奶牛乳房炎相关血浆蛋白质初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奶牛乳房炎是奶牛乳腺的一种炎症,它的发生是病原微生物、环境因素、管理因素、奶牛自身及遗传因素等综合作用的结果。奶牛乳房炎是对奶业生产造成巨大损失的疾病之一,严重影响世界奶牛业发展,在畜牧、兽医、食品等领域一直受到广泛关注。随着生物技术的发展不断有新的技术被用来探索乳房炎的发病机理,本实验运用蛋白质组学的方法,鉴定健康与患乳房炎奶牛血浆中的差异蛋白,以及分娩前后血浆中的差异蛋白,旨在寻找奶牛乳房炎早期诊断的标志性蛋白,并为今后的抗病育种提供理论依据。主要试验结果如下:
     第一,建立了奶牛血浆蛋白质组双向电泳分离鉴定技术平台。(1)对不同的样品处理方法进行了比较。DEAE Affi-Gel兰胶柱,阴离子柱和超滤管被用于对血浆样品进行预处理,步骤增多,而且低丰度蛋白富集效果不明显。(2)使用经典的热SDS法处理血浆样品,采用pH4-7的胶条和7.5%-17.5%的梯度胶,经硝酸银染色后,建立了奶牛血浆蛋白质双向电泳图谱。此方法简单易行,稳定性好。
     第二,乳房炎奶牛血浆差异蛋白的分离与鉴定。分别收集健康和患病奶牛血浆,根据体细胞数将患病奶牛的血浆分为2组,一组为体细胞数大于40万个/ml小于200万个/ml,第二组体细胞数大于200万个/ml。采用双向电泳(2-DE)技术得到奶牛血浆蛋白质组图谱,PDQuest7.0软件进行分析,识别3倍差异表达蛋白斑点8个;将选取的差异蛋白质点胶内酶解后进行MALDI-TOF/TOF MS分析,经MASCOT搜索数据库鉴定为白蛋白、α-2-HS-糖蛋白、结合珠蛋白和转甲状腺素蛋白;其中结合珠蛋白在患病牛血浆中含量增加,白蛋白、α-2-HS-糖蛋白和转甲状腺素蛋白含量降低。并使用Western Blot方法在个体中验证,与双向电泳的分析结果一致。这4种差异蛋白均为急性期蛋白。α-2-HS-糖蛋白与转甲状腺素蛋白为首次在血浆中鉴定的乳房炎相关蛋白,有可能作为奶牛乳房炎发病前的检测蛋白。
     第三,比较奶牛分娩前后血浆差异蛋白。分别收集分娩前后一周内的奶牛血浆,进行双向电泳分析。PDQuest7.0识别3倍差异表达蛋白点12个,质谱鉴定为白蛋白和结合珠蛋白,白蛋白在产后奶牛的血浆中的含量降低,结合珠蛋白的含量增加。Western Blot检测结合珠蛋白与双向电泳的分析结果一致。产后乳房炎个体与健康个体间的结合珠蛋白的血浆含量没有差异。结合珠蛋白的产后的不敏感性与慢性疾病或急性炎症高度相关。因此,这种现象可能与奶牛围产期的免疫抑制有关。
The mastitis is the inflammation of cow mammary gland, its occurrence is a combined action result including the pathogenic microorganism, the environmental factor, the management factor, the cow own and the hereditary factors and so on. The mastitis is one of diseases that causes heavy economic loss and influences the development of dairy industry in the worldwide.It has became the hotspot not only in the fieldof livestock and veterinarian but also in food security. Following the development of biotechnology, more new technologies are applied to investigate the mechanism of mastitis pathogenesis. In this study, plasma proteomics analysis was performed for analysis the protein differentiations between healthy and patient cows, as well as around the calving period. It will be help for detecting mastitis process on pathological levels, and seeking for the proteins related to mastitis to provide the reference for mastitis treatment ahead of time. The main results are as follows:
     First, different methods for the preparation of plasma sample were compared—DEAE Affi-Gel blue column, anion exchange column and ultrafiltration tube. More steps were needed, and the enrichment effect was not better. The heating with 10%SDS and 2.3% DTT to denature sample at 95℃for 5min, IEF on pH 4-7 IPG strips were better for effectively improving the resolution and intensity of low-abundant proteins.
