运动物体三维形貌测量方法与实验系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
投影条纹相位测量技术是实验力学和光学无损检测中常用的一种非接触式三维形貌及表面缺陷测量方法,目前主要用于测量静止物体的三维形貌。为使投影条纹相位测量技术应用于运动物体的三维形貌及表面缺陷测量中,分别构建了基于面阵和线阵CCD相机的测量系统,采用相移法和傅里叶变换法提取变形条纹图的相位,成功重建了物体三维形貌。应用线扫描图像系统对物体的动态变形也进行了实验研究。具体研究内容如下:
     论文提出了一种改进的基于相移技术的运动物体三维形貌在线测量方法。采用普通面阵CCD相机搭建了测量系统。循环投影相移数字条纹图到待测运动物体表面,通过控制投影与图像采集时间间隔,可以拍摄多幅具有相移量相同的物体表面条纹图,为获得物体的三维形貌对传统的相移算法进行了改进。该方法成功地将相移技术用于运动物体三维形貌测量,保证了表面曲率较大处的物三维体形貌的测量精度,且系统硬件要求较低,适合在线产品质量检测。
     论文详细分析了相移中引入相位误差的主要因素,包括图像量化误差、投影与采集系统非线性误差和图像饱和误差,分别研究了不同因素产生的相位误差特征,针对不同的误差因素研究了相应的相位误差抑制方法。(1)理论推导了图像量化导致的相位误差的标准差公式,采用离散的正弦信号模拟采集获得的条纹图,理论分析结合数值模拟得出,图像量化导致的相位误差随着相移步数、量化位数、有效量化系数和条纹调制度的增加而降低。(2)投影和图像采集系统的非线性响应会在相位图中引入周期性的波动误差。分析总结了非线性响应引起相位误差的理论公式,得出三步相移算法中相位波动误差的空间频率为投影条纹频率的四倍,而四步及四步以上相移算法可有效地抑制系统非线性误差,且实验结果与理论分析吻合。(3)条纹图像的局部饱和同样可在相位图中产生周期性的相位波动误差。首先定义了饱和系数K来描述图像的饱和程度,在提取不同饱和程度的正弦模拟信号模拟条纹的相位后发现,饱和导致的相位误差的标准差随着饱和系数的增大而增大。针对图像饱和导致的相位波动误差,改进了饱和误差抑制算法,给出了基于三步、四步和六步相移技术的饱和误差抑制算法的公式。模拟和实验结果表明,饱和系数在算法适用范围内时,基于N帧相移技术的饱和误差抑制算法可以有效地消除该类的相位误差;饱和误差抑制算法的相位修正范围将随帧数N的增加而拓广。
     论文研究了基于线阵相机扫描技术的变速运动物体三维形貌测量方法,搭建了图像测量系统。投影数字正弦条纹图对待测运动物体表面进行光学编码,采用线扫描相机逐行扫描获取变形条纹图。通过旋转速度编码器实时获得物体运动速度,反馈给计算机控制线扫描相机的扫描频率,解决了变速运动物体成像的畸变问题。分别采用提取条纹中心线法和傅里叶变换法提取物体三维形貌,讨论了两种方法的优缺点。比较分析不同形貌提取方法的实验结果可得,提取条纹中心线法的测量精度一般要低于傅里叶变换法,但傅里叶变换法测量表面曲率较大的物体时误差较大,这两种方法在实际应用中可以互为补充。所研究的双频条纹傅里叶变换法则在保证物体三维形貌测量精度的同时可有效地克服表面阶跃引起的相位包裹。
     论文最后研究了基于线扫描图像系统的弦线振动频率和物体动态变形测量。采用线扫描系统对振动的弦线进行动态成像,获得弦线上某一测点的位置变化曲线,由傅里叶变换法提取基频信息,并与理论值进行比较来验证该方法的可靠性。物体动态变形测量系统与运动三维形貌测量系统类似,不同点在于测量动态变形时待测物体与图像系统间无相对运动,线扫描相机反复扫描待测物体表面上同一行,获得该行在不同时刻的变形条纹信息,采用傅里叶变换法提取该行的轮廓线序列,从而比较被测物体的动态变形量。本文采用该方法测量了人体小臂在肌肉张弛过程中的动态变形。
Projection grating profilometry has been widely used in experimental mechanics, 3-D sensing, machine vision, robot simulation, industry monitoring, biomedicine, etc. because of the advantages of full field measurement, high speed measurement and high resolution. In this work, we use a frame CCD camera and a line-scan CCD camera to construct image detection systems to detect the 3-D profile and surface defect of a moving object, respectively. In addition, the line-scan image system is used to detect the dynamic deformation.
