黑木耳多糖的分离制备及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖具有抗肿瘤、降血糖、降血脂、调节免疫和抗氧化等生物活性,存在于动物、植物和微生物中。本文以黑木耳为原料,采用高速逆流色谱和柱层析方法,探索出一套完整的黑木耳多糖活性成分提取、分离、纯化的工艺,得到5种不同的黑木耳同多糖。同时对分离纯化的多糖进一步研究其生物活性,对肿瘤的抑制率、调节免疫能力、改变肿瘤细胞膜特性和抗氧化活性进行了研究,并探讨了其功能与结构之间的关系,以期为进一步开发利用黑木耳提供试验依据。
     研究结果如下:
     1.设计了三类不同的HSCCC双水相溶剂系统:PEG—磷酸盐系统、PEG—硫酸铵系统、PEG—Dextran—磷酸盐系统。应用正交试验方法根据HSCCC溶剂系统的分离条件,筛选得到了2种可用于HSCCC分离的溶剂系统:PEG1000:Dextran:K2HPO4:KH2PO4: H2O=8:3:20:30:120 (w/w)和PEG1000:K2HPO4:KH2PO4:H2O =0.5:1.25:1.25:7.0 (w/w)系统,本文选用PEG1000:K2HPO4: KH2PO4:H2O=0.5:1.25:1.25:7.0 (w/w)系统作为HSCCC的分离系统。
     2.确定了HSCCC分离条件,转速700rpm,流速2.5mL/min,上样量2.0g,并从组分AAFRA中分离得到三种多糖AAPS1、AAPS2和AAPS3,质量分别为192mg、137mg、98mg。
     3.组分AAFRB、AAFRC采用DEAE-cellulose、Sephacryl S-500HR柱层析进行分离纯化,得到了纯化后的AAFRB和AAFRC,所得量分别为120.5mg、92.7mg。4.采用HPGPC、PMP-HPLC、UPLC、1D NMR、2D NMR、GC-MS、FTIR等方法对得到的黑木耳多糖AAPS1、AAPS2、AAPS3、AAFRB和AAFRC的结构进行了研究。5种多糖均是由葡萄糖构成的同多糖,分子量分别为:1.62×105、2.59×105、4.83×105、9.30×105、1.20x 106Da,20℃时的比旋光度[α]D分别为:+89.30、+24.7°、+112.6°。+49.6°、+61.20;AAPS1是以(1→6)-a-D-吡喃葡萄糖和(1→3,6)-β-D-吡喃葡萄糖为主链,并在p-D-吡喃葡萄糖的O-3出现支链→4)-α-D-吡喃葡萄糖-(1→;AAPS1:
     AAPS2是以(1→3)-p-吡啶葡萄糖残基和(1→3,6)-p-吡啶葡萄糖残基为主链,数量比为2:1,并在(1→3,6)-p-吡啶葡萄糖残基的O-6处有支链(1→)-p-吡啶葡萄糖残基;AAPS2:
     AAPS3分子中存在→4-β-D-Glc-1→3-β-D-Glc-1→,→3-β-D-Glc-1→4-p-D-Glc-1→6-w3-D-Glc-1→片段,是以β-D-1,4-Glc,β-D-1,3-Glc和β-D-1,6-Glc残基构成主链的葡聚糖;AAPS3:
     AAFRB是由→4)-α-D-Glcp-(1→、→3)-α-D-Glcp-(1→、→3,6)-α-D-Glcp-(1→、α-D-Glcp-(1→、→3)-β-D-Glcp-(1→残基构成,个数比为6:1:1:2:1,并在→3)-α-D-Glcp-(1→的O-6有支链α-D-Glcp-(1→吡啶葡萄糖残基;AAFRB:
     AAFRC是→4)-α-D-Glcp-(1→、→3)-α-D-Glcp-(1→、α-D-Glcp-(1→、→4)-β-D-Glcp-(1→和→3)-β-D-Glcp-(1→片段构成,个数比为10:3:4:1:3,并在→3)-α-D-Glcp-(1→的O-6有支链α-D-Glcp-(1→吡啶葡萄糖残基的葡聚糖,AAFRC:
     以上5种多糖化合物经查阅相关文献未见报道。
     5.采用S180肉瘤小鼠模型研究了黑木耳多糖的抗肿瘤活性、对肿瘤细胞膜特性的影响和免疫学活性。结果表明5种多糖均具有一定的肿瘤抑制率,并且AAPS2和AAFRB能显著提高荷瘤小鼠的肝指数,AAFRB能显著提高胸腺指数;5种多糖均能促进细胞膜磷脂的降解,且与CT组间存在极显著差异(p<0.01),表现出较好的改变肿瘤细胞膜结构的特性;对细胞膜脂流动性(LFU)的研究发现,AAPS2、AAFRB、AAFRC能显著改变细胞膜脂的流动性(p<0.01);免疫学特性来看,AAPS3、AAFRB多糖对促进脾淋巴细胞增殖有显著作用;除AAPS1的低剂量组外,多糖显示出能显著提高小鼠血清半数溶血值HC50,表明多糖可促进小鼠血清抗体的产生,且随着剂量的增高,增强作用呈现一定的相关性;采用对DPPH·、O2-·、·OH、N02-自由基清除能力和还原力研究发现,5种多糖显示出不同的抗氧化活性,AAPS2清除DPPH-自由基、O2-·自由基能力最强,AAFRC清除·OH自由基的能力最强,AAFRB的清除N02-的能力最强,还原力也最强。真菌多糖的结构对其作用机制也有着不同程度的影响,真菌多糖抗肿瘤的作用方式总体可以分为两类:第1类是以细胞毒为主的直接抗肿瘤方式;第2类是以调节机体免疫为主的间接抗肿瘤方式。通过以上对5种黑木耳多糖活性的研究可知,黑木耳多糖同时具有2种抗肿瘤的作用机制,促进肿瘤细胞的凋亡,并能显著调节免疫器官活性。从其结构分析,含有β构型的多糖活性一般表现出较高的活性,含有α构型的多糖一般只有较低的活性;并且多糖的活性还表现出与分子量有一定的关系,分子量范围在200—300kDa活性最高,同时多糖的糖苷键链接方式对活性也有一定的关系,多糖中含有1→3,1→6糖苷键通常表现出较高的活性,含有1→4糖苷键则活性不高。
Polysaccharides in animals and plants and microorganisms have various bioactivities, such as anti-tumor, reducing blood sugar and blood fat, adjusting immune function and antioxidationt. The present studies aim to extraction, separation and purification of polysaccharides from Auricularia polytricha by high speed countercurrent chromatography and column chromatography. Finally,5 purified polysaccharides were obtained, and their biological activities of tumor inhibition, immune regulation, and antioxidant activity were investigated. The main results are summarized as follows:
     1. Two aqueous two-phase HSCCC solvent systems were established for the separation of polysaccharides from Auricularia polytricha, i.e. PEG 1000:Dextran:K2HPO4:KH2PO4:H2O=8:3:20:30:120 (w/w) and PEG1000:K2HPO4:KH2PO4:H2O=0.5:1.25:1.25:7.0 (w/w). The PEG1000:K2HPO4:KH2PO4:H2O=0.5:1.25:1.25:7.0 (w/w) was the best system by orthogonal test.
