拟南芥硼高效QTL AtBE1-2的定位和基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼是高等植物的必需矿质营养元素,然而,不同植物或同一植物的不同基因型对低硼胁迫的反应存在显著的差异,开展硼营养高效的生理和遗传机制研究将有助于硼高效机理的认识,以及作物硼营养性状的遗传改良。本文在对含97个株系的拟南芥重组自交系群体的硼效率系数进行初步定位的基础上,针对硼高效QTLAtBE1-2位点开展硼高效的生理基础,QTL精细定位及其低硼胁迫下的基因表达等方面的研究,主要获得了以下主要结果:
     1.硼高效QTL的定位
     1.1对拟南芥重组自交系群体硼效率的表型数据和分子标记数据进行优化处理后,用不同的QTL分析软件对同一套数据进行对比分析,确保QTL定位结果的准确性。对重组自交系群体的3个性状(低硼条件下籽粒产量-SYLB,正常硼条件下籽粒产量-SYHB和硼效率系数硼-BEC)进行相关性分析、QTL定位、上位性分析以及条件QTL分析后,发现SYLB和BEC之间存在紧密的遗传连锁关系,SYHB则相对独立。
     1.2根据初步定位的4个硼高效QTL位点,对重组自交系群体各株系的遗传背景和硼效率系数进行选择,获得在QTL AtBE1-2区域内标记的基因型存在差异,其它3个QTLs区域内标记的基因型相同,同时硼效率显著差异的两个株系:硼高效株系1938和硼低效株系1961。利用1961和1938这2个株系作为亲本构建F_2分离群体,在目标QTL AtBE1-2位点检测到控制低硼条件下籽粒产量的一个QTL,从而证实硼高效QTL AtBE1-2位点的可靠性。
     1.3用目标QTL AtBE1-2峰值附近的两个SSLP标记ATPASE和nga692在1200个F_2单株中筛选出54个重组单株,对其中的26个不同类型重组单株的F_(2:3)家系的SYLB,SYHB,BEC进行考察,结果显示,目标QTL AtBE1-2显著影响重组单株的F_(2:3)家系的BEC,进一步证实了该QTL的表型效应。
     2.目标OTL AtBE1-2的生理功能
     比较重组自交系群体的亲本(Ler和Col-4)和F_2分离群体的亲本(1938和1961)在5个低硼胁迫浓度和3个生长发育时期不同组织部位的硼浓度,硼累积量等性状的差异,及其与硼高效QTLs关系,推测目标QTL AtBE1-2的主要功能是促进硼的高效利用。
     3.硼高效候选基因的确定
     分析1938与Col-4在长期和短期低硼胁迫处理下的基因表达谱,并结合差异表达基因在染色体上的位置,发现36个基因在基因型之间和受低硼诱导显著差异表达,且位于目标QTL区域内。其中16个基因与长期胁迫处理下基因型间4倍以上差异表达基因,或各自材料低硼胁迫处理下4倍以上差异表达基因相重叠,成为目标QTLAtBE1-2的候选基因。
Boron (B) is an essential micronutrient for higher plants, but the adaptability of plants to B deficiency varied widely between and within species. The studies on physiological and genetic mechanisms of B will benefit the understanding of B efficiency and genetic improvement of B nutrition trait in crops. Based on primary quantitative trait loci (QTL) analysis of B efficiency coefficient (BEC) in a Arabidopsis thaliana Ler×Col recombinant inbred line (RIL) population containing 97 lines, this study focused on the QTL mapping, and physiological function and gene differential expression under B deprivation aiming at the target QTL AtBE1-2, and the main results were shown as following:
     1. QTL Mapping for B efficiency
     1.1 By properly optimizing the phenotypic data and molecular markers data in the RIL population, the QTL analysis for B efficiency was conducted by using 3 different QTL mapping softwares, and then final QTLs loci of B efficiency were determined. Based on the correlation analysis, unconditional QTL mapping, conditional QTL mapping and epistatic interactions analysis among 3 traits (seed yield under low B condition-SYLB, seed yield under high B condition-SYHB and B efficiency coefficient-BEC) of RIL population, the results showed that there was a tightly genetic linkage relationship between SYLB and BEC, while SYHB was independent on SYLB and BEC.
     1.2 Based on the information of 4 QTLs for BEC detected in the RIL population, genotypic and BEC phenotypic selections were conducted for the each RIL line. 1938 (a B-efficient line) and 1961 (a B-inefficient line) were chosen out, which showed the genotype difference in the target region of AtBE1-2, identical genetic makeup in the region of the other three QTLs whilst their largest difference in BEC among the 97 RILs. With a F_2 segregation population derived from a cross between the two lines, a QTL controlling seed yield under low B was founded to co-locate at the region of AtBE1-2, it confirmed the authenticity of the target QTL AtBEl-2 for B efficiency.