     Second, analysis of different proteins between health and mastitis cow. Plasma was collected from health and mastitis cow respectively. According to somatic cell counts (SCC), plasma from mastitis cow was divided into two group: mastitis1 (2000x103cells/ml>SCC>400 x103cells/ml), mastitis2 (2000x103cells/ml     Third, different protein analysis between pre-perinatal and post-perinatal. Haptoglobin and albumin were identified as the different proteins between pre-perinatal and post-perinatal.The haptoglobin was related to retained placenta and endometritis during post perinatal. Poor sensitivity in postpartum periods could be related to the higher incidence of chronic (vs acute) inflammation. Haptoglobin may be appropriate for routine screening, but further work needs to be done to assess its value as an indicator of herd health and relationship with immune depression.
引文
1.曹随忠,杜立新,赵兴绪.16S-23S rDNA间隔区在奶牛乳房炎诊断中的应用.中国畜牧兽医., 2005, 32:26-27.
    2.曹随忠,杜立新,吴瑞芹.影响奶牛乳房炎抗性性状的遗传因素.中国畜牧兽医,2005,32(1):25-27.
    3.陈瑶生主编.中国动物遗传育种研究进展.北京:中国农业科学技术出版社, 2003, 24-26.
    4.储明星,石万海,邝霞等,奶牛乳房炎的遗传学及遗传评定.中国奶牛.,2003,(3):42-44.
    5.杜立新.动物分子育种及其发展趋势.中国畜牧兽医学会第十二次全国动物遗传育种学术讨论会.2003,12.
    6.胡松华,蒋次升.奶牛隐性乳房炎的治疗.中国奶牛,1989,(5):42-44.
    7.黄鑫华.泌乳期牛乳腺上皮细胞凋亡的研究[博士学位论文].大庆:黑龙江八一农垦大学,2007.
    8.马翀.奶牛乳房炎的病因学与病理学研究[博士学位论文].北京:中国农业大学,2006.
    9.刘文利,段春华,韩征军.奶牛乳房炎的防治.动物科学与动物医学, .2004,21(10):58-60.
    10.潘耀谦,郭顺远,杨盛华,金春彬.奶牛不同型隐性乳腺炎的病理形态学观察.辽宁畜牧兽医,1996,5:2-4.
    11.王亨.牛乳腺上皮细胞培养及乳房炎致病菌与细胞相互作用的研究[博士学位论文].北京:中国农业大学,2007.
    12.王力波.奶牛乳房炎的发生、分类与防治措施.养殖技术顾问, 2005,(1):40-41.
    13.魏学良,张家骅,王豪举等.高温环境对奶牛生理活动及生产性能的影响.中国农学通报,2005,21:13-15.
    14.项开合,张乃生,肖连明,聂玉霞.奶牛乳房炎的生物学防治.动物医学进展, 2007, 28(3),109-112.
    15.臧丽,李英俊等.奶牛乳腺的防御机制与乳腺炎病理学.动物医学进展.,2006, 27(11):33-37.
    16.郑炜.泌乳期牛乳腺上皮细胞增殖的研究[博士学位论文].大庆:黑龙江八一农垦大学,2007.
    17. A.A. Hassan, I.U. Khan, A. Abdulmawjood and C. Lammler, Evaluation of PCR methods for rapid identification and differentiation of Streptococcus uberis and Streptococcus parauberis, J. Clin. Microbiol. 2001, 39 :1618–1621.
    18. A.Herosimczyk, N.Dejeans, T.Sayd, M.Ozgo, W.F.Skrzypczak, A.Mazur. plasma proteome analysis:
    2D Gels and chips. Journal of Physiology and Pharmacology.,2006,57:81-93.
    19. AHMED Nuzhat ; RICE Gregory E. Strategies for revealing lower abundance proteins in two-dimensional protein maps. Journal of Chromatography B.,2005,815: 39-50.
    20. A.J. Heinrichs, S.S. Costello and C.M. Jones. Control of heifer mastitis by nutrition. Veterinary Microbiology., 2009, 134: 172-176
    21. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev., 1995, 59(1):143-69.
    22. Anderson N L, Anderson N G. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics., 2002,1(11):845-867.
    23. Anthony F. Suffredini, Giamila Fantuzzi, Raffaele Badolato, et al. New Insights into the Biology of the Acute Phase Response. Journal of Clinical Immunology., 1999,19: 203-214
    24. Ariel L. Rivas, Steven J. Schwager, Rubén N. González, et al. Multifactorial relationships between intramammary invasion by Staphylococcus aureus and bovine leukocyte markers. The Canadian Journal of Veterinary Research.,2007,71:135–144.