     2. The HSCCC separation conditions were determined by experimental methods. The optimum operation condition is:column rotation speed,700rpm; flow rate of mobile phase,2.5mL/min; sample loading size,2.0g of the crude polysaccharides (AAFRA). The separation yielded three polysaccharides:AAPS1 (192 mg), AAPS2 (173 mg) and AAPS3 (98 mg).
     3. Two polysaccharides AAFRB (120.5 mg) and AAFRC (92.7 mg) were obtained by DEAE-cellulose and Sephacryl S-500 HR column chromatography.
     4. The structures of the five polysaccharides AAPS1, AAPS2, AAPS3, AAFRB and AAFRC were elucidated by using chromatographic (HPGPC, PMP-HPLC, UPLC) spectral (1D NMR,2D NMR, GC-MS and FTIR) and chemical methods. All the five polysaccharides are composed of glucose. The molecular weights of AAPS1, AAPS2, AAPS3, AAFRB and AAFRC are 1.62×105,2.59×105,4.83×105,9.30×105 and 1.20×106Da, respectively. The specific rotations [α]D in 20℃are+89.3°,+24.7°,+112.6°.+49.6°and +61.2°, orderly for AAPS1, AAPS2, AAPS3, AAFRB and AAFRC. The structures are as follows:
     AAPS1:composed of a main chian (1→6)-a-D-glucopyranosyl, and (1→3,6)-β-D-glucopyranosyl and a side chain β-D-glucopyranosyloccurred O-3 of→4)-α-D-glucopyranosyl-(1→. AAPS1:
     AAPS2:composed of a backbone (1→3)-linked-β-D-glucopyr-anosyl and (1→3,6)-linked-β-D-glucopyranosyl with a ratio of 2:1, and the single terminal (1→)-β-D-glucopyranosyl links to O-6 position of (1→3,6)-linked-p-D-glucopyranosyl along the main chain. AAPS2:
     AAPS3:composed of residues→4-β-D-Glc-1→3-β-D-Glc-1→,→3-β-D-Glc-1→4-β-D-Glc-1→6-p-D-Glc-1→fragments andβ-D-1,4-Glc,β-D-1,3-Glc and p-D-1, and 6-Glc constitute the main chain. AAPS3:
     AAFRB:composed of five residues:→4)-α-D-Glcp-(1→,→3)-α-D-Glcp-(1→,→3,6)-α-D-Glcp-(1→,α-D-Glcp-(1→,->3)-β-D-Glcp-(1→with a ratio of 6:1:1:2:1, and the O-6 of→3)-α-D-Glcp-(1→residueslinks to the branched chainα-D-Glcp-(1→; AAFRB:
     AAFRC:composed of five residues→>4)-α-D-Glcp-(1→,→3)-α-D-Glcp-(1→,α-D-Glcp-(1→,→4)-β-D-Glcp-(1→and→3)-β-D-Glcp-(1→fragments, and the ratio is 10:3:4:1:3. The O-6 of→3)-α-D-Glcp-(1→links to the branched chainα-D-Glcp-(1→. AAFRC:
     The above five polysaccharides have not been reported in any literatures.
     5. The anti-tumor activity of the polysaccharides on the tumor cell membrane characteristics and immunological activity were studied by using S180 sarcoma mice. Among the five polysaccharides AAPS2 and AAFRB could significantly improve the liver index. Also AAFRB could significantly increase the thymus index. The five polysaccharides could promote the degradation of membrane phospholipids and showed better changes in tumor cell membrane structure characteristics. On the base of membrane lipid fluidity (LFU), AAPS2, AAFRB, AAFRC could significantly alter membrane fluidity (p<0.01) while AAPS3, AAFRB could significantly promote lymphocyte proliferation. The low dose group of AAPS1 showed a significantly increase of serum half of the hemolytic HC50, which indicated that the polysaccharide can promote serum antibody production with a correlation of dose-activity. The results of scavenging radicals DPPH-,02-·,·OH, NO2-·and reducing power showed that the five polysaccharide had different antioxidant activity. AAPS2 has a stronger activities of scavenging DPPH·radical, 02-·while AAFRC possessed a stronger activity of scavenging·OH radicals capacity and AAFRB has a stronger effect of removal N02 and reducing power. The structures of polysaccharides have directly effects on their mechanism of activities. The mechanism of anti-tumor activity can be divided into two kinds. The first is mainly a direct cytotoxicity against tumor cells; the second is indirect immunological regulation. The analysis of structure-activity relationship showed that polysaccharides withβconfiguration and the glycosidic bonds containing 1→3,1→6 have higher activity than those of a configuration, and the the molecular weight of the polysaccharides related to the activity. The polysaccharides with molecular weight range 200-300kDa showed the higher activity.
引文
[1]Elizabeth Lowea, Peter Riceb, Tuanzhu Haa, Chuanfu Lia, Jim Kelleyc, Harry Ensleya. A (1→3)-β-D-linked heptasaccharide is the unit ligand for glucan pattern recognition receptors on human monocytes[J]. Microbes and Infection,2001,3: 789-797.