     1.3 54 recombinants were screened from 1200 individuals in a F_2 population by two flanking markers (ATPASE and nga692) of target QTL AtBE1-2. And then SYLB, SYHB and BEC were investigated in 26 F_(2:3) families derived from 26 out of 54 recombinants, results showed that the target QTL AtBE1-2 had significantly influence on the value of BEC. It validated the phenotypic effect of target QTL AtBE1-2.
     2. Physiological mechanism of QTL AtBE1-2 for B efficiency
     Analyzing the differences in B-related traits (B concentration, B accumulation) among four lines, her and Col-4 (parents of the RIL population), 1938 and 1961(parents of the F_2 population) at 3 developmental stages under 5 B levels, and compared with the differences with the corresponding QTLs possessed in each genotype, we deduced that the main function of QTL AtBEl-2 is to enhance the utilization of B in the silique when plants sufferred from B deficiency.
     3. Candidate genes at the region of B efficiency QTL AtBE1-2
     Based on gene expression profiles of 1938 and Col-4 in short-and long-term B deprivation, together with the chromosome position of differential expressed genes, 36 significantly differential expression genes were located in the target QTL AtBE1-2 region. 16 of them showing 4-fold changes between the two genotypes or in any one genotype under low B deprivatioin were considered as candidate gene of QTL AtBE1-2. It laid a fine foundation for next gene cloning and function validation.
引文
1.曹享云,刘武定,皮美美.对低硼反应不同的油菜品种根系活力和酶活性的筹异[J].中国油料,1997,19(2):19-21
    2.曹享云.对低硼反应不同的油菜基因型根系生理特性的研究[D].[博士学位论文].武汉:华中农业大学,1996
    3.杜昌文,王运华,徐芳森,王火焰.不同硼效率甘蓝型油菜品种中硼的形态及其相互关系[J].植物营养与肥料学报,2002,8(1):105-109
    4.杜昌文.不同甘蓝型油菜品种硼效率差异生理机制及其遗传关系研究[D].[硕士学位论文].武汉:华中农业大学图书馆,2000
    5.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社,2000,pp64-66
    6.封功能,李东霞,周建民,何颖徐辰武,徐明良.水稻釉粳交DH群体产量相关性状的QTL定位和上位性分析[J].扬州大学学报(农业与生命科学版),2004,25:5-10
    7.耿明建.不同硼效率棉花品种对低硼反应差异及其机理研究[D].[博士学位论文].武汉:华中农业大学图书馆,2003
    8.郭晶心,陈忠正,刘耀光.水稻抽穗期数量性状基因的定位及遗传效应分析[J].分子植物育种,2004,2(6):788-794
    9.郭再华.耐低磷水稻筛选、分类及其生理机制研究[D].[博士学位论文].武汉:华中农业大学,2005
    10.韩燕来.拟南芥硼营养高效的生理基础和遗传基础研究[D].[博士学位论文].武汉:华中农业大学图书馆,2003
    11.兰进好,褚栋.玉米株高和穗位高遗传基础的QTL剖析[J].遗传,2005,27(6):925-934.
    12.练兴明.水稻氮胁迫基因表达谱研究及耐低氮特性数量性状分析[D].[博士学何论文].武汉:华中农业大学图书馆,2005
    13.刘鹏.钼、硼对大豆产量和品质影响的营养和生理机制研究[D].[博士学位论文].杭州:浙江大学图书馆,2000
    14.刘秀艳,谢正苗,陈惠哲.遗传基因组学(Genetical genomics)的研究进展[J].生物化学与生物物理进展,2006,33(11):1030-1034
    15.梅德圣,李云昌,王汉中.作物产量性状QTL定位的研究现状及应用前景[J].中国农学通报,2003,19:83-88
    16.年夫照.甘蓝型油菜的硼高效生理基础研究[D].[博士学位论文].武汉:华中农业大学图书馆,2006
    17.欧阳由男,张秋英,张克勤,禹盛苗,庄杰云,金千瑜,程式华.水稻幼苗中胚轴长度QTL及与Fe_(2+)浓度的互作效应的遗传分析[J].遗传学报,2005,32(7):712-718
    18.全国土壤普查办公室.中国土壤普查数据.北京,中国农业出版社,1996,pp20-21
    19.全国微肥科研协作组.几种主要农作物锌、硼肥施用技术规范的研究,Ⅲ.棉花、油菜硼肥施用技术规范的研究[J].土壤肥料,1989,6:1-3
    20.阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22
    21.沈康,沈振国,徐汉卿.油菜硼素营养与结实性的研究[J].作物学报,1993,(19)6:539-544
    22.沈振,张秀省,王震宇.硼素营养对油菜花粉萌发的影响[J].中国农业科学,1994,27(1):51-56
    23.石磊.甘蓝型油菜硼高效的生理基础及硼高效基因的定位[D].[博士学位论文].武汉:华中农业大学图书馆,2004
    24.司马杨虎,李斌,徐海明,陈大霞,孙德斌,赵爱春,鲁成,向仲怀.家蚕茧质性状的QTL定位研究[J].遗传学报,2005,32(6):625-632
    25.宋世文,曹享云,耿明建,刘武定,皮美美.对低硼反应不同的油菜品种根系生长特性研究[J].植物营养与肥料学报,2000,6:202-206
    26.孙新立.水稻抗白叶枯Xa4基因及其等位基因的克隆以及相关基因[D].博士学位论文,武汉,华中农业大学
    27.万向元,刘世家,王春明,江玲,翟虎渠,吉村醇,万建民.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,31(11):1275-1283
    28.王火焰.不同硼效率甘蓝型油菜品种硼钙相互作用机理的研究[D].[博士学位论文].武汉:华中农业大学图书馆,1999
    29.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的cDNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29(8):741-746
    30.王丽侠.拟南芥与油菜比较基因组学的初步研究与应用[D].[硕士学位论文].武汉:华中农业大学图书馆,2001
    31.王运华,黄竹根,张晓钟.硼肥[M].北京:化学工业出版社,1988,pp73-74
    32.王运华,兰莲芳.甘蓝型油菜品种对低硼敏感性差异的研究(Ⅰ,Ⅱ,Ⅲ)[J].华中农业大学学报,1995,21:71-84
    33.魏文学,王运华.缺硼条件下向日葵叶片叶绿体及线粒体解剖结构的观察[J].华中农业大学学报,1 989,8(4):361-363
    34.邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述[J].应用生态学报,2000,11:785-790
    35.熊汉峰,刘武定,皮美美.硼氮及其配合对油菜吸收氨及某些酶活性的影响[J].华中农业大学学报,1994,13:46-50
