以二氧化硅为基体的新型传感材料的制备、表征和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于被掺杂、吸附或镶嵌的传感物质而言二氧化硅是一个优良的基体材料,它具有较高的热稳定性和化学稳定性、高绝缘性、对可见光透明等优点,目前已成为重要的催化剂载体和高化学活性的纳米材料的承载基体,在研究和生产中有广泛的应用。
     硅胶作为一种重要的二氧化硅材料具有多孔性和高吸附性的特点。具有高吸附能力的多孔硅胶已被直接运用于湿度传感器,同时也被广泛应用于各种溶剂中微量成分的富集检测。而更广泛的运用于传感器的是掺杂有或固载有各种传感物质的硅胶材料。本文研究了具有色度传感特性和磷光传感特性的含钒硅胶干凝胶。目前掺杂或未掺杂的含钒硅胶的干凝胶、薄膜和块体材料的研究已经引起了极大的关注和兴趣,因为这种材料在催化、热致变色、电致变色和信号转换设备等各个领域有着广阔的用途。在上世纪90年代,含钒硅胶干凝胶遇水变红的特性已经被用于湿度传感器的研制,而这种材料在水存在的条件下被乙醇还原而变成黄绿色的特性第一次在本研究中用于乙醇中微量水分的色度传感研究。本文研究的含钒硅胶干凝胶以104.5 mL正硅酸乙酯、1.4259 g偏钒酸铵、117 mL乙醇和108 mL二次去离子水为原料经过溶胶凝胶的方法制成,具有廉价低毒的优点。在制备过程中未引入酸、碱等加快凝胶速度的催化剂,使样品具有很高的纯度,这一优点简化了制备工艺和对样品的颜色起源以及磷光起源的分析。实验发现经过在500℃下焙烧l小时处理后的含钒硅胶干凝胶薄片呈现无色透明状,当冷却后的干凝胶薄片接触环境空气时,薄片在3秒钟内变为橙红色,显示了本实验制备的含钒硅胶材料具有很高的空气湿度传感灵敏度和传感速率。热失重分析显示薄片能吸收约为自身重量21%的水份,并且在100℃下加热,能够除去所有物理吸附的水份,表明这种湿度指示材料很容易再生。光学显微照片显示薄片表面有大量孔洞,表明薄片具有高吸附能力。电子自旋共振实验发现含钒硅胶干凝胶薄片中的V5+在水存在的条件下被乙醇还原成特征颜色为蓝绿色的四价含氧钒离子[VO(H2O)5]2+。浸泡在含水乙醇中的薄片同时生成红色的络合了两个水分子的五价钒离子中心生色团和蓝绿色的[VO(H2O)5]2+生色团。红色和蓝绿色混合成黄绿色,黄绿色的互补色是蓝色。本研究运用基于MATLAB的自编程序提取了浸泡在不同水含量的乙醇溶液中的含钒硅胶干凝胶薄片的照片图像的B原色强度数值,绘制了B值与乙醇溶液中水分含量的关系曲线,发现B值随着水含量单调变化。通过测定含钒硅胶干凝胶薄片的照片图像的B值可以定量检测乙醇溶液中的水分含量,水浓度的检测下限小于1%。作为一种色度测量方法,本研究使用的设备是普通数码相机,省去了紫外一可见分光光谱仪或红外吸收光谱仪等专业色度分析仪器的昂贵费用,同时有具有好的分析效果。
     实验发现经过在800℃和1100℃下焙烧1小时的含钒硅胶干凝胶薄片能够发射峰值为527nm(800℃)和537nm(1100℃)的强烈磷光。光学显微照片显示经过800℃焙烧的薄片表面有大量孔洞,而在1100℃下焙烧过的薄片表面致密,呈现玻璃态。水、乙醚,硫代硫酸钠和氢氟酸能够渗入经过800℃焙烧的薄片内部猝灭其磷光。这个现象表明经过在800℃下焙烧的含钒硅胶干凝胶薄片可以用作水、乙醚,硫代硫酸钠和氢氟酸的磷光传感材料。实验发现,经过500℃焙烧的薄片没有磷光,而在1100℃下焙烧的薄片的磷光比在800℃下焙烧的更强烈。这个实验现象不能用已有的理论解释。结合在TEM实验中发现了五氧化二钒纳米晶的实验事实,本文对含钒硅胶干凝胶薄片的磷光发射机理和水对磷光猝灭机理的解释做了新的尝试:含钒硅胶干凝胶薄片的磷光发射来自于具有量子尺寸效应的五氧化二钒纳米晶;水对磷光的猝灭作用来自于渗透了水的Si02基体对五氧化二钒纳米晶的介电限域效应。
     自上世纪八十年代末纳米科技兴起以来,人们对嵌入二氧化硅基体中的纳米材料的奇异的物理、化学性质展开了深入的研究。嵌入二氧化硅基体中的锗纳米晶展现了有巨大应用前景的新颖的光电性质,有望成为未来纳米电子学和纳米光学的一个重要基础材料,从而引起了研究者的普遍重视。迄今,在以往有关嵌入SiO2膜中Ge纳米晶(nc-Ge)制备方法(如离子注入法、磁控射频溅射法、化学气相沉积法,溶胶凝胶法等)的报道中,一般需附加400℃以上温度的退火处理才可形成Ge纳米晶,这会增加Ge纳米晶制备的技术复杂性和成本。而且对离子注入方法来说,以往研究中使用的离子注入剂量不高,低于l×1017cm2,使得纳米晶浓度过低,光荧光强度不高。目前高剂量注入极端条件下产生的新现象和新物性还不清楚,有待开展研究。本研究首次报道了不经过退火处理,通过大幅提高Ge离子注入量直接制备nc-Ge的方法,对Ge纳米晶的形成机理进行了实验研究和讨论,对镶嵌nc-Ge的Si02膜的光致发光谱进行了实验研究,并对其发光机理进行了探讨。本研究提出的纳米晶制备技术可精确控制锗纳米晶的分布和尺寸,可用于高质量锗纳米晶的制备。实验中观察到的锗纳米晶的发光特性可用于射线剂量的光学探测。
Silicon dioxide is a kind of excellent substrate material for the adulterated or adsorbed or embedded sensitive species, which has some advantages as the substate, such as inert to reactant, heat stability, high insulative ability and great transparency, and has been widely applied to research and industry as the important substrate of catalyst and the vivacious material at nanometer scale.
