黄瓜矮生性状的遗传分析及相关QTL_s初步定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是葫芦科重要成员之一,是世界上继番茄、白菜和洋葱之后的第四大被广泛种植的蔬菜作物。株高是黄瓜重要的农艺性状之一,黄瓜品种按植株高矮分为蔓生品种和矮生品种两大类型,在生产中应用的主要是蔓生黄瓜品种,但矮生黄瓜具有株型紧凑,无须整枝,能充分利用土地和光照资源,适于进行简易覆盖设施栽培,在各类设施栽培中可成倍提高种植密度,且只需简易的搭架和吊绳,在很大程度上节省了人力、物力和财力,其特殊的优势在生产中具有一定的应用前景。因此,培育植株高度适宜的“理想株型”正引起黄瓜育种家的关注。
     本研究以矮生黄瓜与蔓生黄瓜为试验材料,运用性状遗传体系分析方法对黄瓜株高性状进行遗传分析。以黄瓜矮生品系D8与蔓生品系JIN5杂交并自交得到的F2代为试材,应用ISSR分子标记技术和BSA(混合群体分组分析法)法寻找与黄瓜矮生基因连锁的分子标记。采用ISSR和SRAP的分子标记方法构建黄瓜遗传连锁图谱,利用复合区间定位方法对黄瓜矮生性状、第一雌花开花期等数量性状基因座(QTL)进行定位。研究的主要结果如下:
     1.以矮生黄瓜D8和蔓生黄瓜JIN5杂交并自交及回交所获得的6个世代(P1、P2、F1、BC1、BC2和F2)为材料,利用主基因+多基因混合遗传模型对黄瓜株高性状进行了遗传分析。结果表明:黄瓜株高受1对加性-显性主基因+加性-显性多基因共同控制,其中以主基因遗传为主,因此,在黄瓜育种实践中在早世代对株高选择有效。
     2.以黄瓜矮生品系D8与蔓生品系JIN5为亲本构建分离群体,应用ISSR分子标记技术和BSA(混合群体分组分析法)法寻找与黄瓜矮生基因连锁的分子标记,从100条ISSR引物中筛选到一条与黄瓜矮生性状相关的多态性引物UBC818,连锁关系分析表明,该标记与黄瓜矮生基因间的遗传距离为11.1cM。根据对该片段的序列分析结果重新设计了1对引物,将ISSR标记成功转化成了SCAR标记,并命名为UBC818-S。此SCAR标记可以在黄瓜苗期快速、准确、简便地鉴别出长矮生植株,从而为黄瓜矮生性状的分子标记辅助育种奠定了技术基础。
     3.应用ISSR和SRAP分子标记技术,构建了全长831.6cM的黄瓜分子遗传连锁图谱,标记平均间距为12.7cM,其中标记间最小遗传距离为4.8cM,最大遗传距离为22.3cM。运用WinQTLCart2.5软件,采用复合区间作图(CIM)法对黄瓜株高、第一雌花开花期等进行了QTL定位,检测到控制黄瓜株高性状的QTL位点2个,黄瓜平均节间距的QTL位点1个,第一雌花开花期的QTL位点7个。本研究的结果和检测到的QTL为进一步进行黄瓜株型育种的研究奠定了良好的基础。
Cucumber (Cucumis sativus L.) is one of Cucubitaceae, which collectively belongs to a group of vegetables known as cucurbits and stands the fourth place followed by tomato,Chinese cabbage and onion. The plant height is one of important agriculture characters. Cucumber can be divided into two types.One has a long vine and the other short vine called dwarf type.Different vine types of cucumber might meet the need of the development of protected cultivation.The dwarf cucumber is easy to be cultivated in greenhouse since it is cost saving through cancelling a kickstand and increasing plant density. Tthe special superiority of dwarf cucumber has the broad application prospect in the production. Therefore, cucumber breeders are attaching importance to the breeding of new cucumber variety with reasonable plant height.
     Genetic analysis for cucumber plant height has been carried out with the method of quantitive traits heredity mode by using the commix model of main gene and multiple genes. F2 population from the cross combination of the dwarf line D8 and the vine line JIN5 were used in this study to screen the molecular marker related to the dwarf gene of cucumber with ISSR marker and BSA(bulked segregation analysis) method. A molecular linkage map was constructed with ISSR and SRAP marker. QTL ananlysis of plant height, flowering date of first female flower and the resistance to powdery mildew was performed with composite interval mapping(CIM). The main results are as followe:
     1. Six generations of P1 P2 F1 BC1 BC2 and F2 from the cross of dwarf line D8 and vine line JIN5 of cucumber were obtained to analyze the genetic effects of plant height by method mentioned above. Results indicate that the heredity of plant height could be explained by an additive-dominance major genes and additive-dominance polygene model ,and mainly by the main gene. In cucumber breeding, the selection in early generations may be effective.