    36.徐芳森.甘蓝型油菜硼营养高效的生理机制和遗传基础研究[D].[博士学位论文].武汉:华中农业大学图书馆,2000
    37.薛建明,杨玉爱.不同油菜基因型对低硼反应的差异[J].浙江农业大学学报,1994,20(4): 422-426
    38.严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997
    39.杨晓冬,孙素琴,李一勤.硼缺乏导致花粉管细胞壁多糖分布的改变[J].植物学报,1999,41(11):1169-1176
    40.杨玉华,王运华,吴礼树,杜昌文.植物硼效率差异的研究进展[J].华中农业大学学报,2002,21:95-100
    41.杨玉华.甘蓝型油菜品种细胞壁特性与硼效率关系研究[D].[博士学位论文].武汉:华中农业大学图书馆,2000
    42.喻敏,褚海燕,吴礼树,王运华.甘蓝型油菜不同硼利用效率基因型对硼的吸收、分配的影响[J].中国油料作物报,1999,21(1):49-52
    43.曾长英,徐芳森,孟金陵,王运华,胡承孝。从QTLs到QTGs的路还有多远[J]?遗传2006.28(9):1191-1198
    44.张福锁,张亚科.植物矿质营养遗传性状的改良与利用[J].世界农业,1994,11:32-34
    45.张丽霞,刘丕庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位[J].分子植物育种,2004,2(3):743-746.
    46.张亚丽.水稻氮效率基因型差异评价与氮高效机理研究.[博士学位论文].南京:南京农业大学图书馆,2006
    47.赵竹青.硼与生长素,乙烯及其它激素相互作用的研究[D].[华中农业大学博士论文].武汉:华中农业大学图书馆,1998
    48.周晓峰,王运华.硼对棉花叶柄解剖结构的影响[J].华中农业大学学报,1993,12(2):122-125
    49.周晓峰,王运华.硼对棉花叶柄解剖结构的影响[J].华中农业大学学报,1993,12(2):122-125
    50.朱端卫,皮美美,刘武定.硼在土壤中的吸附解吸及其对植物吸收硼的影响[J].土壤学报,1998,35(1):70-74
    51. Ali A H N, Jarvis B C. Effects of auxin and boron on nucleic acid and cell division during adventitious root regeneration [J]. New Phytol, 1988, 108:383-391
    52. Alonso-Blanco C, Bentsink L, Hanhart C J, Blankestijn-de Vries H, Koornneef M. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana [J]. Genetics, 2003,164(2):711-729
    53. Alonso-Blanco C, Blankestijn-de Vries H, Hanhart C J, Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 1999, 96:4710-4717
    54. Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater J M, Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis [J]. Plant Physiol, 2005, 139(3):1304-12
    55. Alonso-BIanco C, Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics [J]. Trends Plant Sci, 2000, 5:22-29
    56. Aukerman M J, Hirschfeld M, Wester L, Weaver M, Clack T. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light signaling [J]. Plant cell, 1997, 9:1317-1326
    57. Beavis W D ,Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F_4 maize [J]. Crop Sci, 1994, 34: 882-896
    58. Bellaloui N, Brown P H, Dandekar A M. Manipulation of in Vivo sorbitol production alters boron uptake and transport in tobacco [J]. Plant Physiol, 1999, 119(2):735-741
    59. Bentsink L, Yuan K, Koornneef M, Vreugdenhil D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation [J]. Theor Appl Genet, 2003, 106(7): 1234-1243
    60. Bernacchi D, BeckBunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S. Advance backcross QTL analysis of tomato. II. Evaluation of near isogenic lines carrying single donor introgressions for desirable wile QTL alleles derived from Lycopersicon hirsutum and L. pimpinellifolium [J]. Theor Appl Genet, 1998, 97:170-180
    61. Blarney F P C, Vermuelen W J, Chapman J. Inheritance of boron status in sunflower [J]. Crop Sci, 1984, 24:43-46
    62. Bolaflos L, Cebrian A, Redondo-Nieto M, Rivilla R, Bonilla I. Lectin-like glycoprotein PsNLEC-1 is not correctly glycosylated and targeted in boron-deficient pea nodules [J]. Mol Plant-Microbe Interact, 2001, 14:663-670
    63. Bolanos L, Lukaszewski K, Bonilla I, Blevins D. Why boron [J]? Plant Physiol Biochem, 2004, 42(11):907-912
    64. Borevitz J O, Chory J. Genomics tools for QTL analysis and gene discovery [J]. Curr Opin Plant Biol, 2004, 7(2): 132-136
    65. Borevitz J O, Maloof J N, Lutes J, Dabi T, Redfern J. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana [J]. Genetics, 2002,160:683-696
    66. Bray-ward P, Menninger J, Lieman J, Desai T, Mokady N, Banks A, Ward D C. Integration of the cytogenctic, genetic and physical maps of the human genome by FISH mapping of CEPH YAC clones [J]. Genomics, 1995, 32:1-14
    67. Brem R B, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast [J]. Science, 2002, 296(5568):752-755
    68. Brown P H, Bellaloui N, Hu H N. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency [J]. Plant Physiol, 1999, 119:17-20