     Silica gel is an important kind of silicon oxide with porous structure and high adsorptive ability. Pure porous silica gel has been directly applied to humidity measurement and the detection of trace substance in solvent, after which had been adsorbed and condensed by silica gel. However, most of silica gels used in sensors have to load special sensitive species to detect the analytes. This thesis studied the fabrication of vanadia-silica xerogel and its application for chroma sensor and phosphorescence sensor. Synthesis and stabilization of pure and doped vanadia-silica xerogels, either in the shape of thin films or bulk materials, have attracted considerable attention due to their diverse applications in thermochromic, electrochromic and switching devices. In 1990's, researchers had developed humidity sensor with vanadia-silica xerogels as the sensitive element which could become red when adsorbing water vapour in air. In this study, it is first reported the fabrication of the sensor based on the color change of vanadia-silica xerogels slice due to the reduction of V5+ ions in the xerogel slice by ethanol with water's participation, which was used to detect the trace water in ethanol. The vanadia-siiica xerogels slice is low-cost, low toxic, mass produce, easy to fabricate and less chemicals consumption, prepared simply with 104.5 mL tetraethyl orthosilicate, 1.4259 g ammonium metavanadate, 117 mL ethanol and 108 mL redistilled water. During the gelation of colloid, no acidic or alkaline catalyst was employed, which ensures the purity of vanadia-silica xerogels and simplifys the analysis of chromophore and phosphorescence resource. It can be observed that the vanadia-silica xerogels slice heated at 500°C for 1 h is colorless and transparent. When the cooled slice expose to ambient air, it turn red within 3 seconds. This behavior suggests that the slice has ultra sensitivity and excellent response speed toward humidity. With thermogravimetric analysis experiment, it's discovered that the maximal weight of water adsorbed by the slice was about 21% (w/w) of that of slice and that the slice would be completely dehydrated when heated at 100°C, which indicates the humidity sensing ability of the slice is reproducible. The microscopic photograph of the slice reveals that the adsorption ability of the slice comes from its porous structure. The results of ESR measurement shows V5+ in the slice could be deoxidized to [VO(H2O)5]2+ which is green blue by ethanol on condition that water participated in the reaction. When the xerogel slices are soaked in ethanol solution containing water, the green blue [VO(H2O)5]2+ and the red pseudooctahedral oxovanadium(V) centers produced by the coordination of two water molecules to the vanadium metal center will be formed, and then the color of the slice will turn into green yellow whose complementary color is blue. In this reseach work, B values of the images captured by a commecial digital camera of the slices soaked in ethanol solution with diverse water content were collected by home made program based on MATLAB software, and then the relationship curve of B value and water content was achieved. It's found that the B value monotonously increased with water content decreasing. This relationship can be applied to the detection of trace water in ethanol solution with detection limit of 1 v/v %. The detection method of water content used in this work only need a family digital camera instead of expensive UV-Vis or IR. spectrophotometer, simultaneously owning a good measurement precision.
     Furthermore, it's found that the vanadia-silica xerogel slice could emit phosphorescence with the wavelength peaked at 527 nm and 537 nm after heated at 800°C and 1100°C for 1 hour respectively. Microscopic photograph shows the porous structure of the surface of the slice after heated at 800°C, while the surface of the slice is glassy after heated at 1100°C. Water, ether, sodium hyposulphite aqueous solution and hydrofluoric acid can penetrate into the slice heated at 800°C and quench its phosphorescence, suggesting that the slice heated at 800°C can be used as phosphorescence sensor for water, ether, sodium hyposulphite aqueous solution or hydrofluoric acid. The experiments demonstrated that the slice couldn't emit phosphorescence heated at 500°C, and that the phosphorescence intensity of the slice heated at 1100°C was larger than that of 800°C sample. A possible interpretation is presented based on the observation of V2O5 nanocrystal in the slice heated at 1100°C in TEM experiment. The quantum size effect of V2O5 nanocrystal leads to its phosphorescence emission, and the dielectric confinement effect of the SiO2 matrix surrounding V2O5 nanocrystal leads to the phosphorescence quenching.
     Since the end of 1980’s, the novel physical and chemical properties of nanometer materials embedded in SiO2 matrix have been intensively studied. Ge nanocrystal embedded in SiO2 matrix has shown its potential applications due to its novel optical and electrical properties, and will be an important basic material of nanoelectronics and nanooptics components. So far, in the reported preparation methods of nano-crystalline Ge (nc-Ge) embedded in SiO2 matrix mainly inclouding magnetron co-sputtering, chemical vapor deposition (CVD), ion implantation and sol-gel method, heat process at temperature above 400°C is a necessary procedure for preducing nanocrystal, which will increase the preparation cost and difficulty. As to ion implantation method, because the ion fluence of 1×1017cm-2 has greatly exceeded a solid surface atomic density (~1×1015 cm-2),so the ion implantation with the fluence above 1×1017 cm-2 was less carried out for nano-crystalline Ge preparation. As a result, the density of nano-particles is low and the intensity of corresponding photoluminescence is weak. It has not been clarified whether Ge nanocrystal with high-intensity photoluminescence can be prepared by ion implantation with higher fluence than 1×1017 cm-2. In this thesis, a new preparation method is reported, by which, nc-Ge can be directly produced by high dose ion implantation without subsequent annealing. The mechanisms of the formation and the fluorescence emission of nc-Ge are discussed. The preparation technique of nc-Ge used in this reseach work can be applied to produce high quality nc-Ge, owning to the advantages of the precise control of the depth distribution and the required density of nc-Ge in matrix by changing ion energy and fluence. The photoluminescence property of nc-Ge can be applied to fluorescence sensor for radiation fluence detection.
引文
[1] 赵九生,催化剂生产原理.科学出版社,北京 1986, p147.
    [2] 沈钟,王果庭,胶体与表面化学.化学工业出版社,北京 1991, p56.
    [3] 沈钟,王果庭,胶体与表面化学.化学工业出版社,北京 1991, p239.
    [4] 何凯,段滋华,硅胶的制备与成型加工.中国非金属矿工业导刊 2006, 5, 46-48.
    [5] 戴安邦,硅酸聚合作用的一个理论.南京大学学报(化学版)1963, 1, 1.
    [6] 沈钟,王果庭,胶体与表面化学.化学工业出版社,北京 1991, p245.
    [7] Wang C T, Wu C L, Chen I C, Hang Y H, Humidity sensors based on silica nanoparticle aerogel thin films. Sensors and Actuators B: Chemical 2005, 107, 402-410.
    [8] Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E, Pivin J C, Mesoporous silica thin films for alcohol sensors. Journal of the European Ceramic Society 2001, 21, 1985-1988.
    [9] Ayers M R, Hunt A J, Molecular oxygen sensors based on photoluminescent silica aerogels. Journal of Non-Crystalline Solids 1998, 225, 343-347.
    [10] Lam S K, Chan M A, Lo D, Characterization of phosphorescence oxygen sensor based on erythrosin B in sol-gel silica in wide pressure and temperature ranges. Sensors andActuators B: Chemical, 2001, 73, 135-141.