    [2]Rui Tad, Yoshiyuki Adachi, Ken-ichi Ishibashi, Naohito Ohno. An unambiguous structural elucidation of a 1,3-β-D-glucan obtained from liquid-cultured Grifola frondosa by solution NMR experiments[J]. Carbohydrate Research,2009,344: 400-404.
    [3]Fhernanda R. Smiderle, Lorena M. Olsen, Elaine R. Carbonero, Cristiane H. Baggio. Anti-inflammatory and analgesic properties in a rodentmodel of a (1→3), (1→6)-linked P-glucan isolated from Pleurotus pulmonarius[J]. European Journal of Pharmacology,2008,597:86-91.
    [4]Chanchal K. Nandan, Pradip Patra, Sunil K. Bhanja, Bappaditya Adhikari, Ramsankar. Structural characterization of a water-soluble β-(1→6)-linked D-glucan isolated from the hot water extract of an edible mushroom, Agaricus bitorquis[J]. Carbohydrate Research,2008,343:3120-3122.
    [5]Xiaoyu Chen, Lina Zhang, Peter Chi, Keung Cheung. Immunopotentiation and anti-tumor activity of carboxy methylated-sulfated β-(1→3)-D-glucan from Poria cocos[J]. International Immunopharmacology,2010,10:398-405.
    [6]Tingting Gao, Hongtao Bi, Shuai Ma, Jingmei Lu. Structure elucidation and antioxidant activity of a novel α-(1→3),(1→4)-D-glucan from Aconitum kusnezoffii Reichb[J]. International Journal of Biological Macromolecules,2010,46:85-90.
    [7]Sander S. van Leeuwen, Slavko Kralj, Ineke H. van Geel-Schutten, Gerrit J. Gerwig, Structural analysis of the a-D-glucan (EPS 180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme[J]. Carbohydrate Research,2008,343:1237-1250.
    [9]Bot, A., Smorenburg, H. E., Vreeker, R., Paques, M., Clark, A. H.. Melting behavious of Schizophyllan extrcellular polysaccharide gels in the temperature range between 5 and 20℃[J]. Carbohyrate Polymers,2001,45:363-372.
    [10]Okamura, K., Suzuki, M., Chihara, T., Fujiwara, A., Fukuda, T., Goto, S. Clinical evaluation of Schizophyllan combined with irradiation in patients with cervical cancer[J]. Cancer,1986,58:865-872.
    [11]Tsuzuki, A., Ohno, N., Adachi, Y., Yadomae, T. Interleukin. Production of human leukocytes stimulated by triple or single helical conformer of an antitumor (1→3)-β-D-glucan preparation, sonifilan[J]. Drug Development Research,1999,48: 17-25.
    [12]Kupfahl, C., Geginat, G., Hof, H. Lentinan has a stimulatory effect on innate and adaptive immunity against murine listeria monocytogenes infection[J]. International Immunopharmacology,2006,6:686-696.
    [13]Lo, T. C. T., Tsao, H. H., Wang, A. Y., Chang, C. A. Pressurized water extraction of polysaccharides as secondary metabolites from Lentinula edodes[J]. Journal of Agriculture and Food Chemistry,2007,55:4196-4201.
    [14]Maeda, Y. Y., Takahama, S., Kohara, Y., Ynekawa, H. Polygenic control of the expression of biological activities of an antitimor polysaccharide, Lentina[J]. International Journal of Immunopharmacology,1997,19:469-472
    [15]Oka, M., Hazama, S., Suzuki, M., Wang, F., Wadamori, K., Iizuka, N. In Vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, Lentina[J]. International Journal of Immunopharmacology,1996,18,211-216.
    [16]Surenjav, U., Zhang, L., Xu, X., Zhang, X., Zeng, F. Effects of molecular structure on antitumor activities of (1→3)-β-D-glucans from different Lentinus Edodes[J]. Carbohydrate Polymers,2006,63:97-104.
    [17]Tomati, U., Belardinelli, M., Galli, E., Iori, V., Capitani, D., Mannina, L., et al. NMR Characterization of the polysaccharidic fraction from Lentinula edodes grown on olive mill waste waters[J]. Carbohydrate Research,2004,339:1129-1134.
    [18]Vanea, C. H., Drage, T. C., Snape, C. E. Bark decay by the white-rot fungus Lentinula edodes:Polysaccharide loss, lignin resistance and the unmasking of suberin[J]. International Biodeterioration Biodegradation,2006,57:14-23.
    [19]Huang, Q., Zhang, L. Solution properties of (1→3)-a-D-glucan and its sulfated derivative from Poria cocos mycelia via fermentation tank[J]. Biopolymers,2005,79: 28-38.
    [20]Bao, X., Liu, C., Fang, J., Li, X. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst[J]. Carbohydate Research,2001,332:67-74.
    [21]Bao, X. F., Wang, X. S., Dong, Q., Fang, J. N., Li, X. Y. Structural features of immunologically active polysaccharides from Ganoderma lucidum[J]. Phytochemistry, 2002,59:175-181.
    [22]Eo, S. K., Kim, Y. S., Lee, C. K., Han, S. S. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses[J]. Journal of Ethnopharmacology,2000,72:475-481.
    [23]Lai, L. S., Yang, D. H. Rheological properties of the hot-water extracted polysaccharides in Ling-Zhi(Ganoderma lucidum) [J]. Food Hydrocolloids,2007,21: 739-746.
    [24]Lee, J. M., Kwon, H., Jeong, H., Lee, J. W., Lee, S. Y., Baek, S. J., et al. Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum[J]. Phytotherapy Research,2001,15:245-249.
    [25]Peng, Y., Zhang, L., Zhang, Y., Xu, X., Kennedy, J. F. Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae[J]. Carbohydrate Polymers,2005,59:351-356.
    [26]Shiao, M. S. Natural products of the medicinal fungus Ganoderma lucidum: Occurrence, biological activities, and pharmacological functions[J]. The Chemical Record,2003,3:172-180.