     3-D profile measurement of a moving object using a novel phase-shifting technique is introduced. Digital gratings with two steps phase-shifting are projected periodically onto a measured object surface. The deformed fringe patterns are captured by a frame CCD camera within a short exposure time. By synchronizing the projector and the CCD camera accurately, there is an overlapping part which is the same part of the object among three neighbouring frames. Hence the intensity values at the same surface point modulated by three neighbouring gratings can be obtained, and its phase value can be computed by an improved phase-extracting algorithm. The profile of a specimen is detected by the proposed method. Experimental results demonstrate that this method is effective for the profile measurement of a moving object with larger surface slope coefficient.
     The phase errors caused by intensity error, such as quantization error, nonlinear response error and saturation error, in projection grating phase-shifting profilometry were discussed through simulation and experiment. (1)The formula of the standard of phase error caused by quantization is deduced, and discrete digital sinusoidal series are used to simulate the phase error. Simulative results indicate that the phase error will be decreased with the increase of the phase-shift steps, the intensity quantization level, the effective quantization coefficient and the modulation depth of the sinusoidal fringe patterns. (2)The phase errors and their periodic wave behavior caused by the nonlinearity of the system are studied. The theoretic formula of the phase error is deduced, from which it is found that the phase error caused by the nonlinearity of the imaging and projected system can be effectively decreased by using the four-step algorithm instead of the three-step algorithm. The experimental results are fit well with the theoretic analysis. (3)The intensity saturation of fringe patterns can also induce the fluctuating phase error. To decrease the phase error introduced by saturation, a novel phase recovering algorithm is proposed and further studied. The real phase can be recovered by the unsaturated intensity values. Simulative results indicate that the phase error caused by the intensity saturation can be effectively decreased by the phase-recovering algorithm when the saturation coefficient of fringe patterns is within the applicability range of the corresponding phase-recovering algorithm. Furthermore, the applicability range of the phase-recovering algorithm will be extended with the increasing of phase-shifting steps.
     A line-scan image system is constructed to measure the surface profile of a moving object with a variable speed. By using the speed coder, the relative moving speed is obtained and the pulse signal is fed back to the computer for synchronizing the moving object and the line-scan CCD camera. So that, undistorted fringe patterns can be captured by the line-scan camera. The classical fringe skeletonizing method and Fourier transform method are used to evaluate the fringe deformation. Comparing the results obtained by the two different methods, it is found that the measuring accuracy of Fourier transform method is higher than that of fringe skeletonizing method. However, fringe skeletonizing method has the advantage in measuring the surface with higher slope coefficient. Furthermore, the projection dual-frequency composite grating technique is used to solve 2πphase ambiguity problem because of some bigger surface steps. Experimental results are presented to prove the feasibility of the inspection system. Dual-frequency grating inspection can increase the detection accuracy and overcome the 2πphase ambiguity at the same time.
     The line-scan CCD camera is used to measure vibration characteristics of a string. The CCD line array sensor is set parallel to the vibration direction of a tensile string. There is a distinct track at the center of the captured image because of the different reflectivity between the string and the background. The fundamental frequency of the vibrating string can be obtained from the acquired images by Fourier transform technique. In addition, the line-scan image system is also used to detect the dynamic profile of human arm caused by muscle deformation. One line of the detected object surface is captured along a period of time. Fourier transform method is used to get the profile sequence of the same surface line in different time.