     2. The F2 population from the cross between dwarf line D8 and vine line JIN5 was employed to screen the molecular marker related to the dwarf gene of cucumber with ISSR marker and BSA(bulked segregation analysis) method. UBC818, one out of eighty ISSR primers, was screened to present polymophism specified in the dwarf line. Genetic analysis showed that the genetic distance between the specific marker and cucumber dwarf gene was 11.1 cM. Two primers were designed based on the sequence to transform ISSR marker into SCAR marker. The ISSR marker was successfully converted into a SCAR marker named UBC818-S. This SCAR marker could distinguish the vine plant and dwarf plant accurately, easily and time saving, which provided a scientific basis of the marker-assisted breeding for dwarf cucumber.
     3. A genetic linkage map containing ISSR and SRAP markers was constructed, spanning a total of 831.6cM with an average interval of 12.7cM. The minimum heredity distance is 4.8cM, the maximum heredity distance is 22.3 cM. With the method of composite interval mapping and WinQTLCart2.5 software, two QTLs of plant height were examined, one QTL of the average distance nodes was identified. Moreover, seven QTLs of flowering date of first female flower were located.The QTL found in this study could provide useful information for future breeding of the plant height in cucumber.
引文
1.魏国才,常大军,刘淑玲.矮生玉米及其应用前景[J].现代化农业, 1999, (8): 24~25.
    2. Peng J., Richards D.E., Hartley N.M., et al.“Green revolution”genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400: 256~261.
    3. Ashikari M., Sasaki A., Ueguchi-Tanaka M., et al. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice‘green revolution’[J]. Breed. Sci, 2002, 52: 143~150.
    4.梁国华,顾铭洪,潘学彪,等.水稻半矮秆基因sd-g的染色体定位研究[J].遗传学报, 1994, 21(4): 297~304.
    5.张京.大麦矮生基因uz的SSR标记[J].作物学报, 2003, 29(4): 637~640.
    6.周阳,何中虎,张改生,等.用微卫星标记鉴定中国小麦品种中Rht8矮生基因的分布[J].作物学报, 2003, 29(6): 810~814.
    7.于永红,斯华敏.水稻矮化相关基因的研究进展[J].植物遗传资源学报, 2005, 6(3): 344~347.
    8.高奋明,姜勇,孔德伟,等.水稻株高的遗传控制及其在育种上的应用[J].分子植物育种, 2005, 3(1): 87~93.
    9. Wei L.R., Xu J.C., Li X.B., et al. Genetic analysis and mapping of the dominant dwarfing gene D-53 in rice[J]. J. Integr. Plant Biol, 2006, 48(4): 447~452.
    10. Cho Y.G.., Eun M.Y., McCouch S.R., et al. The semidwarf gene sd-l of rice (Oryza sativa L.)Ⅱ. molecular, mapping and marker assisted selection[J]. Theor. Appl. Genet., 1994, 89: 54~59.
    11.梁国华,曹小迎,隋炯明,等.水稻半矮秆基因sd-g的精细定位[J].科学通报, 2004, 49(8): 778~783.
    12.赵祥强,梁国华,周劲松,等.矮泰引-3中半矮秆基因的分子定位[J].遗传学报, 2005, 32(2): 189~196.
    13. Ma H.L., Zhang S.B., Ji L., et al. Fine mapping and in silico isolation of the eui1 gene controlling upper internode elongation in rice[J]. Plant Mol. Biol, 2006, 60: 87~94.
    14. Korzun V., R?der M., Worland A.J., et al. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1)in wheat by using RFLP and microsatellite markers[J]. Plant Breed, 1997, 116: 227~232.
    15. Korzun V., Roder M.S., Ganal M.W., et al. Genetic analysis of the dwarfing gene (Rht8) in wheat, PartⅠ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.)[J]. Theor. Appl. Genet., 1998, 96: 1104~1109.
    16.刘冬成,高睦枪,关荣霞,等.小麦株高性状的QTL分析[J].遗传学报, 2002, 29(8): 706~711.
    17.周阳,何中虎,张改生,等.用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布[J].作物学报, 2003, 29(6): 810~814.