    25. A.T.Kopylov and V.G.Zgoda. The methods of quantitative proteomics. Biomedical Chemistry.,2008,2:28-46.
    26. A. V. Capuco, S. E. Ellis, S. A. Hale, et al. Lactation persistency: Insights from mammary cell proliferation studies. J. Anim. Sci., 2003. 81:18-31.
    27. B. Brett Finlay and Robert E. W. Hancock. Can innate immunity be enhanced to treat microbial infections? 2004,2:497-504.
    28. Bell AW. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci., 1995, 73:2804-2819.
    29. Berning LM, Paape MJ, Peters RR. Functional variation in dedogenous and exogenous immunoglobulin binding to bovine neutrophils relative to parturition. Am J Vet Res.,1993,54(7):1145-1153.
    30. B. H. Nielsen , S. Jacobsen DVM, P. H. Andersen,et al. Acute phase protein concentrations in serum and milk from healthy cows, cows with clinical mastitis and cows with extramammary inflammatory conditions. The Veterinary Record., 2004,154: 361-365.
    31. B. Heringstad , E. Sehested and T. Steine. Short communication: correlated selection responses in somatic cell count from selection against clinical mastitis., J. Dairy Sci. 2008,91:4437-4439.
    32. Blackstock AW, Bernard SA, Richards F, Eagle KS, Case LD, Poole ME, et al. Phase I trial of twice-weekly gemcitabine and concurrent radiation in patients with advanced pancreatic cancer. Wilkowski R, et al. JOP. J Pancreas (Online)., 2006, 7(4):349-360.
    33. Bishop, S. C., and K. M. MacKenzie. Genetic management strategies for controlling infectious diseases in livestock populations. Genet. SeI. Evol., 2003, 35:3-17.
    34. Bottero MT, Dalmasso A, Soglia D et al. Development of a multiplex PCR assay for the identification of pathogenic genes of Escherichia coli in milk and milk products. Molecular and Cellular Probes.,2004, 18:283-288.
    35. Boudjellab N, Chan-Tang HS, Li X, Zhao X. Interleukin 8 response by bovine mammary epithelial cells to lipopolysaccharide stimulation. Am J Vet Res.,1998;59(12):1563–7.
    36. Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, Rupp R, Amigues Y, Boscher MY, Leveziel H. Detection of genes influencing economic traits in three French dairy cattle breeds. Genet Sel Evol., 2003,35:77-101.
    37. Burton J L, Erskine R J. Immunity and mastitis: some new ideas for an old disease. Vet Clin North Am: Food Anim Pract., 2003,19(1):1-45.
    38. Cai, H. Y., M. Archambault, C. L. Gyles, and J. F. Prescott. Molecular genetic methods in the veterinary clinical bacteriology laboratory: Current usage and future applications. Anim. Health Res. Rev., 2003,4:73–93
    39. Cai TQ, Weston PG, Lund LA, et al. Association between neutrophil functions and periparturient disorders in cows. Am J Vet Res.,1994,55(7):934-943.
    40. CAMPBELL Fiona M., WATERSTON Mary, ANDRESEN Lars Ole, et al. The negative acute phase response of serum transthyretin following Streptococcus suis infection in the pig. Veterinary Research., 2005, 36: 657-664.
    41. CHAN Jacky Peng-Wen,CHU Chia Cheng, FUNG Hang Poung, et al. Serum Haptoglobin concentration in cattle. Journal of Veterinary Medical Science., 2004, 66. 43-46 .
    42. Capuco, A. V., D. L. Wood, R. Baldwin, K. Mcleod, and M. J. Paape. Mammary cell number, proliferation, and apoptosis during a bovine lactation: relation to milk production and effect of bST. J. Dairy Sci., 2001a, 84:2177–2187.
    43. Capuco, A.V. and R.M. Akers. Mammary involution in dairy animals. J. Mammary Gland Biology Neoplasia., 1999,4: 137-144.
    44. Caroline J.Hogarth,Julie L. Fitzpatrick,Andrea M. Nolan,et al. Differential protein composition of bovine whey:a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics., 2003, 4,2094-2100.
