鲢鳙长江野生群体和养殖群体微卫星的遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲢(Hypophthalmichthys molitrix C.et V)和鳙(Aristichthys nobilis Richardson)是我国重要的淡水经济鱼类,广泛分布于我国黑龙江、长江、和珠江流域,就养殖性能而言长江水系的两种鱼最好。近年来,由于长江受到日益增多的污染和大规模的水利建设等剧烈人类活动的影响,从而使长江水系鲢、鳙野生群体的种质资源受到严重干扰。在现有的养殖模式下,由于种种不科学的繁育,也造成养殖鲢、鳙的优良性状严重退化,如:生长缓慢、性成熟早、个体变小以及抗病力差等;再加上人工养殖群体同野生群体的混杂,以及生态环境的恶化,使鲢、鳙种质资源面临更加严重的威胁。因而,对长江水系鲢、鳙的遗传多样性进行研究,正确评估长江水系鲢、鳙野生群体与养殖群体种质资源现状以及它们之间存在的差异显得尤为必要。本研究采用本课题组与中国海洋大学共同开发的鲢微卫星引物中筛选出的22对用于长江水系野生鲢鳙(野生群体)和人工养殖鲢鳙(养殖群体)的遗传多样性分析,研究结果如下:
     (1)通过对长江野生鲢(Yangtze River wild silver carp,YSC)和养殖鲢(Domesticsilver carp,DSC)群体进行遗传参数统计,结果显示:在22个微卫星标记中,21个为多态标记,1个标记(BL12)在两个鲢群体中均为单态,多态位点百分率均为95.45%。22个微卫星标记在两个群体中共检测到等位基因188个,等位基因数在2~12之间变化。野生鲢和养殖鲢群体所观察微卫星位点的平均观测等位基因数分别为4.409和4.136(P>0.05),平均有效等位基因数分别为3.276和3.034(P>0.05),平均观测杂合度分别为0.744和0.693(P>0.05),平均期望杂合度分别为0.612和0.581(P>0.05),平均多态信息含量PIC分别为0.569和0.533(P>0.05)。2个群体的平均Shannon's指数分别为1.180和1.100(P>0.05),群体间的遗传距离为0.280,两个群体间的遗传相似系数为0.756。所检测位点中,绝大多数位点的基因型都处于Hardy-Weinberg平衡状态,位点BL23在两个群体中均偏离平衡状态,BL90在野生群体中偏离平衡状态,在养殖群体中处于平衡状态;BL5和BL92在养殖群体中偏离平衡状态,在野生群体中处于平衡状态。固定指数Fst表明野生鲢与养殖鲢间7.67%的遗传多样性由群体间的遗传差异造成,大部分的遗传变异来自个体之间。通过研究发现,两个鲢群体都具有较高的遗传多样性,但野生鲢的遗传多样性较养殖鲢高,两者并未达到显著差异的水平(P>0.05)。
     (2)通过对长江野生鳙(Yangtze River wild bighead carp,YBC)和养殖鳙(Domestic bighead carp,DBC)群体进行遗传参数统计,结果显示:在22个鲢微卫星标记中,19个为多态标记,3个标记(BL12、BL83和BL90)在两个鳙群体中均为单态,多态位点百分率均为86.36%。22个鲢微卫星标记在两个鳙群体中共检测到等位基因162个,等位基因数在2~12之间变化。野生鳙和养殖鳙群体所观察微卫星位点的平均观测等位基因数分别为3.727和3.636(P>0.05),平均有效等位基因数分别为2.927和2.813(P>0.05),平均观测杂合度分别为0.780和0.778(P>0.05),平均期望杂合度分别为0.550和0.540(P>0.05),平均多态信息含量PIC分别为0.500和0.487(P>0.05)。2个群体的平均Shannon's指数分别为1.020和0.986(P>0.05),群体间的遗传距离为0.067,两个群体间的遗传相似系数为0.936。所检测位点中,绝大多数位点都处于Hardy-Weinberg平衡状态,在野生鳙群体中有1个位点(BL92)偏离平衡状态;在养殖鳙群体中有2个位点(BL82和BL8-1)偏离平衡状态。固定指数Fst表明野生鳙与养殖鳙之间2.64%的遗传多样性由群体间的遗传差异造成,这表明大部分的遗传变异来自个体之间。野生鳙群体只有1个位点杂合子缺失,在养殖鳙群体中所有位点均为杂合子过剩。选用的22对鲢微卫星引物,都能在鳙的两个群体中扩增出稳定的条带,可扩增比例为100%,其中86.36%表现多态性。两个鳙群体都具有丰富的遗传多样性,野生群体的略丰富于养殖群体,但差异并不显著(P>0.05)。
     (3)利用微卫星分子标记对长江鲢鳙野生群体和养殖群体的研究发现,鲢、鳙野生和养殖群体均具有较高的遗传多样性。结果表明:虽然人类活动介入影响长江野生鲢鳙的生存环境,造成其生活环境的改变,致使繁殖群体变小,产卵场减少,对野生鲢鳙的遗传多样性有一定的影响,但在本试验中长江野生群体和养殖群体的遗传多样性并未出现明显的分化;本研究的鲢鳙养殖群体各只取了一个点的样,取样本身可能有一定的局限性,同时经历的人工选育周期比较短,因此养殖群体遗传多样性较野生群体没有显著差异。就目前来讲,鲢鳙野生和养殖群体都具有丰富的遗传多样性,均有较好的选育潜力,可以作为良好的育种材料进行鲢、鳙的本品种选育和新品种(系)培育,但在今后的利用和保护中应采取必要的措施来维持其遗传多样性。