    69. Brown P H, Bellaloui N, Wimmer M A, Bassil E S, Ruiz J, Hu H, Pfeffer H, Dannel F, Romheld V. Boron in plant biology [J]. Plant Biol, 2002, 4: 205-223
    70. Brown P H, Hu H. Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol rich species [J]. Ann Bot, 1996, 77:497-505
    71. Brown P H, Shelp B J. Boron mobility in plants [J]. Plant and Soil, 1997, 193:8:5-101
    72. Buell C R, Somerville S C. Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv campestris [J]. Plant J, 1997, 12(1):21-29
    73. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher M T, Wiltshire T, Su A 1, Vellenga E, Wang J, Manly K F, Lu L, Chesler E J, Alberts R, Jansen R C, Williams R W, Cooke M P, de Haan G. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'[J]. Nat Genet, 2005, 37(3) 225-232
    74. Cakmak I, Kurz H, Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability on boron deficient leaves, but not in phosphorus-deficient leaves of sunflower [J]. Plant Physiol, 1995, 95:11-18
    75. Carlborg S, Haley C S. Epistasis: too often neglected in. complex trait studies; [J]? Nature Rev Genet, 2004, 5:618-625
    76. Casacuberta E, Puigdomenech P, Monfort A. Distribution of microsatellites in relation to coding sequences within the Arabidopsis thaliana genome [J]. Plant Sci, 2000, 157:97-104
    77. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler B L, Hughson F M. Structural identification of a bacterial quorum-sensing signal containing boron [J]. Nature, 2002, 415:545-549
    78. Chow T Y. A fine physical map of the Oryza sativa chromosome 5 [J]. Mol Genet Genomics, 2005, 274:337-345
    79. Clark R B. Plant response tomineral element toxicity and deficiency. In: Christiansen M N, Lewis John Wiley C F and Sons eds. Breeding Plants for Less Favorable Environments [M]. New York, 1982, pp137-141
    80. Coulson A, Sulstion J, Brenner S, Kam J. Toward a physical map of the nematode Caenorhabditis elegans [J]. Proc Nad Acad Sci USA, 1986, 83:7821-782
    81. Cuppen E. Haplotype-based genetics in mice and rats [J]. Trends Genet, 2005, 21 (6):318-322
    82. Dannel F, Pfeffer H, Romheld V. Update on boron in higher plants-uptake, primary translocation and compartmentation [J]. Plant Biol, 2002, 4:193-204
    83. Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping [J]. Genetics, 1995, 141(3):1199-1207
    84. Darvasi A. Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval [J]. Mamm Genome, 1997, 8(3):163-167
    85. Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum [J]. Mol Plant Microbe Interact, 1998,1(7):659-667
    86. Doganlar S, Frary A, Tanksley S D. The genetic basis of seed-weight variation: tomato as a model system [J]. TheorAppl Genet, 2000,100:1267-1273
    87. Dordas C, Brown P H.Permeability of boric acid across lipid bilayers and factors affecting it [J]. J Memb Biol, 2000, 175:95-105
    88. Dugger W M. Boron on plant metabolism. In: Lauchli A, Bieleski R L eds. Encyclopedia of plant physiology [M]. New series, Berlin, Springer-Verlag, 1983, 14:626-650
    89. El-Din El-Assal S, Alonso-Blanco C, Peeters A J, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2 [J]. Nat Genet, 2001, 29(4):435-40
    90. Findeklee P, Goldbach H E. Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots [J]. Bot Acta, 1996, 109:463-465
    91. Fitz Gerald J N, Lehti-Shiu M D, Ingram P A, Deak K I, Biesiada T, Malamy J E. Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity [J]. Genetics, 2006, 172:485-498
    92. Garcia-Gonzales M, Mateo P, Bonilla 1. Boron requirement for envelope structure and function in Anabaena PCC7119 heterocysts [J]. J Exp Bot, 1991,42:925-929
    93. Goldbach H E, Wimmer M A, Findeklee P. Boron-How can the critical level be defined [J]? J Plant Nutr Soil Sci, 2000, 163:115-121
    94. Greenwood K. Boron. In: Comprehensive inorganic Chemistry (J.C.Bailan editor-) [M]. Pergamon Press, Oxford, 1973, pp665-991
    95. Harada H, Leigh R A. Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana [J]. J Exp Bot, 2006, 57(4):953-960