    [11] Wang H, Xu G B, Dong S J, Electrochemiluminescence sensor using tris(2,2'-bipyridyl)ruthenium(II) immobilized in Eastman-AQ55D-silica composite thin-films. Analytica Chimica Acta 2003, 480, 285-290.
    [12] Santos A S, Freire R S, Kubota L T, Highly stable amperometric biosensor for ethanol based on Meldola's blue adsorbed on silica gel modified with niobium oxide. Journal of Electroanalytical Chemistry 2003, 547, 135-142.
    [13] Zhang F F, Wang Q, Wang X L, Sun Z D, Zhu Z Q, Xian Y Z, Jin L T, Yamamoto K, Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis. Journal of Electroanalytical Chemistry 2004, 571, 133-138.
    [14] Anitha K, Mohan S V, Reddy S J, Development of acetylcholinesterase silica sol-gel immobilized biosensor—an application towards oxydemeton methyl detection. Biosensors and Bioelectronics 2004, 20, 848-856.
    [15] Sharma R K, Goel A, Development of a Cr(III)-specifie potentiometric sensor using Aurin tricarboxylic acid modified silica. Analytica Chimica Acta 2005, 534, 137-142.
    [16] Mendez Alvarado E, Laguna Rojas R, Andrade-Lucio J A, Hemondez-Cruz D, Lessard R A, Avina-Cervantes J G, Design and characterization of pH sensor based on sol—gel silica layer on plastic optical fiber. Sensors and Actuators B: Chemical 2005, 106, 518-522.
    [17] Oberg K I, Hodvss R, Beauchamp J L, Simple optical sensor for amine vapors based on dyed silica microspheres. Sensors and Actuators B: Chemical 2006, 115, 79-85.
    [18] Zhang L L, Zheng X W, A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique. Analytica Chimica Acta, 2006, 570, 207-213.
    [19]Yao K, Zhu Y H, Wang P, Yang X L, Cheng P Z, Lu H, ENFET glucose biosensor produced with mesoporous silica microspheres. Materials Science and Engineering: C 2007, 27, 736-740.
    [20] Gao F, Tang L J, Dai L, Wang L, A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006, In Press.
    [21] Lin T Y, Wu C H, Brennan J D, Entrapment of horseradish peroxidase in sugar-modifiedsilica monoliths: Toward the development of a biocatalytic sensor. Biosensors & Bioelectronics 2007, 22, 1861-1867.
    [22] Pinheiro C, Lima J C, Parola A J, Using hydrogen bonding-specific interactions to detect water in aprotic solvents at concentrations below 50 ppm. Sensors and Actuators B 2006, 114, 978-983.
    [23] Niu C G, Guan A L, Zeng G M., Liu Y G, Li Z W, Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta 2006, 577, 264-270.
    [24] Kang I J, Rezac M E, Pfromm P H, Membrane permeation based sensing for dissolved water in organic micro-aqueous media. Journal ofMembrance Science 2004, 239, 213-217.
    [25] Glenn S J, Cullum B M, Nair R B, Nivens D A, Murphy C J, Michael AS, Lifetime-based fiber-potic water wensor using a luminescent complex in a litium-treated Nation? membrane. Analytica Chimica Acta 2001, 448, 1-8.
    [26] Foster N S, Amonette J E, Autrey T, Ho J T, Detectioon of trace levels of water in oil by photoacoustic spectroseopy. Sensors and Actuators B 2001, 77, 620-624.
    [27] Clough A E, Measuring the water content of synthetic lubricants with polymer-coated sensors. Analytica Chimica Acta 1995, 315, 15-26.
    [28] 黄家才,石要武,高精度石油水分在线测量技术的研究.剂量学报 2006, 22, 175-178.
    [29] 汤知,张为民,光纤传感式红外水分测定方法的研究.剂测技术 2006, 26, 1-3.
    [30] 董亚峰,王鸣,基于驻波原理的无接触土壤含水率测量方法的研究.农机化研究 2007, 85-88.
    [31] 赵敦忠,梅一飞,马振珠,内墙涂料中水分自动快速测定的研究.测试技术 2007, 31-34.
    [32] 蒋治良,夏绍喜,肖丹,王柯敏,有机相酪氨酸酶生物传感器.广西师范大学学报 1996, 14, 38-42.
    [33] 王贵彦,史秀棒,张建恒,梁卫理,TDR 法、中子法、重量法测定土壤含水量的比较研究,河北农业大学学报 2000, 23, 23-26.
    [34] 毛飞,任三学,刘庚山,郭安红,张佳华,中子仪器量农田土壤水分精度的比较,中国生态农业学报 2005, 13, 103-106.
    [35] 钦理力,核磁共振仪在油脂及油料分析中的应用.西部粮油科技 2000, 25, 44-45.
    [36] 杜先锋,张永林,粮食干燥过程中的在线水分测量方法.粮食加工与食品机械 2003, 8, 51-53.
    [37] 徐志伟,陈群,张书河,青紫类舌色的色度量化特征研究新探.中医药学刊 2004, 22, 1374-1376.
    [38] 李霞,侯彩云,茶多酚新型检测方法的实验研究.检测技术 2004, 10, 80-82.
    [39] 谢锋云,基于RGB法的葡萄干颜色分选.华东交通大学学报 2004, 21, 72-74.
    [40] 贾渊,汤晓艳,姬长英,牛肉颜色的RGB特征.食品科学 2004, 25, 86-89.
    [41] 贾渊,姬长英,农产品自动检测中的常见颜色模型. 农机化研究 2004, 4, 205-209.
    [42] 刘光蓉,管庶安,周红,基于图像处理技术的大米色泽检测. 粮油仓储科技通迅 2006, 1, 8-9.
    [43] 任云,色彩视觉与色彩设备的管理,印前技术 2004, 214, 60-63.
    [44] 张之,电脑中的彩色模型,电脑技术 1998, 10, 60-62.
    [45] 金宝智,图像传感器:CCD与CMOS的对比.中心技术 2005, 5, 80-81.
    [46] 宋敏,郐新凯,邓亚茹,CCD与CMOS图像传感器探测性能比较.半导体光电i 2005,26, 5-9.
    [47] 朱静,纳米材料和器件、清华大学出版社,北京 2003, p3.
    [48] Kubo R, Electronic properties of metallic fine particles. J. Phys. Soc. Jpn. 1962, 17, 975-989.
    [49] Sattler K, Mühlbach J, Recknagel E, Generation of metal clusters containing from 2 to 500 atoms. Phys. Rev. Lett. 1980, 45, 821-824.