Silver carp(Hypophthalmichthys molitrix C.et V) and Bighead carp(Aristichthys nobilis Richardson) are important pond-cultured fish species in our country,and they inhabit widely in the major river basins of China,including Heilong Jiang,Yangtze River and Pearl River.Among the three local populations,the cultured performance of Yangtze River wild population is the best.In recent years,the germplasm of wild silver carp and bighead carp has been endangered by environmental pollution,large-scale water conservancy construction.Under present cultured operation,the germplasm of domestic silver carp and bighead carp was degenerated seriously due to various improper breeding methods.As a result,the elite characters of wild fish have been attenuated severely. Furthermore,germplasm of the two fish was much more seriously imperiled,as domestic population jumbles wild population and the depravation of ecologicial enviroment. Thereby,it's particularly necessary to evaluate the genetic diversity and determine the genetic differentiation of silver carp and bighead carp.In this study,the genetic diversity of the two populations was studied using twenty-two microsatellite markers of silver carp designed by researchers in our research team and Ocean University of China.The results were as follows:
     (1) In the two silver carp populations,there was I monmorphic marker(BL12)in the two populations and the percentage of polymorphic loci was 95.45%.The total observed alleles number of the 22 microsatellite loci was 188,which varied from 2 to 12. The average of observed alleles number in the Yangtze River wild population and domestic population was 4.409 vs 4.136 respectively(P>0.05);the average effective alleles number was 3.276 vs 3.034 respectively(P>0.05);the average observed heterozygosity(Ho) was 0.744 vs 0.693 respectively(P>0.05),and the average expected heterzygosity(He) was 0.612 vs 0.581 respectively(P>0.05),and the average PIC was 0.569 vs 0.533 respectively(P>0.05).The average Shannon's index was 1.180 vs 1.100 respectively(P>0.05);the genetic distance and the genetic similarity coefficient were 0.280 and 0.756 respectively.Chi-square test was used to analyze the genotypes based on Hardy-Weinberg equilibrium;the P value showed most loci tested were according with Hardy-Weinberg equilibrium.Fst index showed that most variation came from individuals within population(92.33%) rather than ones among populations(7.67%). The genetic diversity of domestic population was depressed to a certain extent,but there was no obvious difference between the two populations.