引文
[1]Nordqvist K G,Millgrad L.Automatic surface inspection and classification.Iron and Steel Engineer,1974,(6):67-70
    [2]Adrian Harding,Ricclatti R L.Cold strip measurement and inspection.Iron and Steel Engineer,1989,(5):23-25
    [3]Sipar.High speed surface defect detection on strip.Steel Times,1994,222(3):108-110
    [4]Keck Roland.Detection of surface defects on moving strip type flat products.MPT Metal Plant Tech.,1985,8(2):55-59
    [5]Thijs C J.An on line real time surface inspection system.Steel Times International,1986,(9):21-24
    [6]Fred Treller,Eden Prairite,Minn.On-line automatic defect detection and surface roughness measurement of steel strip.Iron and Steel Engineer,1989,(9):26-33
    [7]Chiay Holly.Human perfermace in visur inspection and defects dignosis.Steel Tech.Rep.,1988,(5):312-326.
    [8]A New Generation surface inspection system at Rautaruukki.Steel Times,1990,(11):616-620.
    [9]Eera Kiuru,Eino Keranen,Timo Piironen.Automatic systems for surface inspection.Sheet Metal Industries,1994,(8):30-32
    [10]刘兴奇.钢轨波浪磨耗的调查分析及减缓措施.铁道建筑,2000,(12):2-4
    [11]范钦海.钢轨波浪形磨耗形成机理及减缓措施研究.中国铁道科学,1994,15(2):22-40
    [12]刘伶萍,杜鹤亭,杨爱红.钢轨波浪磨耗检测系统的研究开发.中国铁道科学,2002,23(6):65-69
    [13]靳文瑞,蒋本和,纪淑波.近红外钢轨磨耗检测中的图像处理.应用光学,2004,25(3):41-44
    [14]Small G W,Hegedus S Z.Measurement of rail cross-section with solid-state sensor arrays.Optics and Laser Technlogy,1986,(2):3216-3221
    [15]Powell L.Design of a laser beam line expander.Applied Optics,1987,26:3705-3709
    [16]Holfeld D R,Ghafe G E.How computer technology aids in measuring rail wear.Railway Track & Structures,1989,(11):328-334
    [17]纪淑波,徐希江,任凤飞.光电式钢轨状态检测系统研究.光电子技术与信息,2005,1 8(2):94-97
    [18]Sidney A Guralnick,Eric S Suen,Sergio Zoruba.Development of automated road inspection vehicle for nondestructive evaluation of road surface condition.Transportation Research Record:Journal of the Transportation Research Board,1996,1536:125-129
    [19]Laurent,J Talbot,M Doucet.Road surface inspection using laser scanners adapted for the high precision 3D measurements of large flat surfaces.IEEE,1997:303-310
    [20]Harry C S Rughooputh,Soonil D D V Rughooputh,Jason M Kinser.Automatic inspection of road surfaces.Proceedings of SPIE,2000,3966-3970
    [21]张明,叶巧玲,冯晓.路面平整度检测技术现状与发展.重庆交通大学学报(自然科学版),2007,26(4):112-114
    [22]吴景海,王德群,商耀祥.高速公路路堤和路面软基病害检测及加固处理.中国公路学报,2003,16(12):13-17
    [23]初秀民,王荣本,储江伟,等.沥青路面破损图像分割方法研究.中国公路学报,2003,16(3):11-14
    [24]周波,朱先祥,孙文.车载式颠簸累积仪在路面平整度检测中的应用.合肥工业大学学报(自然科学版),2004,27(9):1095-1098
    [25]贺安之,徐友仁,贺宁.高速公路路面状况的光学智能检测与信息处理.光电子·激光,2002,13(12):141-144
    [26]陈长,孙立军,董茂强.基于现代检测技术的沥青路面评价新方法.公路交通科技,2006,23(9):125-129
    [27]付林,贺安之,李振华.动态傅里叶变换轮廓术实现路面形变快速检测.光电工程,2006,33(7):115-118
    [28]U Dhond,J Aggarwal.Structure from stereo-a review.IEEE Trans.Systems,Man,and Cybernetics,1989,19:1489-1510
    [29]刘维一,王肇圻.彩色数字编码投影光栅三维轮廓术的研究.光学学报,1999,21(6):687-690
    [30]高成勇,王蕴珊.相移技术中一种基于非定步长算法的应用分析.光电子.激光,2003,14(6):629-631
    [31]J Salvi,J Pages,J Batlle.Pattern codification strategies in structured light systems.Pattern Recognition,2004,37:827-849
    [32]R A Jarvis.A perspective on range finding techniques for computer vision.IEEE Trans.Pattern Analysis and Machine Intelligence,1983,5:122-139
    [33]Vest C M.Holographic interferometry.John Wiley & Sons,New York,1979