    [50] Kubo R, KawabataA, Kobayashi S, Electronic properties of small particles. Annu. Rev. Mater. Sci. 1984, 14, 49 - 66.
    [51] Denton R, Muhlschlegel B, Scalapino D, Thermodynamic properties of electrons in small metal particles. J. Phys. Rev. B 1973, 7, 3589-3607.
    [52] Buttet J, Car R, Myles C W, Size dependence of the conduction-electron-spin-resonance g shift in a small sodium particle: orthogonalized standing-wave calculations. Phys. Rev. B, 1982, 26, 2414-2431.
    [53] Denton R, Muhlschlegel B, Scalapino D. Electronic heat capacity and susceptibility of small metal particles. J. Phys. Rev. Lett. 1971, 26, 707-711.
    [54] 张立德,牟季美,纳米材料和纳米结构. 科学出版社,北京 2002,p52.
    [55] Halperin W P, Quantum size effects in metal particles. Rev. of Modem Phys. 1986, 58, 533-606.
    [56] Ball P, Garwin L, Science at theatomic scale. Nature 1992, 355, 761-769.
    [57] T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B 1993, 4, 4569-4584.
    [58] 同[54],p63.
    [59] Feldheim D L, Keating C D, Self-assembly of single electron transistors and related devices. Chemical Society Reviews 1998, 27, 1-9.
    [60] 同[54],p3.
    [61] 朱静,纳米材料和器件,清华大学出版社,北京 2003,p200-235.
    [62] Persson B N J, BaratoffA, Self-consistent dynamic image potential in tunneling. Phys. Rev. B 1988, 38, 9616-9627.
    [63] Frensley W R, Nanostructure physics and fabrication. Academic Press Inc., Boston 1989, p211.
    [64] Ingold G L, Nazarov Yu V, Single change tunneling. Plenum Press, New York 1991, p21.
    [65] Fulton T A, Dolan G J, Observation of single-electron charging effects in small tunnel junctions. Phys.Rev.Lett. 1987, 59, 109-112.
    [66] Efros A L, Efros Al L, Interband light absorption in semiconductor sphere. Semiconductors 1982, 16, 1209-1214.
    [67] Brus L E, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566-5571.
    [68] Bros L E, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state.. J. Chem. Phys. 1984, 80, 4403-4409.
    [69] Gaponenko S V, 半导体纳米晶体的光学性质. 兰州大学出版社,兰州 2003, p21-25.
    [70] 同[69], p6.
    [71] Brus L E, Electronic wave functions in semiconductor cluster: Experiment and theory. J. Chem. Phys. 1986, 90, 2555-2560.
    [72] KayanumaY, Wannier exciton in microcrystals. Solid state comm. 1986, 59, 405-408.
    [73] Schmidt H M, Weller H, Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined exciton. Chem. Phys. Lett. 1986, 129, 615-618.
    [74] Kayanuma Y, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Review. B 1988, 38, 9797-9805.
    [75] Ekimov A I, Efros Al L, Ivanov M 6, Onushehenko A A, Schumilov S K, Donor-like excitonin zero-dimension semiconductor structures. Solid State Comm. 1989, 69, 565-568.
    [76] Nair S V, Sinha S, Rustagi K C, Quantum size effects in spherical semiconductor microcrystals. Phys. Rev. B 1987, 35, 4098-4101.
    [77] Hu Y Z, Lindberg M, Koch S W, Theory of optically excited intrinsic semiconductor quantum dots. Phys. Rev. B 1990, 42, 1713-1723.
    [78] 同[69], p98-99.
    [79] Landsberg P T, Recombination in Semiconductors. Cambridge University Press, Cambridge 1991, pl25.
    [80] Grabovskis V Ya, Dzenis Ya, Ekimov A I, Kudryavtsev I A, Tolstoi M N, Rogulis U T, Photoionization of semiconductor microcrystals in glasses. Sov. Phys. Sol. Stat. 1989, 31, 149-154.
    [81] Chepic D I, Efros Al L, Ekimov A I, Ivanov M 6, Kharchenko V A, Kudriavtsev I A, Yazeva T V, Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin. 1990, 47, 113-127.
    [82] Mathotra J, Hagan D J, Potter B 6, Laser-induced darkening in semiconductor-doped glasses. J. Opt. Soc. Am. B 1991, 8, 1531-1536.
    [83] Miyoshi T, Miki T, Time-resolved luminescence and ESR of CdS Se-doped glasses. Superlat. Microstr. 1992, 12, 243-245.
    [84] Jin C, Yu J, Qin W, Zhao J, Zhou E, Dou K, Liu J, Huang S, Photodarkening effect and optical nonlinearity in CdS Se-doped glasses. Lumin. 1992, 53, 4836-4839.
    [85] Gribkovskii V P, Theory of Light Absorption and Emission in Semiconductors. Naukai Tekhnika, Minsk 1975, p305.
    [86] Blakemore J S, Solid State Physics. Cambridge University Press, Cambridge 1985, pl988.
    [87] Brus L E, Szajowski P P, Wilson W L, Harris T D, Shuppler S, Citrin P H, Electronic sepectroscopy and photophysics of Si nanocrystals. Relationship to bulk c-Si and porous Si. Journal of the American Chemical Society 1995, 117, 2915-2922.
    [88] Kanemitsu Y, Light emission from porous silicon and related materials. Phys. Rep. 1995, 263, 1-92.
    [89] Fauchet P M, Photoluminescence and electroluminescence of porous silicon. J. Luminescence 1996, 70, 294-309.
    [90] Gaponenko S V, Petrov E P, Woggon U, Wind 0, Klingshim C, Xie Y H, Germanenko I N,StrpakA P, Steady-state and time-resolved spectroscopy of porous silicon. J. Lumin 1996. 70, 36-76.
    [91] 同[69], p86.
    [92] Bhargava R N, Gallagher D, Hong X, Nurmikko A, Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416-419.
    [93] Bhargava R N, Doped nanoctystalline materials-physics and application. J. Lumin 1996, 70, 2308-2311.
    [94] Livermore C, The coulomb blockade in coupled quantum dots. Science 1996,274, 1332-1335.
    [95] Notal R, Ledentsov N N, Dliweritz L, Hohenstein M, Ploog K, Direct Synthesis of corrugated superlattices. Phys. Rev. Lett. 1991, 67, 3812-3815.
    [96] Fafard S, Leonard D, Merz I L, Pen-off P M, Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAsGa quantum dots. Appl. phys. Lett. 1994, 65, 1388-1390.
    [97] Marzin J Y, Gerard J M, Izrael A, Barrier D Bastard, Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 1994, 73, 716-719.