     (2) In the two bighead carp populations,there were 3 monmorphic markers (BL12,BL83 and BL90) in the two populations and the percentage of polymorphic loci was 86.36%.The total observed alleles number on the 22 microsatellite loci was 162, which varied from 2 to 12.The average of observed alleles number in the Yangtze River wild population and domestic population was 3.727 vs 3.636 respectively(P>0.05);the average effective alleles number was 2.927 vs 2.813 respectively(P>0.05);the average observed heterozygosity(Ho) was 0.780 vs 0.778 respectively(P>0.05),and the average expected heterzygosity(He) was 0.550 vs 0.540 respectively(P>0.05),and the average PIC was 0.500 vs 0.487 respectively(P>0.05).The average Shannon's index was 1.020 vs 0.986 respectively(P>0.05);the genetic distance and the genetic similarity coefficient were 0.067 and 0.936 respectively.Chi-square test was used to analyze the genotypes based on Hardy-Weinberg equilibrium;the P value denoted that most loci tested were accorded with Hardy-Weinberg equilibrium.Fst index showed that most variation came from individuals within population(97.36%) rather than ones among populations (2.64%).One locus displayed lacking of heterozygote in the wild population,while all loci showed surplus heterozygote in the domestic population.These two populations were abundant in genetic diversity.
     (3) From the results of microsatellite markers analyzed,the wild population and domestic population of silver carp and bighead carp were both abundant in genetic diversity.The results showed that although artificial propagation process and human activity interference had changed the habitat,which caused the decrease in reproductive population and reduction in spawning stock and had influenced the genetic diversity of the two fish,the genetic diversity between the wild and domestic populations was no significant difference for the human's interferences activities.From this research,the wild and the domestic population of silver carp and bighead carp were both abundant in genetic diversity and breeding potential.They can be as good breeding material to selected breed and cultivate new varieties(lines),domestic populations should adopt scientific selection and breeding measures to maintain genetic diversity.
引文
1.陈金平,董崇智,孙大江,王喆,张树义.微卫星标记对黑龙江流域大麻哈鱼遗传多样性的研究.水生生物学报,2004,28(6):607-612
    2.陈微,张全启,于海洋,胡景杰,于杰,包振明.牙鲆微卫星比标记的筛选及群体多态性分析.中国水产科学,2005,12(6):682-687