    18.兰素缺,李杏普.小麦Rht矮秆基因的分子标记研究进展[J].河北农业科学, 2008, 12(1): 69~71, 74.
    19.张京.中国大麦矮秆种质资源的基因分析II.矮秆基因的染色体定位[J].遗传学报, 2001, 28(1): 56~63.
    20.李鸣,潘毅,李安生,等.半矮秆基因brh1在大麦中的精细定位[J].遗传学报, 2002, 29(7): 565~570.
    21. LinY.R., Schertz K.F., and Paterson A.H..Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an inter-specific sorghum population[J]. Genetics, 1995,141: 391~411.
    22. Beavis W.D., Grant D., Albertsen M., et al. Quantitative trait loci for plant height infour maize populations and their associations with quantitative genetic loci[J]. Theor. Appl. Genet., 1991, 83: 141~145.
    23.严建兵,汤华,黄益勤,等.不同发育时期玉米株高QTL进行动态分析[J].科学通报, 2003, 48(18): 1959~1964.
    24. Xie J.H., and Wehner T.C.. Gene list 2001 for cucumber[J]. Cucurbit Genet. Coop. Rep., 2001, 24: 110~136.
    25. Fazio G., Staub J.E., and Stevens M.R.. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines[J]. Theor. Appl. Genet., 2003, 107(5): 864~874.
    26. Nam Y.W., Lee J.R., Song K.H., et al. Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci[J]. Theor. Appl. Genet., 2005, 111: 150~161.
    27. Guner N., and Wehner T.C.. Gene list for watermelon[J]. Cucurbit Genet. Coop. Rep., 2003, 26: 76~92.
    28.安水新,康宇静,李相涛.西瓜标记性状的类型及其应用[J].中国西瓜甜瓜, 2003, (1): 32~34.
    29.黄河勋,张孝祺,魏振辰,等.矮生雄性不育西瓜的研究[J].中国西瓜甜瓜, 1995, 3: 6~9.
    30.王建设,张立杰,唐晓伟,等.甜瓜矮生性状的遗传分析[J].华北农学报, 2003, 18(4): 58~60.
    31.嵇怡,缪旻珉,陈学好.植物矮生性状的分子遗传研究进展[J].分子植物育种, 2006, 4(6): 753~771.
    32. Bishop G.J., Harrison K., and Jones J.D.G.. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family[J]. Plant Cell, 1996, 8: 959~969.
    33. Montoya T., Nomura T., Yokota T., et al. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development[J]. Plant J., 2005, 42(2): 262~269.
    34.栾非时,祖元刚.菜豆种质资源RAPD多样性的研究[J].植物研究, 2002, 22(4): 473~478.
    35.胡喜平,刘忠堂,郭泰,等.利用美国大豆矮源进行矮生半矮生育种的研究[J].大豆科学, 2001, 20(3): 209~214.
    36.高志民,李雪平,李岚,等.分子生物学技术在观赏植物上的应用[J].世界林业研究, 2005, 18(2): 36~40.
    37.毕晓颖,吴禄平,安利佳.一个与苹果属显性矮生主基因Dw连锁的RAPD标记[J].园艺学报, 2002, 29(1):1~4.
    38.朱元娣,李光晨,李春雨,等.苹果柱型基因的ISSR分子标记研究[J].园艺学报, 2003, 30(5): 505~510.
    39.魏惠军,杜胜利,马德华.分子标记在黄瓜遗传育种研究中的应用[J].生物技术通报, 1999, 2:28~30.
    40.张细权.动物遗传标记[M].北京:中国农业大学出版社, 2001:280~285.
    41.吴乃虎.基因工程原理[M].北京:科学技术出版社, 2001:340~343.
    42. Willams J.G.K., Kubelik A.R., Livak K.J., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18: 6531~6535.
    43.吴乃虎.基因工程原理[M].北京:科学技术出版社, 2001: 112~113.
    44. Zabeau M., Vos P.. Selective restriction fragment amplification: a general method for DNA finger printing European patent Application[J]. No 0534858A1, 1993: 3~31.
    45. Zietkiewice Z.E., Rafalskia and Labudad. Genome fingerprinting by simple sequence repeat (SSR)– anchored polymerase chain reaction amplification[J]. Genomics, 1994, 20: 176~183.
    46. Blair M.W., Panaud O., McCouch S.R.. Inter-simples equence repeat (ISSR) application for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.)[J]. Theor. Appl. Genet, 1999, 98: 780~792.