    [98] Wang P D, Ledentsov N N, Sotomayor-Torres C M, Kopev P S, Ustinov V M, Optical characterization ofsubmonolayer and monolayer InAs structures grown in a GaAs matrix Appl. Phys. Lett. 1994, 64, 1526-1528.
    [99] Seorgsson K, Carls son N, Samuel son L, Seifert W, Wallenberg L R, Transmission electron microscopy investigation of the morphology in InP Stranski-Krastanow islands-grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1995, 67, 2981-2982.
    [100] Lowich M, Rabe M, Stegeman B, Henneberger F, Grundmann M, Tuerck V, Bimberg D, Zero-dimensional excitons in (Zn,Cd) Se quantum structures. Phys. Rev. B 1996, 54, 107-117.
    [101] Hatami E, Ledentsov N N, Grundmann M, Bohrer J, HeirmchsdorfiF, Beer M, Bimberg D, Ruvimov S S, Wemer P, Gosele U, Heydenreich J, Richter U, Ivanov S V, Meltser B Ya, Kopev P S, Aiferov Zh, Radiative recombination in type-II GaSb/GaAs quantum dots. Appl. Phys. Lett. 1995, 67, 6568-6572.
    [102] Alivisatos A P, Electrical studies of semiconductor-nanocrystal colloids. MRS Bulletin1998, 23, 18-23.
    [103] NozikA J, Micic O I, Colloidal quantum dots of III-V semiconductor .MRS Bulletin, 1998, 23, 24-30.
    [104] Fumkawa S, Miyasato T, Quantum size effect on the optical band gap of microcrystalline Si:H. Phys. Rev. B 1988, 38, 5726-5729.
    [105] Hayashi S, Kanzawa Y, Kataoka M, Nagareda T, Yamamoto K, Photoluminescence spectra of clusters of group IV elements embedded in SiO2 matrices. Zeitschrift fur Physik D (Atoms, Molecules and Clusters) 1993, 26, 1446-1450.
    [106] Yablonovitch F, Photonic crystals. J. Mod. Opt. 1994, 41, 173-194.
    [107] Hayashi S, Fujii M, Yamamoto K, Quantum size effect in Ge microcrystals embedded in SiO2 thin film. Jap. J. Appl. Phys. 1989, 28, 1464-1466.
    [108] MaedaY, Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum confinement mechanism. Phys. Rev. B 1995, 51, 1658-1670.
    [109] Lifshitz I M, Slyozov V V, Kinetics of diffusive decay of supersaturated solid solutions. Phys. Chem. Sol. 1961, 28, 35-36.
    [110] Abraham E E, Homogeneous nucleation theory. Academic Press, New York 1974, p56.
    [111] Koch S W, Dynamics of first order phase transitions in equilibrium and nonequilibrium systems. Springer Berlin 1984, p78.
    [112] Slyozov V V, Sagalovich V V, Diffusive decay of solid solutions. Sov. Phys. Uspekhi. 1987, 151, 67-106.
    [113] Liu L C, Risbud S H, Quantum dot size-distribution analysis and precipitation stages in semiconductor doped glasses. J. Appl. Phys. 1990, 68, 28-32.
    [114] 林理彬,辐射固体物理学导论.四川大学出版社,成都 2004, pl6.
    [115] 同[114], p79-94.
    [116] Betbe H A, Moliere’s theory of multiple scattering. Phys. Rev. 1953, 89, 1256-1266.
    [117] 同[114], p41-52.
    [118] Crispin A, Fowler G N, Density effect in the ionization energy loss of fast charged particles in matter. Rev. Mod. Phys. 1970, 42, 290-315.
    [119] Walske M C, The stopping power of K-electron. Phys. Rev. 1952, 88, 1283-1289.
    [120] Lindhard J, ScharffM, Energy dissipation by ions in the key region. Phys. Rev. 1961, 124,128-130.
    [121] Biersack J P, Ziegler J F, Ion implantation techniques, Springer-Verlag, 1982, pl22.
    [122] 张通知,吴瑜光,粒子束材料改性科学和应用,科学出版社,北京 1999,p49.
    [123] Nishimaki N, MatsusakaY, Doj Y, J. Phys. Soc. Japan 1972, 3, 424- 429.
    [124] Schneider L, F centers in additively coloured KCl:NaCl crystals. Phys. Rev. 1969, 177, 1324-1328.
    [125] Schneider I, Rabin H, Ionized F-aggregate color centers in KC1. Phys. Rev. Lett. 1964, 13, 690-692.
    [126] Chandra A, Impurity effects on the ionization states of F-aggregate color centers in sodium fluoride. J. Chem. Phys. 1969, 51, 1499-1509.
    [127] Delbecq C J, Hayes W, Yuster P H, Absorption spectra of F2, Cl2, Br2, and I2 in the alkali halides. Phys. Rev. 1961, 121, 1043-1050.
    [128] Cohen M H, Kanzig W, Woodruff O T, The hyperfine structure of the Vi-center. J. Phys. Chem. Sol. 1959, 11, 120-130.
    [129] Bass I L, Mieher R L, Electron-nuclear double-resonance study of the self-trapped hole associated with lithium in NaF. Phys. Rev. 1965, 175, 421-437.
    [130] Aguilar M, Jaque F, Agullo-Lopez F, Heterogeneous nucleation model for the irradiation coloring of alkali halides. Journal de Physique (Paris), Colloque, 1979, 41, 341-343.
    [131] 曹建中,半导体材料的辐射效应,北京,科学出版社,北京 1993,p89.
    [132] 同[114],p157-180.
    [133] 同[114],p108-114.
    [134] 黄昆,韩汝琦,固体物理学.高等教育出版社,北京 1988,p441.
    [135] 张正南,许振嘉,物理学报 1982,31,994-998.
    [136] Auston D H, CW argon laser annealing of ion-implanted silicon. Appl. Phys. Lett. 1978, 33, 539-541.
    [137] Sparks M, Theory of “Supertails” of ions bombarded into crystals. Phys. Rev. Lett. 1966, 17, 1247-1250.
    [138] Sparks M, Deep multistream diffusion in ion implantation. Phys. Rev. 1969,184, 416-425.
    [139] Shiimak J, Neutron transmutation doping in semiconductors: science and applications. Phys. Solid State 1999, 41, 716-719.
    [140] Cullen D E, ENDF/B Cross Sections, Brookhaven National Lab. 1972, p75.
    [141] Scheweinler H C, Some consequences of thermal neutron capture in silicon and germanium. J. Appl. Phys.1959, 30, 1125-1126.
    [142] Tanenbaum M, Mills A D. Preparation of uniform resistivity n-type silicon by nuclear transmutation [J]. Journal of Electrochemical Society 1961, 108, 171-176.