    [34]Ennos A E.Speckle interferometry.In Progress in Optics,Elsevier science publishers,1978:233-288
    [35]Walker C A.A historical review of Moir(?) interferometry.Experimental M echanics,1994,34 (4):281-299
    [36]Hausler G.,Heckel W.Light sectioning with large depth and high resolution.Applied Optics,1988,27(24):5165-5169
    [37]Moigne J L,Waxman A M.Projected light grids for short range navigation of autonomous robots.Proceedings of the Seventh International Conference on Pattern Recognition,1984:203-206
    [38]Beranek B,Boillot J P,Ferrie F P.Laser sensor for adaptive welding. Proceedings of SPIE, 1986: 195-199
    [39] Kinoshita G., Idesawa M. Discrimination of 3-d object by robot sensor with function of circular range acquisition. Intelligent Robots, 1988:59-64
    [40] Altschuler M D, Altschuler B R, Taboada J. Laser electro-optic system for rapid three-dimensional 3-D topographic mapping of surfaces. Optical Engineering, 1981,20:953-961
    [41] Bickel G., Hausler G., Maul M. Triangulation with expanded range of depth. Optical Engineering, 1982, 24(6): 975-977
    [42] Takasaki H. Generation of surface contours by moire pattern. Appl. Opt., 1970, 9(4): 942-947
    [43] Yoshizawa T. The recent trend of moire metrology. J Robustic. Mech., 1991, 3(3): 80-85
    [44] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry: a phase mapping approach. Appl. Opt., 1985, 24(2): 185-188
    [45] Su X, Zhou W S, Von Bally V, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating. Opt. Commun., 1992, 94(6): 561-573
    [46] Lian X, Su X. Computer simulation of a 3-D sensing system with structured illumination. Opt. Laser. Eng., 1997, 27: 379-393
    [47] C Han, B Han. Error analysis of the phase-shifting technique when applied to shadow moir(?). Appl. Opt, 2006, 45: 1124-1133
    [48] Toyooka S, Iwasa Y. Automatic profilometry of 3-D diffuse objects by spatial phase detection. Appl. Opt., 1986, 25(10): 3012-3018
    [49] Halioua M, Liu H. Optical three-dimensional sensing by phase measuring profilometry. Optics and Lasers in Engineering, 1989, 11(203): 185-215
    [50] D W Robinson, G T Reid. Interferogram Analysis: fringe pattern measurement techniques. Bristol, Institute of Physics Pub., 1993
    [51] Y M He, C J Tay, H M Shang. Deformation and profile measurement using the digital projection grating method. Opt. Laser. Eng., 1998, 30: 367-377
    [52] X Peng, S M Zhu, C J Su. Model-based digital moire topography. Optik, 1999, 110(4): 184-190
    [53] Srinivasan V, Liu H C, Halioua M. Automated phase measuring profilometry of 3-D diffuse object. Appl. Opt., 1984, 23(18): 3105-3108
    [54] D W Phillion. General methods for generating phase-shifting interfometry algorithms. Appl. Opt, 1997, 36: 8098-8115
    [55] Carre P. Installation et utilization du comparateur photo dectrique at interferential du bureau international des poids et mesures. Metrohogia. 1966, 2(1): 13-23
    [56] Qoam L, Sji F, Wu X. Determination of the best phase step of Carre algorithm in phase shifting. Measurement Science and Technology, 2000, 11(8): 1220-1223
    [57] Malacara D, Servin M, M alacara Z. Interferogram analysis for optical testing. Marcel Dekker Inc., 1998
    [58] K Kinnstaetter, A W Lohmann, J Schwider, et al, Accuracy of phase shifting interferometry. Appl. Opt., 1988, 27: 5082-5089