    [27]Wang, Y. Y., Khoo, K. H., Chen, S. T., Lin, C. C., Wong, C. H., Lin, C. H. (2002). Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides:Functional and proteomic analyses of a fucosecontaining glycoprotein fraction responsible for the activities [J]. Bioorganic Medicinal Chemistry,2002,10:1057-1062.
    [28]Zhu, F., Isaacs, N. W., Hecht, L., Tranter, G. E., Barron, L. D. Raman optical activity of proteins, carbohydrates and glycoproteins[J]. Chirality,2006,18:103-115
    [29]Zhu, X. L., Chen, A. F., Lin, Z. B. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice[J]. Journal of Ethnopharmacology,2007,111:219-226.
    [30]Fan, L., Zhan, S., Yu, L., Ma, L. Evaluation of antioxidant property and quality of breads containing Auricularia auricula polysaccharide flour [J]. Food Chemistry, 2006,101:1158-1163.
    [31]Wu, J., Ding, Z. Y., Zhang, K. C. Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture [J]. Enzyme and Microbial Technology,2006,39:743-749
    [32]Yoona, S. J., Yu, M. A., Pyun, Y. R., Hwang, J. K., Chuc, D. C., Junejac, L. R. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin[J]. Thrombosis Research,2003,112: 151-158.
    [33]Zhang, L., Yang, L. Properties of Auricularia auricula-judae β-D-glucan in dilute solutionv[J]. Biopolymers,1995,36:695-700.
    [35]Zhang, L., Yang, L., Chen, J. Conformational change of the β-D-glucan of Auricularia auricula-judae in water-dimethyl sulfoxide mixtures [J]. Carbohyrate Research,1995,276:443-447.
    [36]Zhang, L., Yang, L., Ding, Q., Chen, X. (1995a). Studies on molecular weights of polysaccharides of Auricularia auricula-judae[J]. Carbohyrate Research,1995,270: 1-10.
    [37]Ding, Q., Jiang, S., Zhang, L., Wu, C. Laser light-scattering studies of pachyman[J]. Carbohydrate Research,1998,308:339-343.
    [38]Ding, Q., Jiang, S., Zhang, L., Wu, C. Laser light-scattering studies of pachyman[J]. Carbohydrate Research,1998,308:339-343.
    [39]Xiao, Y., Liang, S., Qiu, G., Wu, J., Zhang, J. Preparation, characterization and tableting properties of two new pachyman-based pharmaceutical aids:Ⅰ. Disintegrants in dispersible tablets[J]. Polymers for Advanced Technologies,2007,18:268-274.
    [40]Wu, S. J., Ng, L. T., Lin, C. C. Antioxidant activities of some common ingredients of traditional Chinese medicine, angelica sinensis, Lycium barbarum and Poria cocos[J]. Phytotherapy Research,2004,18:1008-1012.
    [41]Chan, S. L., Yeung, J. H. K. Polysaccharide peptides from COV-1 strain of Coriolus versicolor induce hyperalgesia via inflammatory mediator release in the mouse[J]. Life Science,2006,78:2463-2470.
    [42]Chan, S. L., Yeung, J. H. K. Effects of polysaccharide peptide (PSP) from Coriolus versicolor on the pharmacokinetics of cyclophosphamide in the rat and cytotoxicity in HepG2 cells[J]. Food and Chemical Toxicology,2006,44:689-694.
    [43]Chan, S. L., Yeung, J. H. K. Modulation of antipyrine clearance by polysaccharide peptide (PSP) isolated from Coriolus versicolor in the rat[J]. Food and Chemical Toxicology,2006,44:1607-1612.
    [44]Cui, J., Chisti, Y. Polysaccharopeptides of Coriolus versicolor:Physiological activity, uses, and production[J]. Biotechnology Advances,2003,21:109-122
    [45]Lee, C. L., Yang, X., Wan, J. M. F. The culture duration affects the immunomodulatory and anticancer effect of polysaccharopeptide derived from Coriolus versicolo[J]. Enzyme and Microbial Technology,2006,38:14-21.
    [46]Ng, T. B. A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (basidiomycetes: polyporaceae) [J]. Genetic Pharmacology,1998,30:1-4.
    [47]Wang, H. X., Liu, W. K., Ng, T. B., Ooi, V. E. C., Chang, S. T. Immunomodulatory and antitumor activities of a polysaccharide-peptide complex from a mycelial culture of tricholoma SP., a local edible mushroom[J]. Life Science, 1995,57:269-281.
    [48]Wong, C. K., Tse, P. S., Wong, E. L. Y., Leung, P. C., Fung, K. P., Lam, C. W. K. Immunomodulatory effects of Yun Zhi and danshen capsules in health subjects-a randomized, double-blind, placebo-controlled, crossover study International Immunopharmacology,2004,4:201-211.
    [49]Yeung, J. H. K., Or, P. M. Y. Effects of polysaccharide peptides from COV-1 strain of Coriolus versicolor on glutathione and glutathione-related enzymes in the mouse[J]. Food and Chemical Toxicology,2007,45:953-961.
    [50]Luppi, E., Cesaretti, M., Volpi, N. Purification and characterization of heparin from the Italian clam Callista chione[J]. Biomacromolecules,2005,6:1672-1678
    [51]Yiannikouris, A., Andre, G., Poughon, L., Francois, J., Dussap, C. G., Jeminet, G. Chemical and conformational study of the interactions involved in mycotoxin complexation with a-D-glucans[J]. Biomacromolecules,2006,7:1147-1155.
    [52]Chen, H., Zhang, M., Qu, Z., Xie, B. Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate[J]. Journal of Agriculture Food and Chemistry,2007,55:2256-2260.
    [53]Chen, H., Zhang, M., Qu, Z., Xie, B. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis) [J]. Food Chemistry, 2007,106:559-563.
    [54]Yang, B., Wang, J., Zhao, M., Liu, Y., Wang, W., Jiang, Y. Identification of polysaccharides from pericarp tissues of Litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities [J]. Carbohydrate Research,2006,341: 634-638.
    [55]Kaji, T., Fujiwara, Y., Inomata, Y., Hamada, C., Yamamoto, C., Shimada, S. Repair of wounded monolayers of cultured bovine aortic endothelial cells is inhibited by Calcium spirulan, a novel sulfated polysaccharide isolated from Spirulina platensis[J]. Life Science,2002,70:1841-1848.