    3.陈宜瑜.淡水生态系统中的若干生物多样性问题.生物科学信息,1990,2(5):197-200
    4.董秋芬,刘楚武,郭昱嵩,刘丽,吴勇.9种石斑鱼遗传多样性和系统发生关系的微卫星分析.遗传(北京)2007,29(7):837-843
    5.杜长斌,楼允东,沈俊宝,孙孝文.微卫星分子标记技术在鱼类遗传连锁图谱构建中的应用.上海水产大学学报,2000,9(3):254-258
    6.樊连春,崔建勋,余其兴.鳙鱼线粒体DNA的限制性内切酶图谱.武汉大学学报.1994,40(1):121-125
    7.范武江.两种不同体色鳙鱼群体生物学及遗传差异研究.[硕士学位论文].湖南:湖南农业大学,2007
    8.范晓辉,王钦德,程小强,刘彦清.山西瘦肉型猪SD-Ⅲ系微卫星标记SW489和SW2049的遗传多态性分析.上海畜牧兽医通讯,2007,6:24-25
    9.方展强,陈军,郑文彪,伍育源,肖智.鳜野生群体与养殖群体的RAPD分析.大连水产学院学报,2005,20(1):16-19
    10.耿波,孙效文,梁利群,欧阳洪生,童金荀.利用17个微卫星标记分析鳙鱼的遗传多样性.遗传,2006,28(6):683-688
    11.郭秋红,詹帅,相辉,赵云坡,李卫华,黄勇平.家蚕scaffold中新微卫星标记的获得与DII基因的遗传连锁分析.蚕业科学,2007,333(2):187-194
    12.胡能书,万贤国.同工酶技术及其应用.长沙:湖南科学出版社.1985
    13.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    14.兰宏,张文艳,王文.滇金丝猴的随机扩增多态DNA与遗传多样性分析.科学通报,1996,26:244-249
    15.李红蕾,宋林生,王玲玲,胥炜,相建海.栉孔扇贝EST中微卫星标记的筛选.高技术通讯,2003,13(12):72-75
    16.李思发,王强,陈永乐.长江、珠江、黑龙江鲢、鳙、草鱼原种种群的生化遗传结构与变异.水产学报,1986,10(4):351-372
    17.李思发,吴力钊,王强,仇潜如,陈永乐.长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究.上海:上海科学技术出版社,1990:61-82
    18.李思发,吕国庆,贝纳切兹L.长江中、下游鲢鳙青草四大家鱼线粒体DNA多样性分析.动物学报,1998,44(1):82-93
    19.梁利群,常玉梅,董崇智.微卫星DNA标记对乌苏里江哲罗鱼遗传多样性的分析.水产学报,2004,28(3):241-244
    20.廖小林,俞小牧,谭德清,童金苟.长江水系草鱼遗传多样性的微卫星DNA分析.水生生物学报,2005,29(3):113-119
    21.刘保忠.海湾扇贝群体遗传学和扇贝科分子系统演化的研究.[博士学位论文].青岛:中国科学院海洋研究所,2003
    22.刘楚吾,曹伏君.军曹鱼染色体组型分析.海洋科学,2008,1:29-31
    23.刘海金,朱晓琛,孙效文,杨立更,薛玲玲,毛连菊.牙鲆5个养殖群体的遗传多样性分析.中国水产科学,2008,15(1):30-37
    24.刘乐和,吴国犀,曹维孝等.葛洲坝水利枢纽兴建后对青、草、鲢、鳙繁殖生态效应的研究.水生生物学报,1986,10(4):353-364
    25.刘萍,孟宪红,孔杰.中国对虾部分基因组文库构建和微卫星DNA序列的筛选.高技术通讯,2004,(2):87-90
    26.鲁翠云,孙效文,曹杰,梁利群.磁珠富集法筛选白鲢的微卫星分子标记.农业生物技术学报,2005a,13(6):772-776
    27.鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选.中国水产科学,2005b,12(2):192-196
    28.陆景元.关于人工繁殖鱼类的性状退化问题探讨.中国水产,1985,5:6-7
    29.鲁双庆,刘臻,刘红玉,肖调义,苏建明.鲫鱼4群体基因组DNA遗传多样性及亲缘关系的微卫星分析.中国水产科学,2005,12(4):371-376
    30.卢钟磊,池信才,王义权,沈月毛,郑忠辉,宋思扬.褐牙鲆耐热性状相关的微卫星分子标记筛选.厦门大学学报,2007,46(3):396-402
    31.马洪雨,岳永生,郭金峰,公维华,王慧.山东省三个鲤鱼群体遗传多样性及亲缘关系的微卫星标记分析.湖泊科学,2006,18(6):655-660
    32.马洪雨,岳永生,于艳,郭金峰,王慧.鲤微卫星引物对麦穗鱼的适用性初步研究.水生生物学报,2007,31(2):278-281
    33.彭永兴,程汉良,夏德全,吴婷婷,孟学平,吉红九,董志国.帘蛤科4种养殖蛤群体遗传多样性和中间关系的AFLP分析.海洋科学,2008,1:45-51
    34.邱芳,伏健民,金德敏,王斌.遗传多样性的分子检测.生物多样性,1998.6(2):143-150
    35.任波,任慕莲,郭焱,张人铭,马燕武,吐尔逊,刘宇,阿不都,艾则孜.扁吻鱼胚胎及仔鱼发育的形态学观察.大连水产学院学报,2007,22(6):397-402
    36.闰华超,高岚,贾少波.鲤野生群体与养殖群体遗传多样性初步分析.水利渔业,2006,26(4):21-23
    37.单淇,董仕,吴海防,谷口顺彦.三个群体鳙鱼mtDNA D-loop区段的限制性片段长度多态性分析.中国水产科学,2006,13(2):174-179