    96. Haubold B, Kroymann J, Ratzka A, Mitchell-Olds T, Wiehe T. Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana [J]. Genetics, 2002, 161(3):1269-1278
    97. Heidel A J, Clauss M J, Kroymann J, Savolainen O, Mitchell-Olds T. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype [J]. Genetics, 2006, 173(3): 1629-1636
    98. Henzler T, Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals [J]. Plant Cell Environ, 2004, 27(9): 1184-1195
    99. Hernandez-Valladares M, Naessens J, Gibson J P, Musoke A J, Nagda S, Rihet P, Ole-MoiYoi O K., Iraqi F A. Confirmation and dissection of QTL controlling resistance to malaria in mice [J]. Mamm Genome, 2004, 15(5):390-398
    100. Herrmann D, Boiler B, Studer B, Widmer F, Kolliker R. QTL analysis of seed yield components in red clover (Trifolium pretense L.) [J]. Theor Appl Genet, 2006, 112:536-545
    101. Hirsch A M, Pengelly W L, Torrey J G. Endogenous IAA levels in boron-deficient and control root tips of sunflower [J]. Bot Gaz, 1982,143:15-19
    102. Hirsch A M, Torrey J G. Ultra structural changes in sunflower root cell in relation to boron deficiency and added auxin [J]. Can J Bot, 1980, 58:856-866
    103. Hitzemann R, Malmanger B, Cooper S, Coulombe S, Reed C, Demarest K, Koyner J, Cipp L, Flint J, Talbot C, Rademacher B, Buck K, McCaughran J Jr. Multiple cross mapping (MCM) markedly improves the localization of a QTL for ethanol-induced activation [J]. Genes Brain Behav, 2002, 1(4):214-222
    104. Hitzemann R, Malmanger B, Reed C, Lawler M, Hitzemann B, Coulombe S, Buck K, Rademacher B, Walter N, Polyakov Y, Sikela J, Gensler B, Burgers S, Williams R W, Manly K, Flint J, Talbot C. A strategy for the integration of QTL, gene expression, and sequence analyses [J]. Mamm Genome, 2003, 14(11):733-747
    105. Holub E B. The arms race is ancient history in Arabidopsis, the wildflower [J]. Nat Rev Genet, 2001, 2(7):516-27
    106. Hu H, Brown P H, Labavitch J M. Species variability in boron requirement is correlated with cell wall pectin [J]. JExp Bot, 1996, 47:227-232
    107. Hu H, Brown P H. Localization of boron in cell walls of squash and tobacco and its associaton with pectin, Evidence for a structural role of boron in the cell wall [J]. Plant Physiol, 1994, 105:681-689
    108. Huang L, Bell R W, Dell B. Boron supply into wheat (Triticum aestivum L. cv. Wiigoyne) ears whilst still enclosed within leaf sheaths [J]. J Exp Bot, 2001, 52:1731-1738
    109. Iwai H, Hokura A, Oishi M, Chida H, Ishii T, Sakai S, Satoh S. The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization [J]. Proc Natl Acad Sci USA, 2006, 103, 16592-16:597
    110. Iwai H, Masaoka N, Ishii T, Satoh S. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem [J]. Proc Natl Acad Sci USA, 2002, 99:16319-16324
    111. Jander G, Norris S R, Rounsley S D. Arabidopsis map-based cloning in the post genome era [J]. Plant Physiol, 2002, 120:440-450
    112. Jansen R C, Nap J P. Genetical genomics: the added value from segregation [J]. Trends Genet, 2001, 17(7): 388-391
    113. Jansen R C. Interval mapping of multiple quantitative trait loci [J]. Genetics, 1993, 135:205-211
    114. Juenger T E, Sen S, Stowe K A, Simms E L. Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana [J]. Genetica, 2005, 123(1-2):87-105
    115. Juenger T, Perez-Perez J M, Bernal S, Micol J L. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture [J]. Evol Dev,2005,7(3):259-271
    116. Juenger T, Purugganan M, Mackay T F. Quantitative trait loci for floral morphology in Arabidopsis thaliana [J]. Genetics, 2000,156(3): 1379-1392
    117. Keurentjes J J, Fu J, de Vos C H, Lommen A, Hall R D, Bino R J, van der Plas L H, Jansen R C, Vreugdenhil D, Koornneef M. The genetics of plant metabolism. Nat Genet, 2005, 38(7):842-849
    118. Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonan II are cross-1 inked by borate-diol ester bonds in higher plant cell walls [J]. Plant Physiol, 1996,110:1017-1020