    [56]Kaji, T., Okabe, M., Shimada, S., Yamamoto, C., Fujiwara, Y., Lee, J. B. Sodium spirulan as a potent inhibitor of arterial smooth muscle cell proliferation in vitro [J]. Life Science,2004,74:2431-2439.
    [57]Sekharam, K. M., Venkataraman, L. V., Salimath, P. V. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis[J]. Phytochemistry,1987,26:2267-2269.
    [58]Sekharam, K. M., Venkataraman, L. V., Salimath, P. V. Structural studies of a glucan isolated from blue-green alga Spirulina platensis[J]. Food Chemistry,1989, 31:85-91.
    [59]作为骨髓保护剂和抗肿瘤免疫调节剂的人参多糖的制备[J].国外医学(植物药分册),2002,17(1):85-91.
    [60]徐国华.南瓜多糖的抑癌作用及对细胞免疫功能的影响[J].武汉市职工医学学报,2000,4:8-11.
    [61]叶盛英,郭琪.南瓜多糖的提取及其药理作用研究概况[J].天津药学2003,4:58-60.
    [62]王克夷.作为信息分子的糖类[J].化学进展,1996,8(2):98-100.
    [63]田庚元.植物多糖的研究进展[J].中国中药杂志1995,20(7):40-41.
    [64]张庆.大枣多糖体外抗补体活性及促进小鼠脾细胞的增殖作用[J].中药药理与临床,1998,14(5):9-11.
    [65]孔祥荣.芦荟多糖化学结构与生物活性[J].国外医药植物学分册2003,18,(1):9-10.
    [66]车振明.虫草多糖生物活性研究进展及其应用前景[J].食用菌2004,6:3-5.
    [67]肖建辉,蒋侬辉,梁宗琦.食药用真菌多糖研究进展[J].生命的化学,2002,22(2):148-149.
    [68]陈倩,穆晓峰.活性多糖构效研究进展[J].甘肃教育学院学报(自然科学版),2003,17(4):56-58.
    [70]姗张姗,王长云,魏晓蕾,李亮.海洋微生物胞外多糖结构与生物活性研究进展[J].2007,34:153-156.
    [71]孔庆盛.南瓜多糖的分离,纯代基其降血脂作用[J].中国生代药物杂志,2000,21:130-132.
    [72]Nishino. T., Yokoyam. G., Dobashi. K. Purificationa and characterization of fucose containing sulfated polysaccharides from theb rown/seaweed Ecklonia Kurome and their blood-anticoagulant activities[J]. Carbohydrate research,1989,186: 119-129.
    [73]方积年.硫酸酷化多糖的研究进展[J].中国药学杂志,1993,7:393-395.
    [74]黄贤刚,全永亮,管斌,胡勇.黑木耳多糖研究进展[J].2001,18(1):46-50.
    [75]姜红,孙宏鑫,李晶.酶法提取黑木耳多糖[J].食品与发酵工业,2005,31(6):131-133.
    [76]陈艳秋,周丽萍,尹英敏.黑木耳子实体水溶性多糖提取工艺的研究[J].吉林农业大学学报,2003,25(4):470--472.
    [77]林敏,吴冬青,李彩霞.黑木耳多糖提取条件的研究[J].河西学院学报,2004,20(5):87-89.
    [78]赵纪峰,王海军,苏晶,高太平.中药多糖的提取分离工艺研究重庆中草药研究[J].2007,55(1):29-33.
    [79]包海花,高雪玲,祖国美.一种改良的黑木耳多糖提取方法[J].中国林副特产,2005(4):29-33.
    [80]欧阳天贽,谢九皋.碱溶性黑木耳多糖的分离、纯化和表征[J].华中农业大学学报,1999,18(1):46-48.
    [81]张钟,高智谋.微波辅助野生黑木耳多糖的提取工艺条件优化.包装与食品机械,2006,24(2):7-10.
    [82]王晓军,李颖.微波辅助提取黑木耳多糖的研究.纺织高校基础科学学报,2010,(1):95-98.
    [83]樊黎生,张声华,吴小刚.微波辅助提取黑木耳多糖的研究.食品与发酵工业,2005,31(10):142-144,148.
    [84]李知敏,王伯初,周菁.植物多糖提取液的几种脱蛋白方法的比较分析[J].重庆大学学报,2004,8:57-59.
    [85]韩春然,唐娟,马永强.黑木耳多糖的酶法提取、纯化及性质研究[J].食品科学,2007,28(2):53-55.
    [86]叶凯贞黎碧娜王奎兰谭志伟多糖的提取、分离与纯化[J].广州食品工业科技,2004,3:144-145.
    [87]孔祥辉,张介驰,戴肖东,李景鹏.黑木耳多糖的提取与纯化[J].生物技术,2005,15(1):81-82.
    [88]方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学通报.1984, 10:46-49.
    [89]Seon-Joo Yoon, Myeong-Ae Yu, Yu-Ryang Pyun. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin[J]. Thrombosis Research,2003, (112):151-158.
    [90]Yongxu Sun, Tianbao Li, Jicheng Liu. Structural characterization and hydroxyl radicals scavenging capacity of a polysaccharide from the fruiting bodies of Auricularia polytricha. Carbohydrate Polymers,2010, (80):377-380.
    [91]刘茉娥.膜分离技术[M].北京:化学工业出版社,1998:1-2.
    [92]胡亚芹,曹杨.超滤膜技术在多糖提取方面的应用[J].生物技术通讯,2005,16(2):228-230.
    [93]吕宏凌,王保国.超滤、微滤分离技术在中药提取及纯化中的应用进展[J].化工进展,2005,24(1):5-9.
    [94]杨宁,赵谋明,崔春,张桂和,杨宝.仙人掌多糖的超滤膜分离提取及其影响因素[J].华南理工大学学报(自然科学版),2007,4(35):42-45.
    [95]叶晓,易剑平,俞军,钟儒刚.微滤、超滤和纳滤联用对多糖进行分子量分级[J].食品科技,2006,8:107-110.