    47.李丽,郑晓鹰,柳李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种[J].分子植物育种, 2006, 4(5): 702~708.
    48. Budak H., Sheaman R.C., Pamaksiz I., et al. Compartitive analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRS, RAPDs and SRAPs[J]. Theor. Appl. Genet., 2004, 109: 280~288.
    49. Ferriol M., Pioo B and Nuez F.. Genetics diversity of a geunplam collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theor. Appl. Genet., 2003, 107: 271~282.
    50.张书芬,傅廷栋,李媛媛,等. SRAP标记分析甘蓝型油菜多态性[J].华北农学报, 2006, 21(1): 50~54.
    51.张洁,陈学好,张海英.黄瓜遗传图谱研究进展[J].分子植物育种, 2006, 4(3s): 23~29.
    52.沈法富,刘风珍,于元杰.分子标记技术在植物遗传育种中的应用[J].山东农业大学学报, 1997, 28(1): 83~91.
    53.缪体云.结球甘蓝遗传图谱的构建及主要农艺性状的QTL定位,硕士学位论文.中国农业科学院研究生院, 2007, pp: 1~3.
    54. Matsuura S., Petrino M.G., Kakunaga T., et al. An approach for rapid checking of seed purity by RFLP Analysis of nuclear DNA in F, hybrid of cucumber(Cucumis sativas.L)[J]. Journal of the Japanese Society for Horticultural. Science, 1994, 63(2): 379~383.
    55.孙敏.黄瓜杂交种子纯度的RAPD鉴定[J].西南师范大学学报(自然科学版), 2003, 2(28): 11~16.
    56.陈劲枫,庄飞百.采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系[J].植物分类学报, 2003, 41(5): 427~435.
    57. Young N.D., Zamir D., Ganal M.W., et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the TM-2a gene in tomato[J]. Genetics, 1988, 120: 579 ~ 585.
    58. Michlmore R.W., Paran I., Kesseli R.V.. Identification of markers linked to disease resistance genes by bulked segregating population[J]. Proc. Natl. Acad. Sci. USA, 1991, 88:9829~9832.
    59.王桂玲,秦智伟.分子标记技术在黄瓜遗传育种中的应用[J].世界农业, 2005, 1: 45~47.
    60.魏惠军,杜胜利,马德华.分子标记在黄瓜遗传育种研究中的应用[J]. 1999, 2: 28~30.
    61.张海英,王勇健,许勇,等.黄瓜种质资源遗传亲缘关系的RAPD分析[J].园艺学报, 1998, 25(4): 345~349.
    62.金梦阳.甘蓝型油菜遗传图谱的构建及农艺性状QTL定位,硕士学位论文.西南大学, 2006, pp: 12~13.
    63.谭远德,万春玲.不同作图群体对显隐性分子标记位点的作图效率[J].生命科学研究, 2000, 4(3): 202~210.
    64. Pierce L K., Whener T C.. Review of genes and linkage groups in cucumber[J]. HortScience, 1990, 26: 605~615.
    65. Kennard W.C., Poetter K., Dijkhuizen A., et al. Among RFLP, RAPD, isozyme, disease resistance and morphological markers in narrow and wide crosses of cucumber[J]. Theor. Appl. Genet., 1994, 89: 42~48.
    66. Meglic V., and Staub J.E.. Inheritance and linkage relationships of isozyme and morphological loci in cucumber (Cucumis sativus L.)[J]. Theor. Appl. Genet., 1996, 92: 865~872.
    67. Serquen F.C., Bacher J., and Staub J.E.. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers[J]. Mol. Breed., 1997, 3(4): 257~268
    68. Park Y., Sensoy S., Wye C., et al. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses[J]. Genome, 2000. 43(6): 1003~1010.
    69. Bradeen J.M., Staub J.E., Wye C., et al, Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.)[J]. Genome, 2001, 44(1): 111~119.
    70. Fazio G., Staub J.E., and Stevens M.R.. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines[J]. Theor. Appl. Genet., 2003, 107(5): 864~874.
    71.潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学进展, 2005, 15(5): 407~413.
    72. Nam Y.W., Lee J.R., Song K.H., et al. Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci[J]. Theor. Appl. Genet., 2005, 111: 150~161.
    73.席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J].中国农学通报. 2005. 21(1): 88~92.
    74.赵咫云.黄瓜果柄性状的QTL定位,硕士学位论文.东北农业大学, 2006, pp: 2~16.