    38.邵昭君,赵娜,朱滨,周发林,常剑波.铲鲟微卫星引物对中华鲟的适用性研究.水生生物学报,2002.26(6):577-584
    39.舒琥,蒙子宁,易祖盛,张勇,刘晓春,林浩然.唐鱼野生与养殖群体遗传多样性的随机扩增多态DNA(RAPD)分析.中山大学学报(自然科学版),2006,45(1):77-81
    40.孙建帮,肖克宇,朱吉.微卫星DNA标记在鱼类遗传育种中的应用.内陆水产,2006,31(5):32-34
    41.宋林生,李俊强,李红营,崔朝霞,李成华,胥炜,常亚青.用RAPD技术对我国栉孔扇贝野生种群与养殖群体的遗传结构及其遗传分化的研究.高技术通讯,2002,(7):83-86
    42.孙乃恩.分子遗传学.南京大学出版,1990
    43.孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7(1):1-5
    44.谭书贞,董仕,边春嫒,谷口顺彦.长江流域3个群体草鱼区段mtDNA D-loop的PCR--RFLP.南开大学学报:自然科学版,2007,40(3):106-112
    45.童金苟,朱嘉濠,吴清江.鱼类和水生动物基因组作图研究的现状及前景.水产学报,2001,25(3):270-278
    46.王得前,卢立志.微卫星DNA的研究进展.浙江农业科学,2005,1:1-4
    47.王冬群,李太武,苏秀榕.象山缢蛏养殖群体和野生群体遗传多样性的比较.中国水产科学,2005,12(2):138-144
    48.王清印,余来宁,杨宁生.中国水产生物种质资源与利用(第1卷).海洋出版社,2006
    49.王伟继,高焕,孔杰,王清印.利用AFLP技术分析中国明对虾的韩国南海种群和养殖群体的遗传差异.高技术通讯,2005,15(9):81-86
    50.汪小全,周喻苹,张大明.银杉遗传多样性的RAPD分析.中国科学,1996,27(5):436-441
    51.王志勇,王艺磊,林利民等.福建官井洋大黄鱼AFLP指纹多态性的研究.中国水产科学,2002,9(3):198-202
    52.魏麟,黎晓英,黄英,史宪伟.遗传标记及其发展概述.动物育种,2004,21(10):42-45
    53.吴力钊,王祖熊.长江下游鳙鱼天然种群的生化遗传变异.水生生物学报,1991,15(1):94-96
    54.吴力钊,王祖熊.长江中游鲢鱼天然种群的生化遗传结构及变异.水生生物学报,1997,21(2):157-162
    55.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性.遗传学报,2001,28(11):1040-1050
    56.熊全沫.同工酶电泳数据的分析及其在种群遗传上的应用.遗传,1986,8(1):1-5
    57.杨泽宇,苗永旺,李大林,霍金龙,陈涛,何朝阳,创向辉,汤手锟.德宏水牛微卫星标记分析的群体遗传变异.动物学研究,2007,28(6):659-663
    58.尹绍武,李建中,周工建,刘筠.黄鳝野生群体和养殖群体遗传结构的RAPD分析.应用与环境生物学报,2005,11(3):328-332
    59.尤锋,王可玲,相建海,徐成.山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传变异的比较分析.海洋与湖沼,2001,32(5):512-518
    60.于冬梅,匡友谊,马海涛,梁利群,孙效文.用磁珠富集法制备史氏鲟的微卫星分子标记.大连水产学院学报,2007,22(6):431-435
    61.张爱兵,王正军,谭声江.分子生态学重要概念-遗传距离及其测定的理论研究概况.生态学报,2002,22(6):943-94
    62.张德春,张锡元,杨代淑,余来宁,方耀林,邓凤姣,刘思扬.长江鳙遗传多样性的研究.武汉大学学报.1999,45(6):857-890
    63.张德春.鳙鱼人工繁殖群体遗传多样性的研究.三峡大学学报(自然科学版).2002,24(4):379-381
    64.张桂蓉,严安生,邹桂伟,罗相忠,黄峰.两个人工雌核发育系鲢近交F_1遗传多样性的RAPD 分析.水产学报,2005,29(2):22-28
    65.张海琪,何中央,徐晓林,李明云,杜建明.罗氏沼虾缅甸野生群体和浙江养殖群体的遗传多样性比较.中国水产科学,2004,11(6):506-512
    66.张全启,徐晓斐,齐洁,王兴莲,包振民.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004,34(5):816-820
    67.张四明,邓怀,汪登强,余来宁.长江水系鲢和草鱼遗传结构及变异性的RAPD研究.水生生物学报,2001,25(4):324-330
    68.张四明,汪登强,邓怀,余来宁.长江中游水系鲢和草鱼群体mtDNA遗传变异的研究.水生生物学报,2002,26(2):142-147
    69.张锡元,张德春,杨代淑,邓风姣,余来宁,方耀林.长江鲢遗传多样性的随机扩增多态DNA 分析.水产学报,1999,23:7-14
    70.张妍,梁利群,常玉梅,侯宁,鲁翠云,孙效文.鲤鱼体长性状的QTL定位及其遗传效应分析.遗传,2007,29(10):1243-1248
    71.张志伟,曹哲明,杨弘,王金龙,曹谨玲,韩曜平,吴婷婷.草鱼野生和养殖群体间遗传变异的微卫星分析.动物学研究,2006,27(2):189-196