    [143] 张通知,吴瑜光,粒子束材料改性科学和应用,科学出版社,北京 l999, p50.
    [1] Stiegman A E, Eckert H, Plett G, Kim S S, Anderson M, Yavrouia A, Vanadia/silica xerogels and nanocomposites. Chem. Mater. 1993, 5, 1591-1594.
    [2] Dutoit D C M, Schneider M, Fabrizioli P, Baiker A, Vanadia-silica low-temperature aerogels:influence of aging and vanadia loading on structural and chemical properties. Chem. Mater. 1996, 8, 734-743.
    [3] Klett U, Fricke J, Vanadia-silica aerogels from vanadylacetylacetonate. Journal of Non-Crystalline Solids 1998, 225, 188-191.
    [4] Sujatha Devi P, Ganguli D, Vanadyl ion stability in silica gels. Journal of Non-Crystalline Solids 1998, 240, 50-54.
    [5] Dutoit D C M, Reiche M A, Baiker A, Vanadia-silica aerogels Structure and catalytic properties in selective reduction of NO by NH3. Applied Catalysis. 1997, 13, 275-288.
    [6] Mishra G S, Kumar A, Silica gel supported [1,4-bis(salicylidene amino)-phenylene] vanadium oxo complex catalyst for the oxidation of n-heptane using molecular oxygen,Journal of Molecular Catalysis A:Chemical. 2003, 192, 275-280.
    [7] Ismail Adel Ali, Ibrahim Ibrahim Ahmed, Mohamed Reda Mohamedy, Sol-gel synthesis of vanadia-silica for photocatalytic degradation of cyanide.Applied Catalysis B:Environmental 2003, 45, 161-166.
    [8] Berndt H, Martin A, Buckner A, Schreier E, Muller D, Kosslick H, Lucke Wolf G U, Structure and catalytic properties of VO×/MCM materials for the partial oxidation of methane to formaldehyde. Journal of catalysis 2000, 191, 384-400.
    [9] Kucherov A V, Ivanov A V, Kucherova T N, Nissenbaum V D, Kustov L M, Peculiarities of ethane oxidation on V2O5/SiO2 catalysts with different silica structure and morphology. Catalysis Today 2003, 81, 297-305.
    [10] Nguyen L D, Loridant S, Launay H, Pigamo A, Dubois J L, Millet J M M, Study of new catalysts based on vanadium oxide supported on mesoporous silica for the partial oxidation of methane to formaldehyde:catalytic properties and reaction mechanism. Journal of Catalysis 2006, 237, 38-48.
    [11] Yu Honglu, MacGregor John F, Monitoring flames in an industrial boiler using multivariate image analysis. AIChE Journal 2004, 50, 1474-1483.
    [12] Janzen Michael C, Ponder Jennifer B, Bailey Daniel P, Ingison crystal K, Suslick Kenneth S, Colorimetric sensor arrays for volatile organic compounds. Anal.Chem. 2006, 78, 3591-3600.
    [13] Hirayama Etsuko, Sugiyama Tsunemi, Hisamoto Hideaki, Suzuki Koji, Visual and colorimetric lithium ion sensing based on digital color analysia. Anal.Chem .2000, 72, 465-474.
    [14] Bharati M H, MacGregor J F, Tropper W, Softwood lumber grading through on-line multivariate image analysis techniques. Ind. Eng. Chem. Res. 2003, 42, 5345-5353.
    [15] Zhang chen, Suslick Kenneth S, A colorimetric sensor array for organics in water. J. Am. Chem. Soc. 2005, 127, 11548-11549.
    [16] Shylesh S, Singh A P, Vanadium-containing ordered mesoporous silicates: does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41?. Journal of Catalysis. 2005, 233, 359-371.
    [1] Stiegman A E, Eckert H, Plett G, Yavrouia, A, Vanadia/silica xerogels and nanocomposites [J]. Chemistry of Materials 1993, 5, 1591-1594.
    [2] Dutoit D C M, Reiche M A, Baiker A. Vanadia-silica aerogels Strueture and catalytic properties in selective reduction of NO by NH3[J], Applied Catalysis 1997, 13, 275-288.
    [3] Mishra G S, Kumar A. Silica gel supported [l,4-bis(salicylidene amino)-phenylene] vanadium oxo complex catalyst for the oxidation of n-heptane using molecular oxygen[J], Journal of Molecular Catalysis A: Chemical 2003, 192, 275-280.
    [4] Devi P S, Ganguli D, Vanadia-silica xerogels: optical and structural properties[J]. Journal of Non-crystalline Solids 2004, 336, 128-134.
    [5] Ruddy D A, Ohier N L, Bell A T, Thermolytic molecular precursor route to site-isolated vanadia-silica materials and their catalytic performance in methane selective oxidation[J]. Journal of Catalysis 2006, 238, 277-285.
    [6] Hess C, Drake I J, Hoefelmeyer J D, Partial oxidation of methanol over highly dispersed vanadia supported on silica SBA-15[J]. Catalysis Letters 2005, 105, 1-8.
    [7] Figueiredo M A, Faria A L D, Assis M D D, Synthesis by sol-gel process, characterization and catalytic activity of vanadia-silica mixed oxides[J]. Journal of Non-Crystalline Solids 2005, 351, 3624-3629.
    [8] Anpo M, Tanahashi I, Kubokawa Y, Photoluminescence and photoreduction of V2O5 supported on porous Vycor glass[J]. Journal of Physical Chemistry 1980, 84, 3440-3443.
    [9] Patterson H H, Cheng J, Despres S, Relationship between the geometry of the excited state of vanadium oxides anchored onto SiO2 and their photoreactivity toward CO molecules[J]. Journal of Physical Chemistry 1991, 95. 8813-8818.
    [10] Iwamoto M, Furukawa H, Matsukami K, Diffuse reflectance infrared and photoluminescence spectra of surface vanadyl groups. Direct evidence for change of bond strength and electronic structure of metal-oxygen bond upon supporting oxide[J]. Journal of America Chemistry Society 1983, 105, 3719-3720.
    [11] Iran K, Stiegman A E, Scott G W, Primary photophysical processes of discrete pseudotetrhedral oxovanadium centers dispersed in a silica xerogel matrix[J]. Inorganica chimicaActa 1996, 243, 185-191.
    [12] Kawashima M, Oda N, Uchida Y, Phosphorescence of vanadium oxide dispersed in silica[J]. Journal of Luminescence 2000, 87-89, 685-687.
    [13] Gritscov A M, Shvets V A, Kazansky B, A luminescence study of the photoreduction of vanadium (V) supported on silica gel. Chem. Phys. Lett. 1975, 35, 511-512.