    [96]Ito Y. Bowman RI. Countercurrent chromatography:liquid-liquid partition chromatography without solid support[J]. Science,1970,167:281-286.
    [97]Ito Y. Countercurrent chromatography:theory and practice[M]. New York: Marcel Dekker,1988.
    [98]江和源,程启坤,杜琪珍.高速逆流色谱法分离纯化茶黄素天然产物研究与开发,2000,12(4):30-35.
    [99]Q izhen Du, Heyuan Jiang, Yoichiro Ito. Separation of the aflavins of black tea: High-speed countercurrentchrom atographyvs sephadex LH-20 gelcolumn chromatography [J]. Journal of Liquid Chrom atography and Related Technologies, 2001,24(15):2363-2369.
    [100]Degenhardt A, Engelhardt UH,Wendt AS. Isolation of black tea pigments using High-speed countercurrentchromatography and studies on properties of black tea polymers[J]. Journal of Agricultural and Food Chem istry,2000,48(11):5200-5205
    [101]Diamond AD., Hsu JT. Aqueous two-phase systems for biomolecule separation[J]. Adv Biochem Engineering,1992,47:89-94.
    [102]Ohlesson R, Hentschel CC., Williams JG. Arapid method for the isolation of circular DNA using an aqueous two-phase partition system[J]. Nuel Acides Res., 1978,5:583-586.
    [103]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25(2):197-204.
    [104]马立四,王式箴.HPLC法测定低热量仪器中的Glc、Fru、Svc的研究[J].食品与发酵工业,1999,24(4):12-15.
    [105]孙群,牟世芬,陆德培.单糖和寡糖的离子色谱法分析研究[J].化学通报,1991,8:39-41.
    [106]逯南南,石丽花,刘辉,刘志河,耿越..马尾松花粉多糖中单糖组分的HPLC分析[J].中国野生植物资源,2008,4(27):61-63.
    [107]董群,方积年.寡糖及多糖甲基化方法的发展及现状[J].天然产物开发与研究,1995,7(2):60-65.
    [108]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999.
    [109]Edge C.J., Rademacher T.W., Wormald M.R. Fast Sequencing of Oligosacchrides:the Reagent-array Analysis Method[J]. Proc Natl Acad Sci,1992, 89(4):6338-6342.
    [110]方积年.多糖体的结构分析[J].国外医学—药学分册,1981,18(4):222-228.
    [111]张剑波,田庚元.寡糖分离和结构分析进展[J].生物化学与生物物理进展,1998,25(2):114-118.
    [112]Misaki A., Kakuta M. Studies on interrelation of structure and anti tumor effects of polysaccharides:antitumor action of periodatemodified branched (1→3)-β-D-glucanof Auricularia Auricula-judae, and polysaccharides confaining (1→3) glycosidic linkages[J]. Carbohydrate Research,1981,92:115-120.
    [113]Ukai S., Morisaki S. Polysaccharide in fungi. ⅤⅡ Acidic Heteroglycans from the fruit bodies of Auricularia Auricula-judae quel[J]. Chem. Pharm. Bull.,1982,30 (2):635-641.
    [114]夏尔宁,陈琼华.黑木耳多糖的分离、纯化和鉴定[J].生物化学与生物物理学报,1988,20(6):614-618.
    [115]Lina Zhang, Liqun Yang, Qiong Ding, Xianfeng Chen. Studies on molecular weights of polysaccharides of Auricularia auricula-judae[J]. Carbohydrate Research, 1995, (270):1-10.
    [116]Wu Qina, Tan Zhiping, Liu Haidan, Gao Lei,Wu Sijie, Luo Jinwen, Zhang Weizhi, Zhao Tianli, Yu Jiefeng, Xu Xinhuaa. Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice[J]. International Journal of Biological Macromolecules 46 (2010) 284-288.
    [117]Xue-Biao Peng, Qian Li, Li-Na Ou, Li-Fen Jiang, Kang Zeng. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice[J]. International Journal of Biological Macromolecules,2010,47:304-307.
    [118]Yongxu Sun, Tianbao Li, Jicheng Liu. Structural characterization and hydroxyl radicals scavenging capacity of a polysaccharide from the fruiting bodies of Auricularia polytricha[J]. Carbohydrate Polymers,2010,80:377-380.
    [120]刘美娜,安家彦,王尚可,祝鸿飞.黑木耳多糖的提取及单糖组成成分分析[J].食品工业科技,2009,3:228-230.
    [121]Lisheng Fan, Shenghua Zhang, Lin Yu, Li Ma. Evaluation of antioxidant property and quality of breads containing Auricularia auricula polysaccharide flour[J]. Food Chemistry,2006,101:1158-1163.
    [122]吴宪瑞,孔令员.黑木耳多糖的医疗保健价值[J].林业科技,1996,21(3):32-33.
    [123]申建和,陈琼华.黑木耳多糖的抗血栓作用[J].中国药科大学学报,1990,21(1):39-42.
    [124]周慧萍,王寿如.黑木耳多糖的抗衰老作用[J].中国药科大学学报,1989,20(5):303-306.
    [125]吴宪瑞,孔令员.黑木耳多糖的医疗保健价值[J].林业科技,1996,21(3):32-33.
    [126]申建和,陈琼华.黑木耳多糖的抗凝血栓活性[J].中国药科大学学报,1987,18(2):137-140.
    [127]张俐娜,陈和生.黑木耳酸性杂多糖构效关系的研究[J].高等学校化学学报,1994,15(8):1231-1234.
    [1]Zhang L, Yang L, Ding Q, Chen X. Studies on molecular weights of polysaccharides of Auricularia auricula-judae[J]. Carbohydrate Research 1995,270: 1-10.
    [2]黄婧,张名位,张瑞芬,张雁.苦瓜不同品种多糖含量的比较[J].园艺学报,2008,35(5):757-760.
    [3]于孟琦,孙磊,乔善义.牡丹皮多糖的含量测定[J].国际药学研究杂志,2010,34(4):130-132.
    [4]Oka H., Harada K., Ito Yoko, Ito Y. Separation of lac dye componets by high-speed countercurrent chromatography[J]. Journal of Chromatography A,1998, 812:35-52.