    119. Kobayashi M, Mutoh T, Matoh T. Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply [J]. J Exp Bot, 2004, 55:1441-1443
    120. Kobayashi M, Naksgawa H, Asaka T. Borate-Rhamnogalacturonan II bonding reinforced by Ca~(2+) retains pectic polysaccharides in highar-plant yell wall [J]. Plant Physiol, 1999, 119:199-203
    121. Kobayashi Y, Koyama H. QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana [J]. Plant Cell Physiol, 2002, 43(12):1526-1533
    122. Koornneef M, Alonso-Blanco C, Vreugdenhi D. Naturally occurring genetic variation in Arabidopsis thaliana [i].Ann Rev Plant Biol, 2004, 55:141-172
    123. Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus [J]. Proc Natl Acad Sci USA, 2003, 100(Suppl 2): 14587-14592
    124. Li L, Strahwald J, Hofferbert H R, Lubeck J, Tacke E, Junghans H, Wunder J, Gebhardt C. DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones [J]. Genetics, 2005, 170:813-821
    125. Loomis W D, Durst R W. Chemistry and biology of boron [J]. Biofactors, 1992, 3(4):229-239
    126. Loudet O, Chaillou S, Krapp A, Daniel-Vedele F. Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana [J]. Genetics, 2003, 163(2):711-722
    127. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis [J]. Plant Physiol, 2003, 131(1):345-358
    128. Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F. Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family [J]. Theor Appl Genet, 2005, 110:742-753
    129. Lukaszewski K M, Blevins D G. Root growth inhibltioiain boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism [J]. Plant physiol, 1996, 112:1135-1140
    130. Luo Z W, Wu C, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes [J]. Genetics, 2002, 161 (2):915-929.
    131. Mackay T F. The genetic architecture of quantitative traits: lessons from Drosophila [J]. Curr Opin Genet Dev, 2004,14(3):253-257
    132. Malmberg R L, Held S, Waits A, Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse [J]. Genetics, 2005, 171:2013-2027
    133. Marschner H. Mineral Nutrition of Higher Plants (2nd ed) [M]. Academic Press, London, 1995, pp379-392
    134. Marsh R P. Comparative-study of the calcium-boron metaboiism of representative-dicots and monocots [J]. Soil Sci, 1942, 53:75-78
    135. Matoh T, Ishigaki K, Ohno K Azuma J. Isolation and characterization of a boron-polysaccharide complex from radish roots [J]. Plant cell Physiol, 1993, 34(4):639-642
    136. Matoh T, Kawaguchi S, Kobayashi M. Ubiquity of a borate-rhamnogalaacuronan- II complex in the cell walls of higher plants [J]. Plant Cell Physiol, 1996, 37:636-640
    137. Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, O'Neill M A. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants [J]. Plant Physiol, 2004, 134(1):339-351
    138. Mauricio R. Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana [J]. Genetica, 2005, 123(1-2):75-85
    139. Meinke DW, Cherry J M, Dean C. Arabidopsis thaliana: A model plant for genome analysis [J]. Science, 1998,282:662-682
    140. Michaels S D, He Y, Scortecci K C, Amasino R M. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis [J].Proc Natl Acad Sci USA,2003,100(17):10102-10107
    141. Miller M B, BasslerB L. Quorum sensing in bacteria [J].Ann Rev Microbiol, 2001, 55:165-199
    142. Miwa K, Takan J, Fujiwara T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana [J]. Plant J, 2006,46:1084-1091
    143. Monforte A J , Friedman E, Zamir D, Tanksley S D. Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization [J]. Theor Appl Genet, 2001,102(4):572-590.
    144. Mouille G, Witucka-Wall H, Bruyant M P, Loudet O, Pelletier S, Rihouey C, Lercuxel O, Lerouge P, Hofte H, Pauly M. Quantitative trait loci analysis of primary cell wall composition in Arabidopsis [J]. Plant Physiol, 2006,141(3):1035-1044
    145. Muhling K H, Wimmer M, Goldbach A. Poplastic and membrane-associated Ca~(2+) in leaves and roots as affected by boron deficiency [J]. Plant Physiol, 1998,102:179-184.