    [59] K G Larkin, B F Oreb. Propagation of errors in different phase-shifting algorithms: a special property of the arctangent function. Proc. of SPIE, 1992, 1775:219-227
    [60] C Brophy. Effect of intensity error correlation on the computed phase of phase-shifting interferometry. J.Opt.Soc.Am. A, 1990, 7(4): 537-541
    [61] Y Surrel. Additive noise effect in digital phase detection. Appl. Opt, 1997, 36: 271-276
    [62] J Schwider, T Dresel, B Manzke. Some considerations of reduction of reference phase error in phase-stepping interferometry. Appl. Opt, 1999, 38: 655-659
    [63] J Li, L G Hassebrook, C Guan. Optimized two-frequency phase-measuring profilometry light-sensor temporal-noise sensitivity. J. Opt. Soc. Am. A, 2003, 20: 106-115
    [64] J Wingerden, H J Frankena, C Smorenburg. Linear approximation for measurement errors in phase shifting interferometry. Appl. Opt, 1991, 30: 2718-2729
    [65] B Zhao. A statistical method for fringe intensity-correlated error in phase-shifting measurement: the effect of quantization error on the N-bucket algorithm. Meas. Sci. Technol, 1997, 8: 147-153
    [66] Joanna Schmit, Katherine Creath, Malgorzata Kujawinska. Spatial and temporal phase-measurement techniques: a comparison of major error sources in one-dimension. Interferometry: Techniques and Analysis. 1992, 1775: 202-211
    [67] Zhou Libing, Su Xianyu, Wang Liwu. Analysis of errors introduced by detector nonlinearity in Phase Measuring Profilometry. Laser Journal, 2002, 3: 19-21
    [68] Oleksandr A Skydan, Francis Lilley, Michael J Lalor. Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis. Applied Optics, 2003, 42: 5302-5307
    [69] U Dhond, J Aggarwal. Structure from stereo-a review. IEEE Trans. Systems, Man, and Cybernetics, 1989, 19: 1489-1510
    [70] L Zhang, B Curless, S Seitz. Spacetime stereo: Shape recovery for dynamic senses. in Proc. Copmuter Vison and Pattern Recognition, 2003
    [71] J Davis, R Ramamoorthi, S Rusinkiewicz. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27: 1-7
    [72] J Salvi, J Pages, J Batlle. Pattern codification strategies in structured light systems. Pattern Recognition, 2004, 37: 827-849
    [73] R A Jarvis. A perspective on range finding techniques for computer vision. IEEE Trans. Pattern Analysis and Machine Intelligence, 1983, 5: 122-139
    [74] Shough D. Beyond fringe analysis. Proc. of SPIE, 2003: 208-230
    [75]Hong Zhang,Michael J Lalor,David R Burton.Error-compensating algorithms in phase-shifting interferometry:a comparison by error analysis.Optics and Lasers in Engineering,1999,31:381-400
    [76]J Schwider,R Burow,K E Elssner,et al.Digital wave-front measuring interferometry:some systematic error sources.Appl.Opt,.1983,22:3421-3432
    [77]S Yoneyama,Yoshiharu Morimoto,Motoharu Fujigaki,et al.Three-dimensional surface profile measurement of a moving object by a spatial-offset phase stepping method.Opt.Eng.,2003,42(1):137-142
    [78]S Yoneyama,Y Morimoto,M Fujigaki,et al.Phase-measuring profilometry of moving object without phase-shifting device.Optics and Lasers in Engineering,2003,40:153-161
    [79]蒋克俭,赵宏,宋元鹤,等.一种快速高精度三线阵CCD三维轮廓术.激光与红外,2005,35(5):368-369
    [80]J M Huntley.Automated fringe pattern analysis in experimental mechanics:a review.J.Strain Anal.Eng.,1998,33 (2):105-125