    45. CAIROLI Fausto, BATTOCCHIO Masslmillano, VERONESI Maria Cristina, et al. Serum protein pattern during cow pregnancy : Acute-phase proteins increase in the peripartum period. Electrophoresis., 2006, 27:1617-1625 .
    46. Cem Gabay, M.D., and Irving Kushner, M.D. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med., 1999,340(17):1376.
    47. Chiara D’Ambrosio, Simona Arena, Fabio Talamo, Luigi Ledda, et al. Comparative proteomic analysis of mammalian animal tissues and body fluids: bovine proteome database. Journal of Chromatography B., 2005, 815:157-168.
    48. Corzo, A., M. T. Kidd, and S. C. Burgess. Initial mapping of the chicken blood plasma proteome. Int. J. Poult. Sci., 2004,3:157–162.
    49. Daley, M. J., Oldham, E. R., Williams, T. J. & Coyle, P. A. Quantitative and qualitative properties of host polymorphonuclear cells during experimentally induced Staphylococcus aureus mastitis in cows. American Journal of Veterinary Research.,1991,52 :474-479.
    50. Davies, D. R., Ahmed, G. M. & Freer, T. Chronic organophosphate induced neuropsychiatric disorder (COPIND): results of two postal questionnaire surveys. Journal of Nutritional and Environmental Medicine., 1999, 9: 123–134.
    51. D. Boulanger,F. Bureau,D. Me′lotte, et al. Increased Nuclear FactorκB Activity in Milk Cells of Mastitis-Affected Cows. J. Dairy Sci., 2003,86:1259–1267.
    52. D. D. Bannerman, M. J. Paape, R. L. Baldwin VI, et al.2006. Effect of Mastitis on Milk Perchlorate Concentrations in Dairy Cows. J. Dairy Sci., 89:3011–3019.
    53. Detilleux JC, Kehrli ME, Jr, Stabel JR, Freeman AE, Kelley DH. Study of immunological dysfunction in periparturient Holstein cattle selected for high and average milk production. Vet Immunol Immunopathol., 1995 ,44(3-4):251–267.
    54. Delves-Broughton, J. Nisin and its uses as a food preservative. Food Technol., 1990,44:100-112.
    55. Denis, M., Parlane, N.A., Lacy-Hulbert, J., Summers, E.L., Buddle, B.M. and Wedlock, D.N.,.Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows. Veterinary Immunology and Immunopathology., 2006, 114:111–120.
    56. Detilleux JC. Genetic factors affecting susceptibility of dairy cows to udder pathogens. Vet Immunol Immunopathol., 2002,25,88(3-4):103-10.
    57. Didier, A., Bruckmaier, R. M. mRNA expression of apoptosis-related genes in mammary tissue and milk cells in response to lipopolysaccharide challenge and during subclinical mastitis. Milchwissenschaft.,2004, 59: 119–123.
    58. Djillali Annane, Eric Bellissant, Jean-Marc Cavaillon. Septic shock. Lancet, 2005; 365: 63–78.
    59. Drackley JK. Biology of dairy cows during the transition period: the final frontier? J Dairy Sci., 1999, 82:2259-2273.
    60. Douglas D. BANNERMAN, Max J. PAAPE, Jesse P. GOFF, et al. Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet. Res., 2004,35: 681–700.
    61. Douglas D. Bannerman , Annapoorani Chockalingam ,Max J. Paape, et al. The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Veterinary Immunology and Immunopathology., 2005,107:201–215.
    62. Elizabeth R. Oldham and Michael J.Daley. Lysostaphin:use of a recombinant bactericidal enzyme as a mastitis therapeutic., 1991,74:4175-4182.
    63. Erskine, R. J.; Bartlett, P. C.; Tavernier, S. R., et al. Recombinant bovine interleukin-2 and dry cow therapy: efficacy to cure and prevent intramammary infections, safety, and effect on gestation. J Dairy Sci.,1998, 81 (1): 107-115.
    64. Frederique Lisacek, Sarah Cohen-Boulakia and Ron D. Appel. Proteome informaticsⅡ:bioinformatics for comparative proteomics. Proteomics.,2006,6:5445-5466.
    65. F. Vangroenweghe, I. Lamote, C.Burvenich. Physiology of the periparturient period and its relation to severity of clinical mastitis. Domestic Animal Endocrinology., 2005,29:283-293.
    66. G.E. Shook and M.M. Schutz , Selection on somatic cell score to improve resistance to mastitis in the United States. J. Dairy Sci., 1994,77: 648–658.