    72.张志伟,韩曜平,仲霞铭,张志勇,曹哲明,吴婷婷.草鱼野生群体和人工繁殖群体遗传结构的比较研究.中国水产科学,2007,14(5):720-725
    73.赵金良,李思发.长江中下游鲢、鳙、草鱼、青鱼种群分化的同工酶分析.水产学报,1996,20(2):104-110
    74.赵淑清,武维华.DNA分子标记和基因定位.生物技术通报,2000,6:1-40
    75.郑蓓蓓.人工雌核发育鲢近交F_1的同工酶和微卫星标记研究.[硕士学位论文].武汉:华中农业大学.2006
    76.周裕华,邹桂伟,梁宏伟,罗相忠.人工雌核发育鲢近交F_2微卫星DNA变异分析.淡水渔业,2007,37(4):30-33
    77.周裕华.人工雌核发育鲢及其近交后代微卫星分子标记研究.[硕士学位论文].武汉:华中农业大学,2007
    78.朱晓东,耿波,李娇,孙效文.利用30个微卫星标记分析长江中下游鲢群体的遗传多样性.遗传,2007,26(6):705-713
    79.庄志猛,孔杰,石拓,刘萍,邓景耀,戴继勋.日本对虾野生和养殖群体遗传多样性的RAPD 分析.自然科学进展,2001,11(3):250-255
    80.Alderson G W,Gibbs H L,Scaly S G.Parentage and kinship studies in an obligate bird the brown-headerc owbird(Molothrusa ter),using microsatellites DNA markers.The Journal of Heredity,1999,90(1):182-190
    81.Aijanabi S M,Martinez I.Universal and rapid salt-extracted of high quality genomic DNA for PCR-based techniques.Nucleic Acids Res,1997,25:4692-4693
    82.Avner C,Eric M.Detection of chromosomal region with two QTL affecting cold tolerance and fish size in an F_2 triapia hybrid.Aquaculture,2003,117-128
    83.Beatrice Bulle,Laurence Milion,Jean-Mathieu Bart,Montserrat Gallego,Francoise Gambarelli,Montserrat Portus,Lee Schnur,Charles L.Jaffe,Salceda Fernandez-Barredo,Jose Maria Alunda,and Renaud Piarroux.Practical Approach for Typing Strains of Leishmania Infantum by Microsatellite Analysis.Journal of Clinical Microbiology,40(9):3391-3397
    84.Beckmann,J S.,Weber,J L.Survey of human and rat microsatellites.Genomics 12,1992,627-631
    85.Brummett,R.Smitherman,R.O.and Dunham,R.A.,1988.Isozyme expression in bighead carp,silver carp and their reciprocal hybrids.Aquaculture,70(1):21-28
    86.Dai J,Zhang Q,Bao Z.Karyotype studies on Penaeus orientalis.Journal of Ocean University Qingdao,1989,19:97-103
    87.David L,Rajasekaran P,Fang J,et al.Polymorphism in ornamental and common carp strains (Cyprinus carpio L) as revealed by APLP analysis and a new set of microsatellite markersl Jj.Mol Genet Genomics,2001.266:353-362
    88.Deloukas P.Schuler G D,Gyapay G,et al.A physical map of 30 000 human genes.Science,1998,282:744-746
    89.Delphine Ditlecadet,France Dufresne,Nathalie Rose Le Francois,Pierre Ulrich Blier.Applying microsatellites in two commercial strains of Arctic charr(Salvelinus alpinus):Potential for a selective breeding program.Aquaculture,2006,257:37-43
    90. Dimitry A. Chistiakov, Bart Hellemans, Filip A. M. Volckaert. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture, 2006, 255: 1-29
    
