates growth factor independence and blocks apoptosis in colon cancer cells[J]. Oncogene, 2002;21(1):78-86.
    [10]Jiang D, Yang H, Willson JK, et al. Autocrine transforming growth factor a provides a growth advantage to malignant cells by facilitating re entry into the cell cycle from suboptimal growth States[J]. J Biol Chem, 1998;273(47):31471-9.
    [11]Belham C, Wu S, Avruch J. Intracellular signalling:PDK1--a kinase at the hub of things. Curr Bio1. 1999 Feb 11;9 (3):R93-6
    [12]Toker A, Newton AC. Cellular signaling:pivoting around PDK-1.Cell, 2000.103 (2): 185-188.
    [13]Alessi DR,Deak M,Casamayor A,et al.3-Phosphoinositide-dependent protein kinase-1 (PDK1):structural and functional homology with the Drosophilia DSTPK61 kinase.Curr Biol 1997, 7:776-789
    [14]Casamayor A, Morrice N, Alessi DR. Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1:identification of five sites of phosphorylation in vivo. Biochem J 1999;342:287-92.
    [15]Wick MJ,Wick KR, Chen H,et al Substitution of the autophosphorylation site Thr516 with a negatively charged residue confers constitutive activity to mouse 3- phosphoinositide-dependent protein kinase-1 in cells. J Biol Chem 2002;277:16632-8.
    [16]Pullen N, Dennis PB, Andjelkovic M,et al Dufner A, Kozma SC, Hemmings BA, Thomas G. Phosphorylation and activation of p70s6k by PDK1.Science, 1998; 279:707-10.
    [17]Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem, 1995 , 270 (28) :16483-16486
    [18]Lee do Y, Lee MW, Lee HJ , et a1. ERK1/2 activation attenuates TRAIL- induced apoptosis through the regulation of mitochondria2dependent pathway. Toxicol In Vitro, 2006,20 (6): 816-823
    [19]Bobkova EV, Weber MJ, Xu Z, et al. Discovery of PDK1 kinase inhibitors with a novel mechanism of action by ultrahigh throughput screening. J Biol Chem. 2010, 285(24):18838-46.
    [20]Lin KL, Su JC, Chien CM, et al.Down-regulation of the JAK2/PI3K-mediated signaling activation is involved in Taiwan cobra cardiotoxin III-induced apoptosis of human breast MDA-MB-231 cancer cells.Toxicon. 2010, 15;55(7):1263-73
    [21]Ramírez-Valle F, Badura ML, Braunstein S, et al.Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol Cell Biol. 2010,30(13):3151-64
    [22]Laezza C, Malfitano AM, Di Matola T, et al.Involvement of Akt/NF-κB pathway in N6-isopentenyladenosine-induced apoptosis in human breast cancer cells.Mol Carcinog. 2010, 49(10):892-901.
    [23]Panno ML, Giordano F, Palma MG, et al. Evidence that bergapten, independently of its photoactivation, enhances p53 gene expression and induces apoptosis in human breast cancer cells. Curr Cancer Drug Targets. 2009, 9(4):469-81.
    [24]Barnes EA, Kenerson HL, Jiang X, et al. Tuberin regulates E-cadherin localization: implications in epithelial-mesenchymal transition.Am J Pathol. 2010, 177(4):1765-78.
    [25]Slattery ML, Herrick JS, Lundgreen A, et al. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis. 2010, 31(9):1604-11.
    [26]Chaurasia B, Mauer J, Koch L, et al. Phosphoinositide-dependent kinase 1 provides negative feedback inhibition to Toll-like receptor-mediated NF-kappaB activation in macrophages. Mol Cell Biol. 2010 Sep;30(17):4354-66.
    [27]Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem, 1995 , 270 (28) :16483-86.
    [28]Lee do Y, Lee MW, Lee HJ , et a1. ERK1/2 activation attenuates TRAIL- induced apoptosis through the regulation of mitochondria2dependent pathway. Toxicol In Vitro , 2006 , 20 (6): 816-823.