    [5]Oka F., Oka H., Ito Y. Optimization of a high speed countercurrent chromatography for analytical separations[J]. Journal of Chromatography A,1991, 538:99-108.
    [6]逯南南,石丽花,,刘辉,刘志河,耿越.马尾松花粉多糖中单糖组分的HPLC分析[J].中国野生植物资源,2008,4(27):61-63.
    [7]Juliana C. Santos-Neves, Maria Izabel Pereira, Elaine R. Carbonero, Ana Helena P. Gracher, Giovana Alquini, Philip A.J. Gorin, Guilherme L. Sassaki, Marcello Iacomini. A novel branched αβ-glucan isolated from the basidiocarps of the edible mushroom Pleurotus florida[J] Carbohydrate Polymers,2008,73:309-314.
    [8]O. Ishurd, F. Zgheel, M. Elghazoun, M. Elmabruk, A.Kermagi, J.F. Kennedy, C.J. Knill. A novel (1→4)-α-D-glucan isolated from the fruits of Opuntia ficusindica (L.) Miller[J]. Carbohydrate Polymer, doi:10.1016/j.carbpol.2010.06.006.
    [9]LiBin Ye, JingSong Zhang, XiJun Ye, QingJiu Tang, YanFang Liu, ChunYu Gong,d XiuJui Dua, YingJie Pan. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-Ⅱ) from Ganoderma lucidum fruiting bodies[J]. Carbohydrate Research,2008,343:746-752.
    [10]Carbonero ER, Gracher AHP, Smiderle FR, Rosado FR, Sassaki GL, Gorin PAJ, Lacomini M. A β-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus[J]. Carbohydrate Polymer,2006,66:252-257.
    [11]Santos-Neves, J.C., Pereira, M.I., Carbonero, E.R., Gracher, A.H.P., Gorin, P.A.J., Sassaki, G.L. Iacomini,M., A gel-forming P-glucan isolated fromthe fruit bodies of the edible mushroom Pleurotus florida[J]. Carbohydrate Research,2008, 343,1456-1462.
    [12]Ali, T., Weintraub, A., Widmalm, G Structural determination of the O-antigenic polysaccharide from the Shiga toxin-producing Escherichia coli 0171 [J]. Carbohydrate research,2006,341:1878-1883.
    [13]Mondal S, Chakraborty I, Rout D, Islam SS. Isolation and structural elucidation of a water-soluble polysaccharide (PS-Ⅰ) of a wild edible mushroom, Termitomyces striatus[J]. Carbohydrate Research,2006,341(7):878-886.
    [14]Smiderle, F.R., Carbonero, E.R., Mellinger, C.G., Sassaki, G.L., Gorin, P.A.J., Iacomini, M.,2006. Structural characterization of a polysaccharide and a β-glucan isolated from the edible mushroom Flammulina velutipes[J]. Phytochemistry,2006, 67:2189-2196.
    [16]Rout D, Mondal S, Chakraborty I, Pramanik M, Islam SS. Chemical analysis of a new (1→3)-, (1→6)-branched glucan an edible mushroom, Pleurotus florida. Carbohydrate Research,2005,340:2533-2539.
    [17]张劲松,韩炜玮,潘迎捷.云芝子实体多糖化学结构的研究.药学学报,2001,36(9):664-667.
    [1]Qin CG, Huang KX, Xu HB. Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus[J]. Carbohydrate Polymers,2002,49:367-371.
    [2]Rui Tad, Yoshiyuki Adachi, Ken-ichi Ishibashi, Naohito Ohno. An unambiguous structural elucidation of a 1,3-β-D-glucan obtained from liquid-cultured Grifola frondosa by solution NMR experiments[J]. Carbohydrate Research,2009,344: 400-404.
    [3]W. Cui, P.J. Wood, B. Blackwell, J. Nikiforuk. Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—comparison with other cereal β-D-glucans[J]. Carbohydrate Polymers, 2000,41:249-258.
    [4]Sander S. van Leeuwen, Slavko Kralj, Ineke H. van Geel-Schutten. Structural analysis of the a-D-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme[J]. Carbohydrate Research,2008,343: 1251-1265.
    [5]Tingting Gao, Hongtao Bi, Shuai Ma, Jingmei Lu. Structure elucidation and antioxidant activity of a novel a-(1→3), (1→4)-D-glucan from Aconitum kusnezoffii Reich[J]. International Journal of Biological Macromolecules,2010,46:85-90
    [6]Tianqi Wang, Li Deng, Shikun Li, Tianwei Tan. Structural characterization of a water-insoluble (1→3)-a-D-glucan isolated from the Penicillium chrysogenum[J]. Carbohydrate Polymers,2007,67:133-137.
    [7]Andrei V. Perepelov, Quan Wang, Sofy N. Senchenkova. Structure of a teichoic acid-like O-polysaccharide of Escherichia coli 029[J]. Carbohydrate Research, 2006,341:2176-2180.
    [8]Luis Antelo, Eric G. Cosio, Norbert Hertkorn, Jtirgen EbeP. Partial purification of a GTP-insensitive (1→3)-β-glucan synthase from Phytophthora sojae[J]. FEBS Letters,1998,433:191-195.
    [9]Alex E. Amaral, Elaine R. Carbonero, Rita de Cassia G. Simao. An unusual water-soluble β-glucan from the basidiocarp of the fungus Ganoderma resinaceum[J]. Carbohydrate Polymers,2008,72:473-478.
    [10]J.P. Roubroeks, R. Andersson, P. A man. Structural features of (1→3), (1→4)-β-D-glucan and arabinoxylan fractions isolated from rye bran[J]. Carbohydrate Polymers,2000,42:3-11.
    [11]Lin Chen, Maruse Sadek, Bruce A. Stone, Robert T.C. Brownlee. Stereo chemical course of glucan hydrolysis by barley(1→3)-and (1→3,1→4)-β-glucanases[J]. Biochimica et B iophysica Acta,1995,1253:112-116.
    [12]Erika A, Wolski, Carlos Lima, Rosali Agusti. An a-glucan elicitor from the cell wall of a biocontrol binucleate Rhizoctonia isolate[J]. Carbohydrate Research,2005, 340:619-627.