    67. Goff JP, Horst RL. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci., 1997, 80:1260-1268.
    68. Goldammer, T., Zerbe,H. , Molenaar, A., Schuberth, H.- J., Brunner, R.M., Kata, S.R. & Seyfert, H.-M. Mastitis Increases Mammary mRNA Abundance of Defensin 5,Toll-Like-Receptor 2 (TLR2), and TLR4 but Not TLR9 in Cattle. Clin.Diag.Lab.Immunol., 2004,11:174-85.
    69. Gray, C., Strandberg, Y., Donaldson, L. and Tellam, R. Bovine mammary epithelial cells, initiators of innate immune responses to mastitis: a review. Australian Journal of Experimental Agriculture., 2005,45 (7-8) :757-761.
    70. Gronlund U., Hulten C., Eckersall P.D., Hogarth C., Persson Waller K. Haptoglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylococcus aureus mastitis. Journal of Dairy Research., 2003, 70:379–386.
    71. Gronlund U., Hallen Sandgren, C., Persson Waller, K. Haptoglobin and serum amyloid A in milk from dairy cows with chronic sub-clinical mastitis. Veterinary Research., 2005,36:191–198.
    72. Grummer RR. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci., 1995, 73:2820-2833.
    73. Harry M. Georgiou,Gregory E. Rice,Mark S. Baker. Proteomic analysis of human plasma: Failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics., 2001, 1:1503–1506.
    74. Heringstad B, Klemetsdal G, Ruane J. Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livestock Production Science., 2000,64:95-96.
    75. Hui zhang. The plasma proteome: High abundance versus low abundance. Expert Rev.Proteomics.,2006,3(2):175-178.
    76. Iqbal M J, Johnson M W. Study of steroid-protein binding by a novel "two-tier" column employing Cibacron Blue F3G-A-Sepharose 4B. I-Sex hormone binding globulin. J. Steroid Biochen.,1977,8:977-983.
    77. Janeway C, Travers P, Walport M, Shlomchik M. Immunobiology: the immune system in health and disease. New York: Garland Publishing. 2001.
    78. Javier Oviedo-Boyso, Juan J. Valdez-Alarco′n, Marcos Cajero-Jua′rez, et al. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. Journal of Infection., 2007,54:399-409.
    79. Jayarao, B. M., and D. R. Wolfgang. Bulk tank milk analysis: a useful tool for improving milk quality and monitoring udder health. Veterinary Clinics of North America.,2003,19:75-92.
    80. Jernej OGOREVC, Tanja KUNEJ and Peter DOV?. AN INTEGRATED MAP OF CATTLE CANDIDATE GENES FOR MASTITIS: A STEP FORWARD TO NEW GENETIC MARKERS. Acta agriculturae Slovenica., 2008, 2:85–91.
    81. Jerome Wojcik and vincent schachter. Proteomic databases and software on the web. Briefings in bioinformatics.2000,3:250-259.
    82. Jerry W. Spears. Trace Mineral Bioavailability in Ruminants. The American Society for Nutritional Sciences., 2003 ,133: 1506–1509.
    83. JG Conner, PD Eckersall, M Doherty, TA Douglas. Acute phase response and mastitis in the cow. Res Vet Sci.,1986, 41(1):126–128.
    84. J. L. Boehmer , D. D. Bannerman, K. Shefcheck and J. L. Ward.Proteomic Analysis of Differentially Expressed Proteins in Bovine Milk During Experimentally Induced Escherichia coli Mastitis. J. Dairy Sci., 2008, 91:4206-4218.
    85. J.L. Burton, S.A. Madsen, J. Yao, S.S. Sipkovsky and P.M. Coussens, An immunogenomics approach to understanding periparturient immunosuppression and mastitis susceptibility in dairy cows, Acta Vet. Scand., 2001,42: 407–424.
    86. John D. Lippolis, Timothy A. Reinhardt. Proteomic survey of bovine neutrophils.Veterinary Immunology and Immunopathology., 2005, 103:53–65.
    87. Judith R.Stabel, Marcus E. Kehrli,Jr., Timothy A.Reinhardt and Brian J.Nonnecke. Functional assessment of bovine monocytes isolated from peripheral blood. Veterinary immunology and immunopathology., 1997,58:147-153.