    [14] Iran K, Hanning-Lee M A, Biswas A, Stiegman A E, Electronic structure of discrete pseudotetrahedral oxovanadium centers dispersed in a silica xerogel matrix: implications for catalysis and photocatalysis. Journal of the American Chemical Society 1995, 117, 2618-2626.
    [15] Devi P S, Ganguli D, Vanadyl ion stability in silica gels. Journal of Non-Crystalline Solids, 1998, 240, 50-54.
    [16] Kawashuna M, Oda N, Uchida Y, Vanadium ions in sol-gel silica studied by electron spin resonance, UV-visible absorption, diffuse reflectance, and photoluminescence spectroscopies. Journal of the Ceramic Society of Japan. 2002, 110, 507-511.
    [17] Takagahara T, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B 1993, 4, 4569-4584.
    [I] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 1990, 56, 2379-2380.
    [2] Morisaki H, Hashimoto H, Ping F W, Nozawa H, Ono H, Strong blue light emission from an oxygen-containing Si fine structure.. J. Appl. Phys. 1993, 74, 2977-2979.
    [3] Min K S, Shcheglov K V, Yang C M, Atwater Harry A, Bronger M L, Polman A,The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals. Appl. Phys. Lett. 1993, 68, 2511-2514.
    [4] Maeda Y, Visible photoluminescence from nanocrystalline Ge embedded in a glassy SiO2 matrix: Evidence in support of quantum confinement mechanism. Phys. Rev. B 1995, 51, 1658-1662.
    [5] Dutta A K, Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix frabricted by atmospheric pressure chemical vapor deposition. Appl. Phys. Lett. 1996, 68, 1189-1191.
    [6] Dimova-Malinovska D, Kamenova M, Sendova-Vassileva M, Marinova T, Krastev V, Photoluminescence and chemical bonding in porous silicon layers dependence on the P concentration in the Si substrate. Thin Solid Films 1996, 276, 248-252.
    [7] Henley W, Koshka Y, Lagowski J, Siejka J, Infrared photoluminescence from Er doped porous Si. Journal of Applied Physics 2000, 87, 7848-7852.
    [8] Afanasev V V, Fedorenko Y G, Stesmans A, Interface traps and dangling-bond defects in (100)Ge/HfO2. Applied Physics Letters 2005, 87, 32107-32111.
    [9] Kolobov A V, Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations. Journal of Applied Physics 2000, 87, 2926-2930.
    [10] Miyazaki S, Sakanoto K, Shiba K, Hirose M, Photoluminescence from anodized and thermally oxidized porous germanium. Thin Solid Films 1995, 255, 99-102. [II] Yoshihito Maeda, Nobuo Tsukamoto, Yoshiaki Yazawa, Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Applied Physics Letters 1991, 59,3168-3170.
    [12] Anna L Tchebotareva, Michiel J A de Dood, Julie S Bitteen, Harry A Atwater, Albert Polman, Quenching of Si nanocrystal photoluminescence by doping with gold or phosphorous Journal of Lwninescenece 2005, 114, 137-144.
    [13] Lee W S, Jeong J Y, Kirn H B, Chae K H, Whang C N, Im S, Song J H, Violet and orange luminescence from Ge-implanted SiO2 layers-Materials Science and Engineering B 2000, 69-70, 474-478.
    [14] Lopes J M J, Zwislak F C, Behar M, Fichtner P F P, Rebohle L, Skorupa W, Cluster coarsening and luminescence emission intensity of Ge nanoclusters in SiO2 layers. Journal of Applied Physics 2003, 94, 6059-6063.
    [15] Ma S Y. Ma Z C, Zong W H, Han H X, Wang Z P, Li G H, Qin G, Qin G G, Photoluminescence from nanometer Ge particle embedded Si oxide films. Journal of Applied Physics 1998, 84. 559-563.
    [16] Schoisswohl M, Cantin J L, Chamarro M, Von Bardeleben H J, Morgenstem T, BugieEl E, Kissinger W, Andreu R C, Structure and visible photoluminescence of porous Si1-xxGex. Physical Review B 1995, 52, 11898-11903.
    [17] Lopes J M J, Zawislak F C, Fichtner P F P, Behar M, Rebohle L, Skorupa W, Pre-irradiation memory effect on the photoluminescence intensity of Ge-implanted SiO2 layers. Nulear Instruments and Methods in Physics Research B 2004, 218, 438-443.
    [18] Kartopu G, Bayliss S C, Hummel R E, Ekinci Y, Simultaneous micro-Raman and photoluminescenece study of spark-processed germanium: Report on the origin of the orange photoluminescence emission band. Journal of Applied Physics 2004, 95, 3466-3472.
    [19] Kartopu G, Bayliss S C, Karavanskii V A, Curry R J, Turan R, Sapelkin A V, On the origin of the 2.2-2.3eV photoluminescence from chemically etched germanium. Journal of Luminescence 2003, 101, 275-283.
    [20] Luca Razzari, Andrea Gnoli, Marcofabio Righini, Aykutlu Dana, Atilla Aydinii, Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix. Applied Physics Letters 2006, 88, 181901-181903.
    [21] Vanmeerbeek P, Clauws P, Local vibrational mode spectroscopy of dimer and other oxygen-related defects in irradiated and thermally annealed germanium. Physical Review B 2001, 64, 245201-245206.
    [22] Heng C L, Finstad T G, Storas P, LiY Y J, Gunnas A E, Nilsen O, The 1.54-um photoluminescence from an (Er, Ge) co-doped SiO2 film deposited on Si by rf magnetron sputtering. Applied Physics Letters 2004, 85, 4475-4476.
    [23] Rokhinson L P, Tsui D C, Benton J L, Xie Y H, Infrared and photoluminescence spectroscopy of p-doped self-assembled Ge dots on Si. Applied Physics Letters 1999, 75, 2413-2415.
    [24] Fang Y C, Zhang Z J, Xie Z Q, Zhao Y Y, Lu M, Photoluminescence enhancement of Si nanocrystals embedded in SiO2 matrix by CeF3 doping. Applied Physics Letters 2005, 86, 191919-191921.
    [25] Shinji Okamoto, Yoshihiko Kanemitsu, Photoluminescence propertier of surface-oxidized Ge nanocrystals: surface localization ofexcitons. Physics Review B 1996, 54, 16421-16424.
    [26] Wu X L, Gao T, Siu G G, Tong S, Bao X M, Defect-related infrared photoluminescence in Ge-implanted SiO2 films. Applied Physics Letters 1999, 74, 2420-2422.
    [27] Minoru Fujii, Atsushi Mimura, Shinji Hayashi, Keiichi Yamamoto, Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study. Journal of Applied Physics 2000, 87, 1855-1857.