    [29]Branca M , Ciotti M , Santini D , et a1. Activation of the ERK/ MAP kinase pathway in cervical intraepithelial neoplasia is related to grade of the lesion but not to highrisk human papillomavirus , virus clearance , or prognosis in cervical cancer. Am J Clin Pathol, 2004,122(6):902-911.
    [30]Albanell J, Codony-Servat J, Rojo F, et a1. Activated extracellular signal2regulatedkinases: association with epidermal growth factor receptor/ transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti2epidermal growth factor receptor treatments. Cancer Res, 2001, 61(17):6500-6510
    [31]Uzgare AR, Kaplan PJ, Greenberg NM. Differential expression and/or activation of P38MAPK, ERK1/2, and JNK during the initiation and progression of proState cancer. ProState, 2003,55(2):128-139.
    [32]Siddiqa A, Long LM, Li L, et al. Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (PI3K) signalling pathways. BMC Cancer. 2008,5(2):129-138.
    [33]López-Malpartida AV, Lude?a MD, Varela G, et al. Differential ErbB receptor expression and intracellular signaling activity in lung adenocarcinomas and squamous cell carcinomas. Lung Cancer. 2009,65(1):25-33.
    [34]Rosen DG, Mercado-Uribe I, Yang G, et al. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer. 2006, 107(11):2730-40.
    [35]Cai L, Zhang G, Tong X, et al.Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA. Eur J Obstet Gynecol Reprod Biol. 2010, 148(1):73-80.
    [36]Silver DL, Naora H, Liu J,et al. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res. 2004, 15;64(10):3550-8.
    [37]Li X, Stith CM, Burgers PM, et al. PCNA is required for initiation of recombination- associated DNA synthesis by DNA polymerase delta.Mol Cell. 2009 Nov 25;36(4): 704-13.
    [38]Chew LJ, Coley W, Cheng Y, et al. Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. J Neurosci. 2010 Aug 18;30(33):11011-27.
    [39]Yao Y, Xu Q, Kwon MJ, et al. ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages.J Immunol. 2006 Jul 1;177(1):70-6.
    [40]Owens TW, Valentijn AJ, Upton JP, et al. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ. 2009, 16(11):1551-62
    [41]Joos H, Albrecht W, Laufer S, et al. Influence of p38MAPK inhibition on IL-1beta-stimulated human chondrocytes: a microarray approach. Int J Mol Med. 2009 May;23(5):685-93.
    [42]Engels K, Knauer SK, Loibl S, et al. NO signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Res. 2008 Jul 1;68(13):5159-66.
    [43]Korsmeyer SJ. Programmed cell death: Bcl-2. Important Adv Oncol. 1993:19-28.
    [44]Hirai Y, Tanaka N, Furuta R,et al. Somatic mutations of the PTEN/MMAC1 gene associated with frequent chromosomal loss detected using comparative genomic hybridization in endometrial cancer. Gynecol Oncol, 2001,83(1):81-88.
    [45]Nakako S, Hajime T, Masato N. Loss of heterozygosity on 10q 23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: Possible sequence progression from benign endometrial cyst to endometrial carcinoma and clear cell carcinoma of ovary. Cancer Res, 2000,60(18):7052-6.
    [46]Rajcan-separovice, listonp, lefebvrec, et al. assignment of human inhibitor of apoptosis protein (iap) genes XIAP, hiap-1, and hiap-2 to chromosomes xq25 and 11q22-q23 by fluorescence in situ hybridization[J]. genomics,1996,37(3)∶404-406
    [47]Huang y,lum,wu h. antagonizing XIAP-mediated caspase-3 inhibition. achilles' heel of cancers[J]. cancer cell, 2004 , 5(1):1-2.
    [48]Schimmer ad,welsh k,pinilla c,et al. small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity [J]. cancer cell, 2004, 5(1):25-35
    [49]Nikolovska-coleska z, xu l,hu z, et al . discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database [j].J med chem, 2004 , 47(10):2 430-2 440.