    75. Lander E.S., Green P., Abrahamson J.. MAPMARKER: an interactive computer package forconstmcting primary genetic linkage maps of experimental and natural populations[J]. Genomics. 1987, 1: 174~181.
    76.尤春源.棉花陆海杂交F2群体连锁图谱构建及纤维品质与产量性状QTL定位,硕士学位论文.新疆农业大学, 2007, pp: 13.
    77.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法[J].福建农业大学学报, 1996, 25(4):349~399.
    78.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(工学版), 1999, 33(3): 327~335.
    79. Kennard W.C., Havey M.J.. Quantitative trait analysis of fruit quality in cucumber. QTL detection, confirmation and comparison with mating-design variation[J]. Theor. Appl. Genet., 1995, 91: 53~61.
    80. Serquen F.C., Bacher J., and Staub J.E.. Mapping and QTL analysis of a narrow cross in cucumber (Cucumis sativus L.) using random amplified polymorphic DNA marker[J]. Mol.Breed., 1997, 3:257~268.
    81.张海英,陈青君,王永健,等.黄瓜耐弱光性状的QTL定位[J].分子植物育种, 2004, 2(6): 795~799.
    82.王建设,张立杰,唐晓伟,等.甜瓜矮生性状的遗传分析[J].华北农学报, 2003, 18(4): 58~60.
    83.周祥麟,李海真.中国南瓜无蔓性状的遗传性及其生产利用的研究[J].山西农业科学, 1991, 1: 1~6.
    84. Huang H.X., Zhang X., Wei Z., et al.. Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum.And Nakai].[J]. Scientia Horticulturae, 1998, 74: 175~181.
    85.张立杰,王建设,唐晓伟,等.甜瓜矮生资源株型性状分析[J].宁夏农学院学报, 2002, 23(4): 7~9.
    86.中国农业科学院郑州果树研究所等主编.中国西瓜甜瓜[M].北京:中国农业出版社2000, pp: 12.
    87.李效尊,潘俊松,王刚,等.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建[J].自然科学进展, 2004, 14(11): 1225~1229.
    88.庞金安,李淑菊,霍振荣.黄瓜形态标记研究进展[J].天津农业科学, 2003, 9(4): 28~31.
    89.孙小镭,邬树桐,宋绪峨.中国矮生刺黄瓜品系特性研究初报[J].园艺学报, 1990, 1: 59~64.
    90.马国斌,陈海荣,谢关兴,等.矮生西瓜的研究与利用[J].上海农业学报, 2004, 20(3): 58~61.
    91. Knavel D.E.. Inheritance of short-internode mutant of mainsteam’muskmelon[J]. Hortscience, 1980, 25(10): 1274~1275.
    92. Kauffman C.S., R.L.Lower..Genetic analysis on Extreme Dwarf type incucumer [J]. J.Amer.Soc.Hort.Sci. 1979, l01(2):150~151.
    93.辛明.黄瓜植株高度遗传分析及分子标记,硕士学位论文.东北农业大学, 2007, pp:5~6.
    94. Gai J Y, Wang J. Identification and estimation of a QTL model and its effects[J]. Theor. Appl. Genet., 1998, 97:1161~1168.
    95. Wang J., Podlic D.W., Cooper M., et al. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits[J]. Theor. Appl. Genet., 2001, 103(5): 804~816.
    96.盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社, 2003, 224~265.
    97.章元明,盖钧镒,王建康.利用B1和B2或F2群体鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].生物数学学报, 2000, 15(3): 358~366.
    98.盖钧镒.植物数量性状遗传体系的分离分析方法研究[J].遗传, 2005, 27(1): 130~136.
    99. http://icgr.caas.net.cn/xw/upload/%B8%BD%BC%FE5.doc
    100.顾兴芳,张春霞,封林林,等.保护地黄瓜苗期性状遗传分析[J].园艺学报, 2002, 34(5): 1183~1185.
    101.曾国平,曹寿椿.不结球白菜主要经济性状遗传规律的研究Ⅱ. 15个农艺性状的遗传力和基因效应分析[J].南京农业大学学报, 1998, 21(1): 31~35.
    102.许明辉,王孟宇,龙文虹.烟草主要数量性状的遗传效应分析[J].遗传, 2000, 22(6): 395~397.
    103.肖炳光,朱军,卢秀萍,等.烤烟主要农艺性状对产量的遗传贡献率分析[J].遗传学报, 2005, 32(10): 1089~1093.
    104.陈凤真,何启伟,樊治成,等.西葫芦8个农艺性状的遗传效应分析[J].园艺学报, 2007, 34(5): 1183~1188.