    [81]Peisen Huang,Qingying Hu,Feng Jin,et al.Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring.Optical Engineering,1999,38(6):1065-1071
    [82]Song Zhang,Peisen Huang.High-resolution,Real-time 3D Shape Acquisition.Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
    [83]Peisen Huang,Chengping Zhang,Fupen Chiang.High-speed 3-D shape measurement based on digital fringe projection.Opt.Eng.,2003,42(1):163-168
    [84]L J Hornbeck.Digital light processing for high-brightness,high resolution applications.Proc.of SPIE,1997,3013:27-40
    [85]Q Hu,P Huang,Q Fu,et al.Calibration of a 3-d shape measurement system.Opt.Eng.,2003,42(2):487-493
    [86] O Hall-Holt, S Rusinkiewicz. Stripe boundary codes for real-time structured-light range scanning of moving objects. In The 8th IEEE International Conference on Computer Vision, 2001: 359-366
    [87] Li Zhang, Brian Curless, Steven M Seitz. Rapid shape acquisition using color structured light and multi-pass dynamic programming. In The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, 2002: 24-36
    [88] Mitsuo Takeda, Hideki Ina, Seiji Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc.Am., 1982, 72(1): 156-160
    [89] Mitsuo Takeda, Kazuhiro Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt., 1983, 22(24): 3977-3982
    [90] Mitsuo Takeda. Spatial-carrier fringe pattern analysis and its application to precision interferometry and pfofilometry: an overview. Indust. Metrol., 1990, 1(2): 79-99
    [91] Su X, Li J, Gou L. An improved Fourier transform profilometry. Proc SPIE, 1988, 954:32-35
    [92] Li J, Su X, Gou L. An improved Fourier transform profilometry for automatic measurement of 3-D object shapes. Opt. Eng., 1990, 29(12): 1439-1444
    [93] Cheng X, Su X, Gou L. Automatic measurement method for 360 degree profilometry of 3-D diffuse objects. Appl. Opt., 1991, 30(10): 1274-1278
    [94] Lin J, Su X. Two-dimensionalFourier transform profilometry for the automatic measurement of three-dimensionalobject shapes. Opt. Eng., 1995, 34(11): 3297-3302
    [95] Xianyu Su, Wenjing Chen, Qichan Zhang, Yiping Chao. Dynamic 3-D shape measurement method based on FTP. Opt. Laser. Eng., 2001, 31: 49-64
    [96] Xianyu Su, Wenjing Chen. Fourier transform profilometry: a review. Opt. Laser. Eng., 2001, 35: 263-284
    [97] Wenjing Chen, Xianyu Su, Yp Cao, Qc Zhang, Lq Xiang. Method for eliminating zero spectrum in Fourier transform profilometry. Opt. Laser. Eng., 2005, 43: 1267-1276
    [98] Toyooka S, Iwasa Y. Automatic profilometry of 3-D diffuse objects by spatial phase detection. Appl. Opt., 1986, 25(10): 3012-3018
    [99] Kujawifiska M, Spik A, Wojciak J. Fringe pattern analysis using Fourier transform techniques in Interferometry. Proc SPIE, 1989, 1121:130-135
    [100] Kujawinska M, Wojciak J. High accuracy Fourier transform fringe pattern analysis. Opt Lasers Eng., 1991,14: 325-339
    [101] Bone D J. Fourier fringe analysis: the two-dimensional phase unwrapping problem. Appl. Opt., 1991, 30(25): 3627-3632
    [102] Jiang Yi, Shanglian Huang. Modified Fourier transform profilometry for the measurement of 3-D Steep Shapes. Opt. Laser. Eng., 1997, 27: 493-505
    [103] Fiona Berryman, Paul Pynsent, James Cubillo. The effect of windowing in Fourier transform profilometry applied to noisy images. Opt. Laser. Eng., 2004, 41:815-825