    91. Gatherine L. Peichel, Kirsten S. Nereng, Kenneth A. Ohgi, Bonnie L. E. Cole, Pamela F. Colosimo, C. Alex Buerkle, Dolph Schluter & David M. Kingsley. The genetic architecture of divergence between threespine stickleback species. Narure, 2001,414,901-905
    
    92. Grosse W M, Kappes S M, Laegreid W W, Keele J W, Chitko-McKown C G, Heaton M P. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mammalian Genome, 11: 1062-1069
    
    93. Gur-Arie, R., Cohen, C, Eitan, L., Shelef, E, Hallerman, E, Kashi, Y. Abundance, non-random genomic distribution, nucleotide composition, and polymorphism of simple sequence repeats in E. coli. Genome Res. 2000, 10,61-70
    
    94. Haly C M, Microsatellites for linkage analysis of genetic traits [J]. Trend inGenetics, 1992, 8: 288-293
    
    95. Hedrick P W, Miller P S. Conservation genetics: techniques and fundamentals. Ecological Applications, 1992, 2: 30-46
    
    96. Javier G F, Angeles P M, Yolanda. Comparison of RAPDs, AFLPs and SSR markers for the genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiology, 2005, 22: 561-569
    
    97. Javier Porta, J. Maria Porta, Gonzalo Martinez-Rodriguez, M. Carmen Alvarez. Genetic structure and genetic relatedness of a hatchery stock of Senegal sole (Solea senegalensis) inferred by microsatellites. Aquaculture, 2006,251:46-55
    
    98. Jeferys A J, Witlson V, Thein S L. Positiveid entification of an immigration test case using human DNA fingerprints, Nature, 1985, 317: 8181-8190
    
    99. Knox D E, Verspoor A. Mitochchondrial DNA restiction fragment length polymorphism of potential use for discrimination of fanned Norwegian and wild Atlantic salmon population in Scotland. Aquaculture, 1991,98: 249-257
    
    100. Liao M J, Yang G P, Zou G W, Wei Q W, Wang D Q. Development of microsatellite DNA marker of silver carp (Hypothalmichthys molitrix) and their application in the determination of genetic diversity of silver carp and bighead carp (Aristichthys nobilis). Journal of Fishery Sciences of China, 2006, 13(5): 756-761
    
    101. Liao M J, Yang G P, Wang X C, Zou G W. Development of microsatellite DNA marker of silver carp (Hypothalmichthys molitrix) and their cross-species application in bighead carp (Aristichthys nobilis). Molecular Ecology Notes, 2007, 7(1): 95-99
    102. Liu Z, Tan G, Kucuktas H, Li P, Karsi A, Yant D R, Dunham R A. High levels of conservation at microsatellite loci among Ictalurid catfishes. Journal of Heredity, 1999,90: 307-311
    
    103. McConnell S. Hamilton L. Morris D. Isolation of Salmonid microsatellite loci and their application to the population genetics of Canadian east coast stock of Altantic salmon. Aquaculture, 1995, (137): 19-30
    