    88. Julie R Hens, John J Wysolmerski Key stages of mammary gland development: Molecular mechanisms involved in the formation of the embryonic mammary gland.Breast Cancer Research., 2005, 7:220-224.
    89. J.V. N?rgaard, P.K. Theil, M.T. S?rensen, and K. Sejrsen. Cellular Mechanisms in RegulatingMammary Cell Turnover During Lactation and Dry Period in Dairy Cows. J. Dairy Sci., 2008, 91: 2319-2327.
    90. Kehrli M.E., Jr., B.J. Nonnecke, and J.A. Roth. Alterations in bovine peripheral blood lymphocyte function during the periparturient period. Am J Vet Res., 1989, 50:215-220.
    91. K. Kimura, T. A. Reinhardt and J. P. Goff. Parturition and Hypocalcemia Blunts Calcium Signals in Immune Cells of Dairy Cattle. J Dairy Sci, 2006, 89:2588-2595
    92. Knight and Wilde, 1993C.H. Knight and C.J. Wilde , Mammary cell changes during pregnancy and lactation. Livest. Prod. Sci.,1993,35: 3–19.
    93. K.P. Waller. Mammary gland immunology around parturition. Influence of stress, nutrition and genetics, Adv. Exp. Med. Biol.,2000, 480: 231–245.
    94. Langlois MR, Delanghe JR.Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996,42(10):1589-600.
    95. Laura Haltia, Tuula Honkanen-Buzalski, Irina Spiridonova, et al. A study of bovine mastitis, milking procedures and management practices on 25 Estonian dairy herds. Acta Veterinaria Scandinavica., 2006,48:22-28.
    96. LEATHERBARROW Robin J. and D.G.DEAN Peter. Studies on the mechanism of binding of serum albumins to immobilized Cibacron Blue F3G A. Biochem.J.,1980,189:27-34.
    97. Lee E.K., Kehrli M., Expression of adhesion molecules on neutrophils of periparturient cows and neonatal calves, Am. J. Vet. Res.,1998, 59 :37-43.
    98. Lippolis, J. D., and T. A. Reinhardt. Proteomic survey of bovine neutrophils. Vet. Immunol. Immunopathol., 2005, 103:53–65.
    99. L. Moretta, C. Bottino, D. Pende, M.C. Mingari, R. Biassoni and A. Moretta, Human natural killer cells: their origin, receptors and function, Eur. J. Immunol. 2002, 32 :1205–1211.
    100. Long E, Capuco AV, Wood DL, et al. Escherichia coli induces apoptosis and proliferation of mammary cells. Journal of Animal Science.,2001, 8(8):808-16.
    101. Lueking A., M. Horn, H. Eickhoff, K. Bussow, H. Lehrach, G. Walker, Protein microarrays for gene expression and antibody screening, Anal. Biochem., 1999, 270:103-111.
    102. MacBeath &Schreiber. Printing Proteins as Microarrays for High-Throughput Function Determination.Science., 2000,289:1760-1763.
    103. Magnusson U. Breeding for improved disease resistance in organic farming-possibilities and constraints. Acta Vet Scand., 2001, 95:59-61.
    104. Magnusson, U., Pedersen M?rner, A., Persson, A., Karlstam, E., Sternberg, S. and Kindahl, H. Sows intramammarily inoculated with Escherichia coli influence of time of infection, hormoneconcentrations and leucocyte numbers on development of disease. Jourmal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health., 2001,48:501-512.
    105. Makimura, S and Suzuki, N. Quantitative determination of bovine serum haptoglobin and its elevation in some inflammatory disease. Jpn. J. Vet. Sci., 1982, 44: 15-21.
    106. Maria Akerstedt, Karin Persson Waller and Ase Sternesjo. Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples. Journal of Dairy Research.,2007,74: 198–203.
    107. Marjorie L.Fournier, Joshua M.Gilmore, Skylar A.Martin-Brown and Michael P.Washburn. Multidimensional separations-Based shotgun proteomics. Chemical reviews.,2007,107(8):3654-3686.
    108. Máire P. Ryan, William J. Meaney, R. Paul Ross, and Colin Hill. Evaluation of Lacticin 3147 and a Teat Seal Containing This Bacteriocin for Inhibition of Mastitis Pathogens. Appl Environ Microbiol. 1998, 64: 2287-2290.