    146. Nadeau J H, Frankel W N. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs [J]. Nat Genet, 2000, 25(4):381-384
    147. Nam H G, Giraudat J, Den Boer B, Moonan F, Loos W, Hauge B M, Goodman H M. Restriction fragment length polymorphism linkage map of Arabidopsis thaliana [J]. Plant Cell, 1989, 1: 699-705
    148. Noguchi K, Ishii T, Matsunaga T, Kakegawa K, Hayashi H, Fujiwara T. Biochemical properties of the cell wall in the Arabidopsis mutant bor1-1 in relation to boron nutrition [J]. J Plant Nutri Soil, 2003, 166(2): 175-178
    149. Noguchi K, Yasumori M, Imai T. bor l-1, an Arabidopsis thaliana mutant that requires a high level of boron [J]. Plant Physiol, 1997, 115:901-906
    150. O'Neill M A, Eberhard S, Albersheim P, Darvill A G Requirement of borate cross-linking of cell wall rhamnogalaacuronan- II for Arabidopsis growth [J]. Science, 2001, 294:849-849
    151. O'Neill M A, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill A G, Albersheim P. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester [J]. J Biol Chemistry, 1996, 271(37): 22923-22930
    152. Park M, Li Q, Shcheynikov N, Zeng W Z, Muallem S. NaCl is a ubiquitous electrogenic Na~+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation [J]. Molecular Cell, 2004, 16(3):331-341
    153. Parr A J, Loughman B C. Boron and membrane function in plants. In: Robb D A, Pierpoint W S eds. Mentals and micronutrients, uptake and utilization by plants [M]. New York, Academic Press, 1983, pp87-107
    154. Peters J L, Cnops G, Neyt P. An AFLP-based genome-wide mapping strategy [J]. Annu Rev Genet, 1999, 33:479-532
    155. Peters J L, Constandt H, Neyt P. A physical amplified fragment-length polymorphism map of Arabidopsis [J]. Plant Physiol, 2001, 127:1579-1589
    156. Pilbeam D J, Kirkby E A. The physiological role of boron to plants [J]. J Plant Nutr, 1983, 6:563-582
    157. Pillinger J M, Cooper J A, Ridge I. Role of phenolic compounds in the antialgal activity of barly straw [J]. J Chem Ecol, 1994, 20:1557-1569
    158. Pollard A S, Parr P A J, Loughman B C. Boron in relation to membrane function in higher plants [J].J Exp Bot, 1977,28:831-841
    159. Pomp D, Allan M F, Wesolowski S R. Quantitative genomics: exploring the genetic architecture of complex trait predispositionl [J]. J Anim Sci, 2004, 82:300-312
    160. Quesada V, Garcia-Martinez S, Piqueras P, Ponce M R, Micol J L. Genetic architecture of NaCl tolerance in Arabidopsis [J]. Plant Physiol, 2002,130(2):951-63
    161. Rasmuson M. The genotype-phenotype link [J]. Hereditas, 2002, 136:1-6
    162. Rauh L, Basten C, Buckler S. Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana [J]. Theor Appl Genet, 2002, 104(5):743-750
    163. Redgwell R J, Selvendran R R. Structural features of cell wall polysaccharides of onion Allium cepa [J]. Carbohydr Res, 1986, 157:183-199
    164. Redondo-Nieto M, Wilmot A, El-Hamdaoui A, Bonilla I, Bolanos L. Relationship between boron and calcium in the N2-fixing legume-rhizobia symbiosis [J]. Plant Cell Env, 2003, 26:1905-1915.
    165. Rerkasem B, Jamjod S. Genotypic variation in plant response to low boron and implications for plant breeding [J]. Plant and Soil, 1997, 193:169-180
    166. Reuhs B L, Glenn J, Stephens S B, Kim J S, Christie D B, Glushka J G, Zablackis E, Albersheim P, Darvill A G, O'Neill M A. L-Galactose replaces L-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the L-fucose-deficient mur1 Arabidopsis mutant [J]. Planta, 2004, 219(1): 147-157.
    167. Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana [J]. Plant Cell Environ, 2006, 29(1):115-125
    168. Ricardo A, Carrigan M A, Olcott A N, Benner S A. Borate minerals stabilize ribose [J]. Science, 2004, 303(5655):196-196
    169. Roessner U, Patterson J H, Forbes M G, Fincher G B, Bacic A. An investigation of boron toxicity in barley using metabolomics [J]. Plant Physiol, 2006, 142:1087-1101
    170. Schon M K, Novacky A, Blevins D G. Boron induces hyperpolarization of sunflower root cell membranes and increases membrane permeability to K~+ [J]. Plant Physiol, 1990, 93: 566-571
    171. Shelp B J, Marentes E, Kitheka A M, Vivekanandan P. Boron mobility in plants [J]. Plant Physiol, 1995,94:356-361
    172. Shorrocks V M. The occurrence and correction of boron deficiency [J]. Plant and Soil, 1997. 193: 121-148
    173. Skok J, Mcllrath W J. Distribution of boron in cells of dicotyledonous plants in relation to growth [J]. Plant Physiol, 1958, 33:428-431
    174. Smith E. The rolle of bnron in plant metabolism. 1. Boron in relation to the absorption and solubility of calcium [J]. Aust J Exp Biol Med Sci, 1944, 22:257-263
    175. Stumpf M P. Haplotype diversity and the block structure of linkage disequilibrium [J]. Trends Genet, 2002, 18(5):226-228
    176. Swarup K, Alonso-Blanco C, Lynn J R, Michaels S D, Amasino R M, Koornneef M, Millar A J. Natural allelic variation identifies new genes in the Arabidopsis circadian system [J]. Plant J, 1999,20(1):67-77
    177. Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability [J]. Proc Natl Acad Sci USA,2005, 102:12276-12281
    178. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T. Arabidopsis boron transporter for xylem loading [J]. Mature, 2002, 420:337-340
    179. Takano J, Wada M, Ludewig U, Schaaf G, Nicolaus von Wiren, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation [J]. Plant Cell, 2006, 18:1498-1509
    180. Tanada T. Localization of boron in membranes [J]. J Plant Nutr, 1983, 6:743-749
    181. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000,408(6814):796-815
    182. Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci [J]. Theor Appl Genet, 1997, 95(5-6): 1005-1011.