    [104] Eryi Hu, Yuming He. Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry. Opt. Laser. Eng., 2009, 47: 57-61
    [105] Yanming Chen, Yuming He, Eryi Hu. Phase deviation analysis and phase retrieval for partialintensity saturation in phase-shifting projected fringe profilometry. Opt. Commun., 2008, 281: 3087-3090
    [106] Munther A Gdeisat, David R Burton, Michael J Lalor. Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform. Optics Communications, 2006, 266: 482-489
    [107] Chen W, Yang H, Su X. Error caused by sampling in Fourier transform profilometry. Opt. Eng., 1999, 38(6): 927-931
    [108] Hao Y D, Zhao Y, Li D C. Multifrequency grating projection profilometry based on the nonlinear excess fraction method. Appl. Opt. 1999, 38(19): 4106-4110
    [109] FemAndez A, Kaufmann G H, Doval A F. Comparison of carrier removal methods in the analysis of TV holography fringes by the Fourier transform method. Opt Eng, 1998, 37(11): 2899-2905
    [110] Pandit S M, Chan D P. Comparison of Fourier-transform and data-dependent system profilometry by use of interferometric regeneration. Appl Opt, 1999, 38(19): 4095-4102
    [111] Burton D R, Goodall A J, Atkinson J T. The use of carrier frequency-shifting for the elimination of phase discontinuities in fourier-transform profilometry. Opt Laser Eng, 1995, 23(4): 245-257
    [112] Kozloshi J, Serra G. Analysis of the complex phase error introduced by the application of Fourier transform method. Journal of Modern Optics, 1999, 46(6): 957-971
    [113] Asundi A, Zhou W S. Mapping algorithm for 360-deg profilometry with time delayed integration imaging. Opt Eng, 1999, 38(2): 339-344
    [114] Asundi A, Sajan M R. Digital moire applications in automated inspection. Pro. SPIE, 1994, 2347: 270-275
    [115] M R Sajan, C J Tay, H M Shang, Asundi A. TDI imaging-a tool for profilometry and automated visual inspection. Opt. Laser. Eng., 1998, 29: 403-411
    [116] M R Sajan, C J Tay, H M Shang, et al. Improved spatial phase detection for profilometry using a TDI imager. Opt. Commun., 1998, 150: 66-70
    [117] C J Tay, S L Toh, H M Shang. Time delay and integration imaging for internal profile inspection. Opt. Laser Technol., 1998, 30: 459-465
    [118] M R Sjan, C J Tay, H M Shang, et al. Time delay and integration imaging for inspection and profilometry of moving objects.Opt.Eng.,1997,36(9):2573-2578
    [119]M R Sjan,C J Tay.Inspection and profiling of moving objects using a TDI camera.SPIE,1997,2921:563-570
    [120]M R Sajan,C J Tay,et al.TDI imaging and scanning moir(?) for online defect detection.Optics & Laser Technology,1997,29(6):327-331
    [121]Asundi A,M R Sajan.Dynamic photoelasticity using TDI imaging.Optics and Lasers in Engineering,2002,38(1-2):3-16
    [122]Quan C,C J Tay,et al.3-D deformation measurement using fringe projection and digital image correlation.Optik,2004,115(4):164-168
    [123]康新,何小元,等.一种新的模板匹配算法及其在三维形貌测量中的应用.计量学报,2002,23(2):90-93
    [124]陈文静,苏显渝,苏礼坤.利用灰度图提高Fourier变换轮廓术的测量精.光电工程,2000,27(3):55-59
    [125]李涛,杨显锋,俞昌.改进型非相移的傅氏变换轮廓测量法.清华大学学报,2002,42(7):905-908
    [126]郑素珍,陈文静,苏显渝.自适应窗口傅里叶变换三维面形检测技术.光电工程,2005,32(9):51-54
    [127]翁嘉文,钟金钢.伸缩窗口傅里叶变换在三维形貌测量中的应用.光学学报,2004,24(6):725-729
    [128]C Guan,L G.Hassebrook,D L Lau.Composite structured light pattern for three-dimensional video.Opt.Express,2003,11:406-417