    104. Merrell D J. Ecological Genetics. Longman, 1981
    
    105. Nei M. Genetic distance between populations. American Natturalist. 1972,106: 283-292
    
    106. Norris T. Microsatellite genetic variation between and with in fanned and wild Atlantic salmon (Salmosalar) populations. Aquaculture, 1999,180: 247-264
    
    107.O'Connell M, Wright J M. Microsatellites DNA in fishes. Reviews in Fish Biology and Fisheries, 1997,7:331-363
    
    108. Oystein Skaala, Bjom Hoyheim, Kevin Glover, Geir Dahle. Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture, 2004, 240:131-143
    
    109. Pardo G B, Casas L, Fortes G G. New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Molecular Ecology Notes, 2005, 5(1): 62-64
    110. Parker P G, Snow A, chug M D, Booton G C, Fuerst P A. What molecules can tell us about populations: Choosing and using a molecular marker. Ecology, 1998, 79(2): 361-392
    111. Postllethwait J H. A Genetic linkage map for the Zebrafish. Science, 1994, 264(29): 699-703
    112. Primrose S B. Principles of Genome Analysis [M]. Oxford: Blackwell Science, 1997. 24-40
    113. R. B. Walter, J. D. Rains, J. E. Russell, T. M. Guerra, C. Daniels, Dennis A. Johnston, Jay Kumar, A. Wheeler, K. Kelnar, V. A. Khanolkar, E. L. Willianm, J. L. Hornecker, L. Hollek, M. M. Mamerow, A. Pedroza and S. Kazianis. A microsatellite genetic linkage map of Xiphophorus. Genetics, 2004,168: 363-372
    114. Ricoc R I, Hewitt G. 470 million years of conservation of microsatellite loci among fish species. Proceedings: Biological Sciences, 1996, 263: 549-557
    115. Sakamoto T. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Gentics, 2000,155: 1331-1375
    116. Shaklee, J B, et al. Speciation and evolution of marine fishes studied by the electrophoresis analysis of proteins. Pac.Sci, 1982,36: 141-157
    117. Skinner D M, Beattie W G, Blatter F R. The sequence of a herm it crab satellite DNA in (-TAGG) n-(TAGG-) n. Biochemistry. 1974,13: 3930-3937
    118. Soltis P S and Soltis D E. Genetic variation in endemic and widespread plant species: examples from Saxifragaceae and Polystichum. Aliso, 1991, 13: 215-223
    119. Takagi M, Tanguchi N, Cook D, Doyle R W. Isolation and Characterization of microsatellite loci from red sea bream Pagrus major and detection in closely related species. Fisheries Science, 1997, 63(2): 199-204
    120. Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA marker. Nucleic Acid Researsh, 1989,17: 6463-6471
    121. Thomas D K, Woo J L, Halina Sobolewska. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 1998,148: 1225-1232
    122. Thorisson G A, Stein L D. The SNP Consortiumw ebsite: past, present and future. Nucleic Acids Research, 2003, 31(1): 124-127
    123. Vos P, Hongers R, Bleeker M, Reijans M, Lee T, Homes M, Frijters A, Pot F, Peleman J, Kuiper M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research. 1995, 23: 4407-4414
    124. Welsh J, MmClelland M. Fingerprinting genomes using PCR with arbitary primers. Nucleic Acids Research. 1990,18: 7213-7218
    125. Westerman M E, Buonaccorsi V P, Stannard J A. Cloning and characterization of novel microsatellite DNA markers for the grass rockfish, Sebastes rastrelliger, and cross-species amplification in 10 related Sebastes spp. Molecular Ecology Notes, 2005, 5(1): 74-76
    126. William P Y. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148: 839-850
    127. Williams J G K, Kubelik A R, Livak J. DNA polymorphisms amplified by arbitary primers are useful asgenetic markers. Nucleic Acid Research ,1990, 18: 6531-6535
    128. Yeh F C, Boyle T. POPGENE version 1.32: Microsoft Windows base software for population genetic analysis. 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700