    183. Ungerer M C, Halldorsdottir S S, Modliszewski J L, Mackay T F, Purugganan M D. Quantitative trait loci for inflorescence development in Arabidopsis thaliana [J]. Genetics, 2002, 160(3):1133-1151
    184. Valdar W S, Flint J, Mott R. QTL fine-mapping with recombinant-inbred heterogeneous stocks and in vitro heterogeneous stocks [J]. Mamm Genome, 2003,14(12):830-838
    185. Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments 1. Grain yield and yield components [J]. Crop Sci, 1996, 36(5):1310-1319
    186. Verstraeten S V, Lanoue L, Keen C L, Oteiza P I. Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties [J]. Arch Biochem Biophy, 2005, 438(1):103-110
    187. Vink J M, Boomsma D I. Gene finding strategies [J]. Biol Psychol, 2002, 61(1-2):53-71.
    188. Vos P, Hogers R, Bleeker M, Reijans M, de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23(21): 4407-4414
    189. Wang D, Zhu J, Li Z, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    190. Wang S., Basten C.J. & Zeng Z. Windows QTL Cartographer, Version 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2004
    191. Werner J D, Borevitz J O, Uhlenhaut N H, Ecker J R, Chory J, Weigel D. FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions [J]. Genetics, 2005a, 170(3): 1197-207
    192. Werner J D, Borevitz J O, Warthmann N, Trainer G T, Ecker J R, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation [J]. Proc Natl Acad Sci USA, 2005b, 102(7):2460-2465
    193. Wimmer M A, Bassil E S, Brown P H, Lauchli A. Boron response in wheat is genotype dependent and related to boron uptake, translocation, allocation, plant phenological development and growth rate [J]. Funct Plant Biol, 2005, 32:507-515
    194. Wimmer M A, Goldbach H E. Influence of Ca~(2+) and pH on the stability of different boron fractions in intact roots of Viciafaba L [J]. Plant Biol, 1999, 1:632-637
    195. Wolyn D J, Borevitz J O, Loudet O, Schwartz C, Maloof J, Ecker J R, Berry C C, Chory J. Light-response quantitative trait loci identified with composite interval and extreme array mapping in Arabidopsis thaliana [J]. Genetics, 2004, 167(2):907-917
    196. Yaguchi H, Togawa K, Moritani M, Itakura M. Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL [J]. Genomics, 2005, 85: 591-599
    197. Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FTl locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line [J]. Theor Appl Genet, 2005,110(4):634-639
    198. Yamanouchi M. The role of boron in higher plants. I. The relations between boron and calcium or the pectic substance in plants [J]. J Sci Soil Manure Jan, 1971,42:207-231
    199. Yamauchi T, Hara T, Sonoda Y. Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall [J]. Plant Cell Physiol, 1986, 27:729-732
    200. Yanovsky M J, Casal J J, Luppi J P. The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissect two branches of phytochrome a signal transduction that correspond to very-low-fluence and high-irradiance responses [J]. Plant J, 1997, 12(3):659-667
    201. Yi N, Xu S, Allison D B. Bayesian model choice and search strategies for mapping interacting quantitative trait loci [J]. Genetics, 2003, 165:867-883
    202. Yu Q, Baluska F, Jasper F, Menzel D, Goldbach H E. Short-term boron deprivation enhances levels of cytoskeletal proteins in maize, but not zucchini, root apices [J]. Physiologia Plantarum, 2003, 117(2): 270-278 '
    203. Yu Q, Hlavacka A, Matoh T, Volkmann D, Menzel D, Goldbach H E, Baluska F. Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices [J]. Plant Physiol, 2002,130(1):415-421
    204. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136: 1457-1468
    205. Zhang L, Byrne P F, Pilon-Smits E A. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana [J]. New Phytol, 2006, 170(1 ):33-42
    206. Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Oil Content in a European -Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions [J]. Crop Sci, 2005,45:51-59
    207. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics [J]. Genetics, 1995,141: 1633-1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700