    109. Meaney W.J.,D.P. Twomey, Flynn C.Hill and R.P.Ross. The use of a bismuth based teat seal and the bacteriocin lacticin 3147 to provent dry periof mastitis in dairy cows. Proc. British Mastitis Congerence,Garstang, 2001: 293-299.
    110. Megan S Lim and Kojo SJ Elenitoba-Johnson. Proteomics in pathology research. Laboratory inveatigation.,2004,84:1227-1244.
    111. M.Fountoulakis, J.-F.Juranville, L.Jiang, D. Avila, et al. Depletion of the high-abundance plasma proteins. Amino acids.,2004,27:249-259.
    112. Mike Tyers, Matthias Mann. From genomics to proteomics.nature. Nature., 2003,422,193-197.
    113. Michael W.Linscheid. quantitative proteomics. Anal Bioanal Chem.,2005,381:64-66.
    114. M.K.Diani R.Dayarathna, William S. Hancock, Marina Hincapie. A two step fractionation approach for plasma proteomics using immunodepletion of abundant proteins and multi-lectin affinity chromatography: application to the analysis of obesity, diabetes, and hypertension diseases. J.Sep.Sci., 2008,31:1156-1166.
    115. Monfardini E., Burvenich C., Massart-Le?n A.-M., Smits E., Paape M., Effect of antibiotic induced bacterial clearance in the udder on L-selectin shedding of blood neutrophils in cows with Escherichia coli mastitis, Vet. Immunol. Immunopathol., 1999,67:373-384.
    116. Monfardini E., Van Merris V., Meyer E., Burvenich C., L-selectin expression increases strongly upon maturation of bovine progenitor cells (abstract), Pflügers Archiv Eur. J. Physiol., 2002, 444:4-10.
    117. Morris CA. A review of genetic resistance to disease in Bos taurus cattle.Vet J.,2007, 174(3):481-91.
    118. M. Pineiro, M. Andrés, M. Iturralde, et al. ITIH4 (Inter-Alpha-Trypsin Inhibitor Heavy Chain 4) Is a New Acute-Phase Protein Isolated from Cattle during Experimental Infection . Infection and Immunity., 2004, 72: 3777-3782.
    119. Naheed Mojgani and Mehdi Perveen Ashtiani. In Vitro inhibition of mastitis pathogens by bacteriocin RN 86 Produced by an indigenous Lactobacillus casei isolate. Journal of applied sciences., 2006,6(12):2629-2634.
    120. Natalia Lasztity, Lajos Biro, Eva Nemeth, et al. Protein Status in Pancreatitis– Transthyretin Is a Sensitive Biomarker of Malnutrition in Acute and Chronic Pancreatitis. Clinical Chemistry and Laboratory Medicine., 2005, 40: 1320–1324.
    121. Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A., Mann, M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet., 1998, 20 : 46–50.
    122. Nicholas FW. Animal breeding and diease. Philos Trans R Soc Lond B Biol Sci., 2005, 29:1529-36.
    123. Norgaard J, Sorensen A, Sorensen MT, Andersen JB, Sejrsen K. Mammary cell turnover and enzyme activity in dairy cows: effects of milking frequency and diet energy density. J Dairy Sci., 2005, 88: 975-982 .
    124. Ombrellino M, Wang H, Yang H,et al. Fetuin, a negative avute phase protein, attenuates TNF synthesis and the innate inflammatory response to carrageenan. Shock., 2001,15(3):181-185.
    125. Paape, M.J. & Capuco, A.V. Cellular defense mechanisms in the udder and lactation of goats. J. Anim. Sci.,1997, 75:556-565.
    126. Patricia M.Palagi, Patricia Hernandez, Daniel Walther and Ron D.Appel. Proteome informatics Ⅰ:Bioinformatics tools for processing experimental data. Proteomics.,2006,6:5435-5444.
    127. P. Forsman, A. Tilsala-Timisjarvi and T. Alatossava, Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S–23S rRNA spacer regions, Microbiol. 1997, 143:3491–3500.
    128. Philip J. Griebel a, Robert Brownlie a, Anju Manuja, et al. Bovine toll-like receptor 9: A comparative analysis of molecular structure, function and expression. Veterinary Immunology and Immunopathology., 2005,108:11–16.
    129. Phuektes P, Mansell PD and Browning GF. Multiplex polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and Streptococcal causes of bovine mastitis. Journal of Dairy Science., 2001,84:1140–1148.