    [28] Niquet Y M, Allan G, Delerue C, Lannoo M, Quantum confinement in germanium nanocrystals. Applied Physics Letters 2000, 77, 1182-1184.
    [29] Delerue C, Allan G, Lannoo M, Theoretical aspects of the luminescence of porous silicon. Physics Review B 1993, 48, 11024-11036.
    [30] Minoru Fujii, Yasuhiro Yamaguchi, Yuji Takase, Keiichi Ninomiya, Shinji Hayashi, Control of photoluminescence properties of Si nanocrystals by simultaneously doping n-and p-type impurities. Applied Physics Letters 2004, 85, 1158-1160.
    [31] Wan Q, Lin C L, Liu W L, Wang T H, Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3. Applied Physics Letters 2003, 82, 4708-4710.
    [32] Fukuda H, Sskuma S, Yamada T, Nomura S, Nishino M, Higuchi T, Ohshima S, Physical and electrical properties of Ge-implanted SiO2 films. Journal of Applied Physics 2001, 90, 3524-3528.
    [33] Steven C Erwin, Lijun Zu, Michael I Haftel, Alexander L Efros, Thomas A Kennedy, David J Noms, Doping semiconductor nanocrystals. Nature 2005, 436, 91-94.
    [34] Yakimov A I, Adkins C J, Boucher R, Dvurechenskii A V, Nikiforov A I, Pchelyakov O P,Biskupski G, Hopping conduction and field effect in Si modulation-doped structures with embedded Ge quantum dots. Physical Review B 1999, 59, 12598-12600.
    [35] Delerue C, Lannoo M, Allan G, Martin E, Mihalccscu I, Vial J C, Romestain R, Muller F, Bsiesy A, Auger and Coulomb Charging Effects in Semiconductor Nanocrystallites. Physical Review Letters 1995, 75, 2228-2231.
    [36] Tetlbaum D I, Trushin S A, Mikhaylov A N, Vasilev V K, Kachurin G A, Yanovskaya S G, Gaponova D M, The influence of the annealing conditions on the photoluminescence of ino-implanted Si02: Si nanosystem at additional phosphorus implantation-Physica E 2003, 16.410-413.
    [37] Keith Thompson, John H Booske, David J Larson, Thomas F Kelly, Three-dimensional atom mapping of dopants in Si nanostructures. Applied Physics Letters 2005, 87, 52108-52110.
    [38] Kanzawa Y, Fujii M, Hayashi S, Yamamoto K, Doping of B atoms into Si nanocrystals prepared by RF cosputtering. Solid State Communication 1996, 4, 227-230.
    [39] Torbjom Blomquist, George Kirczenow, Poisson-Schrodinger and ab initio modling of doped Si nanocrystals: Reversal of the charge transfer between host and dopant atoms Physical Review B 2005, 71, 45301-45309.
    [40] Kenji Imakita, Minoru Fujii, Yasuhiro Yamaguchi, Shinji Hayashi, Interaction between Er ions and shallow impurities in Si nanocrystals within SiO2 Physical Review B 2005, 71, 4401-4407.
    [41] Kolobov A V, Ge nanostructures: average and local structure.Afatenals in Electronics 2004, 15,195-203.
    [42] Timoshenko Y V, Dittrich Th,Lysenko V,Lisachenko G M,Koch F.Free charge carriers in mesoporous silicon. Physical Review B 2001, 64, 853141-813148.
    [43] Delerue C, Lannoo M, Allan G, Martin E, Mihalcescu I, Vial J C, Romestain R, Muller F, Bsiesy A, Auger and Coulomb Charging Effects in Semiconductor Nanocrystallites. Physical Review Letters 1995, 75, 2228-2231.
    [44] Arzhannikova S A, Efremov M D, Kamaev G N, Vishnyakov A V, Volodin V A, Special Features of the Electrical Conductivity in Doped a-Si:H Films with Silicon Nanocrystals. Semiconductors 2005, 39, 448-454.
    [45] 林理彬,辐射固体物理学导论,四川大学出版社,成都 2004. pl79.
    [46] Mimura Atsushi, Fuji Minoru, Hayashi Shinji, Kovalev Dmitri, Koch Frederick, Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals. Phys. Rev. B 2000, 62, 12625-12627.
    [47] He Zhenhong, Chen Kunji, Feng Duan, Preparation ofnc-Ge embedded in SiO2 matrix and observation of visible photoluminescence. Actap hysica sinica 1997, 46, 1153-1160
    [48] Wang Yin-yue; Yang Ying-hu, Guo Yong-ping, Gan Run-] in. He Yuan, Xue Hua, Chen Guang-hua, Optical, electrical properties and room temperature visible photoluminescence from Ge nanocrystals embedded in SiO2 thin films. Actaphysica sinica 1997, 46, 203-208.
    [49] Yamamoto M, Koshikawa T, Yasue T, Harima H, Kajiyama K, Formation of size controlled Ge nanocrystals in SiO2 matrix by ion implantation and annealing. Thin Solid Films 2000, 369, 100-103.
    [50] Wu X L, Gao T, Siu G G, Tong S, Bao X M, Defect-related infrared photoluminescence in Ge+-implanted SiO2 films. Applied Physics Letters 1999, 17, 2420-2422.
    [51] Fujii Minoru, Hayashi Shinji, Yamamoto Kdiichi, Growth of Ge microcrystals in SiO2 thin film matrices: a Raman and electron microscopic study. Jpn. J. Appl. Phys. Lett. 1991, 30, 687-890.
    [52] Campbell I H, Fauchet P M, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986, 58, 739.
    [53] 张通知,吴瑜光,粒子束材料改性科学和应用,科学出版社,北京 1999, p1l.
    [54] 同[53], p7.
    [55] 陈复生,精密分析仪器及应用(上册),四川科学技术出版社,成都 1988, pl99.
    [56] 同[55], pl98.
    [57] Zacharias M, Christen J, Basing J, Bimberg D, Visible luminescence from Ge nanocrystals embedded in a-Sii.xOx films: correlation of optical properties and size distribution. J.Non-Crystal Solids 1996, 198-200.
    [58] 刘恩科,朱秉升,罗晋生,半导体物理学,国防工业出版社,北京 1994, p367.
    [59] Chen J H, Pang D, Wickboldt P, Hyeonsik C, William P, Visible room-temperature photoluminescence from oxidized germanium. J. Non-Crystal Solids 1996, 198-200.
    [60] Miyazaki S, Sakamoto K, Shiba K, Hirose M, Photoluminescence from anodized and thermally oxidized porous germanium. Thin Solid Films 1995, 255, 99-102.
    [61] Kanemitsu Y, Mechanism of visible photoluminescence from oxidized silicon and germanium nanocrystallites. Thin Solid Films 1996, 276, 44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700