    [50]Hu y, Cherton-horvatg, Dragowska v, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo [J]. clin cancer res, 2003, 9(7):2 826-2 836.
    [51]Gu G, Wells JM, Dombkowski D, et al. Global expression analysis of gene regulatory pathways during endocrine pancreatic development.Development. 2004, 131(1):165-79.
    [52]Chang K, Pastan I.Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers.Proc Natl Acad Sci U S A. 1996,93(1):136-40.
    [53]Bera TK, Pastan I.Mesothelin is not required for normal mouse development or reproduction. Mol Cell Biol. 2000, 20(8):2902-6.
    [54]Rump A, Morikawa Y, Tanaka M, et al.Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion.J Biol Chem. 2004 Mar 5;279 (10):9190-8
    [55]Kandeel F, Smith CV, Todorov I, etal.Advances in islet cell biology: from stem cell differentiation to clinical transplantation: conference report.Pancreas. 2003 Oct;27 (3):e63-78.
    [56]Chang MC, Chen CA, Hsieh CY,et al. Mesothelin inhibits paclitaxel-induced apoptosis through the PI3K pathway.Biochem J. 2009, 424(3):449-58.
    [57]Rubin H. Contact interactions between cells that suppress neoplastic development: can they also explain metaStatic dormancy? Adv Cancer Res. 2008; 100:159-202.
    [58]Ponta H, Hofmann M, Herrlich P.Eur J Cancer. Recent advances in the genetics of metastasis.1994;30A(13):1995-2001.
    [59]Mareel M.Bracke M.VanRoy F Cancer metastasis: negative regulation by an invasion-suppressor complex. Cancer Detect Prev 1995,19(5):451-64.
    [60]Nagufuchi A, Shirayoshi Y, Okazaki K. Transformation of cell adhesion properties by exogenously introduced E-cadherindherin cDNA. Nature. 1987, 329(6137):341-3.
    [61]Vergara D, Merlot B, Lucot JP, et al Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010 May 1;291(1):59-66.
    [62]Al Moustafa AE, Kassab A, Darnel A,et al. High-risk HPV/ErbB-2 interaction on E-cadherin/catenin regulation in human carcinogenesis.Curr Pharm Des. 2008;14 (22): 2159-72.
    [63]Bornman DM,Mathew S,Alsrnhe J,et al.Methylation of the E-cadherin gene bladder neoplasia and in normal urothelial epithelium from elderly individuals[J].AM J Pathol,2001,159(3):834-836.
    [64]Piura B, Rabinovich A, Aizenberg N, Wolfson M. Cadherins in malignancies of the female genital tract. Harefuah 2005; 144: 261-265.
    [65]Cheng JC, Klausen C, Leung PC.Hydrogen peroxide mediates EGF-induced down-regulation of E-cadherin expression via p38 MAPK and snail in human ovarian cancer cells. Mol Endocrinol. 2010,24(8):1569-80.
    [66]Koensgen D, Freitag C, Klaman I,et al. Expression and localization of e-cadherin in epithelial ovarian cancer. Anticancer Res. 2010, 30(7):2525-30.
    [67]Piura B, Rabinovich A, Aizenberg N,et al.Cadherins in malignancies of the female genital tract. Harefuah. 2005, 144(4):261-5.
    [68]Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumor progression: is it all in a switch? Cancer Lett. 2002;176:123-128.
    [69]Cavallaro U,Liebner S, Dejana E. Endothelial cadherins and tumor angiogenesis. Exp Cell Res. 2006;312:659-667.
    [70]Marques FR, Fonsechi-Carvasan GA, De Angelo Andrade LA, et al. Immunohistochemical patterns for alpha- and beta-catenin, E- and N-cadherin expression in ovarian epithelial tumors. Gynecol Oncol. 2004, 94(1):16-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700