    105.李秀兰,吴成,邓晓建,等.水稻株高基因及其分子生物学研究进展[J].植物学通报, 2003, 20(3): 264~269.
    106.陈学军,陈劲枫.辣椒株高遗传分析[J].西北植物学报, 2006, 26(7): 1342~1345.
    107.周明全,章志宏,赵敏,等.水稻株高构成因素的QTL剖析[J].武汉植物学研究, 2003, 21(1): 22~26.
    108.刘洁,李润植.作物矮化基因与GA信号转导途径[J].中国农学通报, 2005, 21: 37~40.
    109.李云龙,李海真,崔崇士,等.与南瓜矮生基因连锁的分子标记[J].农业生物技术学报, 2007, 15(2): 179~282.
    110.辛明.黄瓜植株高度遗传分析及分子标记,硕士学位论文.东北农业大学, 2007, pp:4.
    111.Hemmat M., Weeden N.F., Manganaris A.G., et al. Molecular marker linkage for apple[J]. J of Heredity, 1994, 85: 4~11.
    112.王佳,梁国华,缪旻珉,等.正交设计优化黄瓜ISSR体系[J].分子植物育种, 2006, 4(3): 439~442.
    113.Michelmore R.W., Paranand I., Kessali R.V.. Identification of markers linked to disease resistance gene by bulked segregant analysi; a rapid method to detect marders in specific genomic regions using segregation populations[J]. Proc. Nat. Aca. Sci, 1991, 88: 9829~9832.
    114.Clark M.S.,著,顾红雅,译.植物分子生物学——实验手册[M].北京:高等教育出版社, 1998, 427.
    115.张立荣,徐大庆,杨文香,等.小麦抗叶锈基因Lr37 ISSR分子标记[J].农业生物技术学报, 2004, 12(1): 86~89.
    116.景润春,何予卿,黄青阳,等.水稻野败型细胞质雄性不育恢复基因的ISSR和SSLP标记分析[J].中国农业科学, 2003, 33(2): 10~15.
    117.雷剑,柳俊.一个与马铃薯青枯病抗性连锁的SRAP标记筛选[J].中国马铃薯, 2006, 20(3): 150~153.
    118.王彩虹,王倩,戴洪义,等.苹果柱型基因Co的一个AFLP标记的SCAR转换[J].园艺学报, 2002, 29(2): 100~104.
    119.娄群峰,陈劲枫, Molly Jahn,等.黄瓜全雌性基因连锁的AFLP和SCAR分子标记[J].园艺学报, 2005, 32(2): 256~261.
    120.杜胜利,张桂华,李淑菊,等.黄瓜抗白粉病基因AFLP标记的SCAR转换[J].园艺学报, 2005, 32(6): 1095~1097.
    121.张桂华,杜胜利,王鸣,等.与黄瓜抗白粉病相关基因连锁的AFLP标记的获得[J].园艺学报, 2004, 31(2): 189~192.
    122.海燕,何宁,康明辉,等.新型分子标记SRAP及其应用[J].河南农业科学, 2006, 9: 9~11.
    123.刘仁虎,孟金陵. MapDraw,在Excel中绘制遗传连锁图的宏[J].遗传, 2003,25(3): 317~321.
    124.McIntosh R.A., Hart G.E., Devos K.M., et al. Catalogue of gene symbols for wheat, http://grain.jouy.inra.fr/ggpages/wgc, 1999.
    125. http://icgr.caas.net.cn/xw/upload/%B8%BD%BC%FE5.doc
    126.Ramachandran C., and Seshadri V.S.. Cytological analysis of the genome of cucumber(Cucumis sativus L.) and muskmelon (Cucuntis melo L.)[J]. Z. Pflanzenzuecht., 1986, 96: 25~38.
    127.Staub J.E., and Meglic V.. Molecular genetic markers and their legal relevance for cultivar discrimination: a case study in cucumber[J]. HortTechnology, 1993, 3: 291~300.
    128.方宣钧,吴为人,唐纪良,主编.作物DNA标记辅助育种[M].北京:科技出版社, 2001, pp: 51.
    129.潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学进展, 2005, 15(5): 407~413.
    130.尤春源.棉花陆海杂交F2群体连锁图谱构建及纤维品质与产量性状QTL定位,硕士学位论文.新疆农业大学, 2007, pp: 51.
    131.孙德生,李文滨,张忠臣,等.大豆株高QTL发育动态分析[J]. 2006, 32(4): 509~514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700