    [129]Chun Guan,Laurence G Hassebrook,Daniel L Lau.Optical Processing of Composite Pattern Structured Light Projection for High-speed Depth Measurement.Pro.SPIE,2004,5557:50-61
    [130]Ailing Tian,Tomoaki Makihata,Mitsuo Takeda,et al.Profile measurement of objects with discontinuous surfaces by modified temporal phase unwrapping.Pro. SPIE,2005,5633:23-30
    [131]W Chen,X Su,Y Cao,et al.Fourier transform profilometry based on a fringe pattern with two frequency components.Pro.SPIE,2006,6027:1-9
    [132]Huimin Yue,Xianyu Su,Yongzhi Liu.Fourier transform profilometry based on composite structured light pattern.Opt.Laser Technol.,2007,39(6):1170-1175
    [133]Takeda M,Gu Q,Kinoshita M,et al.Frequency-multiplex Fourier-transform profilometry:A single shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations.Appl.Opt.,1997,36(22):5347-5354
    [134]Debesh Choudhury,M.Takeda.Frequency-multiplexed profilometric phase coding for three-dimensional object recognition without 2π phase ambiguity.Optics Letters,2002,27(16):1466-1468
    [135]Li J,Su H,Su X.Two-frequency grating used in phase-measuring profilometry.Appl Opt.,1997,36(1):277-280
    [136]Hilditch C J.Linear Skeletons from Square Cupboards.Machine Intelligence,1969,4:403-420
    [137]T Yatagai,S Nakadate,M Idesawa,et al.Automatic fringe analysis using digital image processing techniques.Opt.Eng.,1982,21(3):423-426
    [138]Pryatniewicz R J.Review of methods for automatic analysis of fringes in hologram interferometry.Pro.SPIE,1986,816:140-148
    [139]Yatagai T.Automatic fringe analysis techniques in Japan.Opt.Laser.Eng.,1991,15(2):79-91
    [140]戴福隆,王朝阳.条纹图象的数字化自动分析处理技术之一:条纹中心法.光子学报,1999,28(8):700-705
    [141]何玉明,谭玉山.全息干涉条纹图的计算机自动处理与识别.实验力学,1990,5(3):268-274
    [142]Ghiglia D C,Mastin G A,Romero L A.Cellular-automata method for phase unwrapping.J Opt Soc Am A,1987,4(1):267-280
    [143]Spik A,Robinson D W.Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor.Opt Lasers Eng,1991,14(1):25-37
    [144]Takeda M,Abe T.Phase unwrapping by a maximum cross-amplitude spanning tree algorithm:a comparative study.Opt Eng,1996,35(8):2345-2351
    [145]王新,贾书梅,陈光德.相位去包裹技术进展.仪器仪表学报,2005,26(8):665-668
    [146]Marroquin J L,Rivera M.Quadradic regularization functionals for phase unwrapping.J.Opt.Soc.Am.A,1995,12(11):2397
    [147]冯传玉,蒋震宇.区域相关去包络技术.实验力学,1998,15(2):197-200
    [148]马少鹏,金观昌,代树红.应用时域相位解包方法的三维形貌测量系统.光学技术,2002,28(5):395-397
    [149]曹原.数字光学轮廓仪中相位去包裹算法研究.光学精密工程,1999,7(5):100-105
    [150]Li Changgui,Liu Jinghai,Lin Youna,et al.Study on using linear CCD array in real-time dynamic measurement.Opt.Technol.,1999,2:5-8
    [151]Mochalov A V,Kazantsev A V.Use of the ring laser units for measurement of the moving object deformations.Proceeding of SPIE,2002,4680:85-92
    [152]Mochalov A V.A system for measuring deformation of large-sized objects.Neuilly-sur-Seine,France,1999
    [153]Chiang F P,Juang R M.Vibration analysis of plate and shell by laser speckle interferometry.Optica Acta.,1976,23 (12):997-1009
    [154]Chiang F P.Subjective laser speckle method and its application to solid mechanics problems.Opt.Eng.,1982,21(3):379-390
    [155]Sikora J P.Deflection of rotaing maripe propellers using projected grating moir(?) techniques.Exp.Mech.,1981,21(12):456-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700