    [13]Juliana C. Santos-Neves, Maria Izabel Pereira, Elaine R. Carbonero. A novel branched α β-glucan isolated from the basidiocarps of the edible mushroom Pleurotus florida[J]. Carbohydrate Polymers,2008,73:309-314.
    [14]Hengxiang Cui, Qin Liu, Yongzhen Tao, Hongfeng Zhang, Lina Zhang, Kan Ding. Structure and chain conformation of a (1→6)-a-D-glucan from the root of Pueraria lobata (Willd.) Ohwi and the antioxidant activity of its sulfated derivative[J]. Carbohydrate Polymers,2008,74:771-778.
    [15]Kaushik Ghosh, Krishnendu Chandra, Arnab K. Ojha, Syed S. Islam. NMR and MALDI-TOF analysis of a water-soluble glucan from an edible mushroom, Volvariella diplasia. Carbohydrate Research,2008,343:2834-2840.
    [16]Liqun Yang, Li-Ming Zhang. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers,2009,76:349-361.
    [1]陈春霞,赵大明,张秀苹.羧甲基茯苓多糖的抗肿瘤试验[J].福建中医药,2002,33(3):38-41.
    [2]陈芝芸,严茂祥,项柏康.金针菇多糖对Lewis肿瘤荷瘤小鼠的抑瘤作用及免疫功能的影响[J].中国中医药科技,2003,10(4):226-227.
    [3]唐超,王清吉,葛蔚,王金叶.血红铆钉菇多糖对小鼠S180肉瘤的抑制作用[J].安徽农业科学,2010,38(6):29662967.
    [4]杨焱,周昌艳,王晨光.猴头菇多糖调节机体免疫功能的研究[J].食用菌学报,2000,7(1):19-22.
    [5]曾群力,郑一凡,吕志良.肉苁蓉多糖的免疫活性作用及机制[J].浙江大学学报(医学版),2002,31(4):247-251.
    [6]胡齐莉,冯治宇.两种仙人掌多糖对肿瘤细胞膜脂流动性的影响.中国现代中药,,2006,11(8):17-19.
    [7]Petkova DH, Momchilova AB, Koumanov KS. Effect of liver plasma membrane fluidity on endogenous phospholipase activity[J]. Bioehimie,1987,69(11): 1251-1255.
    [8]Daleau P. Lysophosphatidylcholine, a metabolite which accumulates early in myocardium during ischemia, reduces gap junctional coupling in cardiac cells[J]. Journal of Molecular and Cellular Cardiology,1999,31(7):1391-1401.
    [9]罗霞,余梦瑶,江南,许晓燕,曾瑾,郑林用.毛木耳多糖APPIIA对巨噬细胞细胞因子和iNOS基因表达的影响[J].菌物学报,2009,28(3):435-439.
    [10]Yang BK, Ha JY, Jeong SC, Jeon YJ, Ra KS, Das S. Hypolipidemic effect of an exo-biopolymer produced from submerged mycelial culture of Auricularia polytricha in rats[J]. Biotechnology Letters,2002,24:1319-1325.
    [11]宋广磊,杜琪珍.黑木耳多糖AAPS-3的化学结构[J].菌物学报,2010,29(4):576-581.
    [12]张秀娟,穆坤,杨姗姗,季宇彬.紫草多糖对S180荷瘤小鼠红细胞膜流动性与带3蛋白的影响[J].亚太传统医药,2007,3(9):30-33.
    [13]Vernie LN, De Goeij JJM, Zegers C, De Vries M, Baldew GS, McVie JG,. Cisplatin-induced changes of selenium levels and glutathione peroxidase activities in blood of testis tumor patients, Cancer Letters,1988,40(1):83-91.
    [14]李伟欣,陈倩,李平兰,程静.一种双歧杆菌胞外多糖免疫调节功能研究[J].微生物学通报,2009,36(6):931-935.
    [15]顾笑梅,王富生,孔健.乳酸菌Z222产胞外多糖(EPS I)对免疫细胞功能的影响[J].中华微生物学和免疫学杂志,2003,23(6):442-445.
    [16]江振友,林晨.灵芝多糖对小鼠细胞免疫功能调节作用的实验研究[J].微生物学杂志,2003,23(2):51-54.
    [17]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,6:197-204.
    [18]Wyss DF, Choi JS, Li J. Conformation and Function of the N-linked Glycan in the Adhesion Domain of Human CD2 [J]. Science,1995,269(5):1273-1278.
    [19]Weitzhandler M, Kadlecek D, Avdanovic N. Mono-and Oligosacchride Analysis of Proteins Transferred to Polyvinylidene Fluoride Membrances After Sodium Dodecyl Sulfate-polyacrylamide gel Eletrophoresis[J]. J Biol. Chem,1993,268(7): 5121-5130.
    [20]单斌,张卫国,赵强,何顺英.苦瓜多糖抗氧化活性的研究[J].安徽农业科学,2009,37(1):182-183.
    [21]Singh R.P., Murthy K.N., Jayaprakasha G.K. Studies on the antioxidant activity of pomegranate peel and seed extracts using in vitro models[J]. Food Chemistry,2002, (50):81-86.
    [22]赵爱天,胡博路,杭瑚.部分植物抗氧化活性的初步研究[J].天然产物研究与开发,2000,12(3):42-44.
    [23]陈留勇,盂宪军,黄桃.水溶性多糖的抗肿瘤作用及清除自由基提高免疫活性研究[J].食品科学,2004,25(1):167-170.
    [24]Smirnoff N., Cumbes Q.J., Hyroxyl radical scaven-ging activity of compatible solutes[J]. Phytochemistry,1989,28(4):1057-1060.
    [25]刘存芳,田光辉.抱茎蓼挥发油成分及其抗菌活性的研究[J].天然产物研究与开发,2007,19(3):447-451.
    [26]Gow-Chin Yen, Pin-Der Duh, Hui-Ling Tsai. Antioxidant and prooxidant properties of ascorbic acid and gallic acid[J]. Food Chemistry,2005,79:307-313.
    [27]耿丽娜.格里斯试剂比色法测定亚硝酸盐的改进[J].数理医药学杂志,2001,(1):65-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700