    130. Pieper, R., Gatlin, C.L., Makusky, A.J., Russo, P.S., Schatz, C.R., Miller, S.S., Su, Q., McGrath, A.M., Estock, M.A., Parmar, P.P., et al.. The human serum proteome: display of nearly 3700chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics., 2003,3(7): 1345-1364.
    131. Pyorala, S. H. K. and E. O. Pyorala. Efficacy of parenteral administration of there antimicrobial agents in treatment of clinical mastitis in lactating cows: 487 cases (1989-1995). J. Am. Vet. Med. Assoc., 2002,221: 103-108.
    132. Qing Zhang, Rajasree Menon, Eric W Deutsch, et al. A mouse plasma peptide atlas as a resource for disease proteomics. Genome biology.2008,9:93-102.
    133. Radhakrishna S, Tirumalai S, Chan KC, et al. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics., 2003;2:1096–103.
    134. Rainard P, Riollet C. Innate immunity of the bovine mammary gland. Vet Res.,2006,37(3):369-400.
    135. Ravi Pareek, Olga Wellnitz, Renate Van Dorp, et al. Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells. J Appl Genet ,2005,46(2): 171-177.
    136. R.Heyneman, C.Burvenich, and R. Vercauteren. Interaction between the pespiratory burst activity of neutrophil leukocytes and experimentally induced Escherichia coli mastitis in cows. Journal of Dairy Science.,1990,73:985-994.
    137. Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, LagacéJ. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol., 2001, 39(7):2584-9.
    138. Ruedi Aebersold and Matthias mann. Mass spectrometry-based proteomics. Nature,2003,422:198-207.
    139. R. Rupp and D. Boichard. Genetics of resistance to mastitis in dairy cattle.Vet. Res., 2003, 34: 671–688.
    140. Rupp, R., and D. Boichard. Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci., 1999, 82:2198–2204.
    141. Rupp R, Boichard D. Genetics of resistance to mastitis in dairy cattle. Vet Res., 2003, 34(5):671-688.
    142. Schalm,O.W.et al. Bovine Mastitis, lea & Febiger, Philadelphia,1971,1-268.
    143. Schukken, Y. H., K. E. Leslie, D. A. Barnum, et al. Experimental Staphylococcus aureus intramammary challenge in late lactation dairy cows: Quarter and cow effects determining the probability of infection. J. Dairy Sci.,1999, 82:2393–2401.
    144. SCHROOTEN C., BOVENHUIS H., COPPIETERS W., van ARENDONK J.A.. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. Dairy Science., 2000,83: 795-806.
    145. Schwerin M., Czernek-Schafer D., Goldammer T., Kata S.R., et al. Application of disease-associated differentially expressed gees–Mining for functional candidate genes for mastitis resistance in cattle. Genetics, Selection, Evolution., 2003, 35:19-34.
    146. Simon Sheng, Dawn Chen, and Jennifer E. Van Eyk. Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome. Mol Cell Proteomics., 2006,5:26-34.
    147. Skinner J.G., Brown R.A.L. and Roberts L. Bovine haptoglobin response in clinically defined field conditions. Vet. Rec., 1991, 128: 147–149.
    148. S. Nazifi, A. Rezakhani, M. Koohimoghad am, et al. Evaluation of serum haptoglobin in clinically healthy cattle and cattle with inflammatory diseases in shiraz, a tropical area in southern Iran. Bulgarian Journal of Veterinary Medicine., 2008, 11:95?101.
    149. S?rensen, M. T., J. V. N?rgaard, P. K. Theil, M. Vestergaard, and K. Sejrsen. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J. Dairy Sci., 2006,89:4632–4639.
    150. Sordillo L.M., Streicher K.L., Mammary gland immunity and mastitis susceptibility, J. Mammary Gland Biol. Neoplasia., 2002,7:135-146.
    151. Sordillo, L. M., Shafer-Weaver, K., & DeRosa, D. Immunobiology of the mammary gland. Journal of Dairy Science., 1997, 80:1851– 1865.
    152. Strandberg Y., Gray C., Vuocolo T., Donaldson L., Broadway M., Tellam R. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine., 2005,31:72–86.
    153. Steven P.Gygi, Garry L.Corthals, Yanni Zhang,et al.Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. PNAS.,2000,97:9390-9395.
    154. Steel LF, Shumpert D, Trotter M, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics., 2003, 3: 601-609.
    155. Sui Zhi Tian, Chai Ju Chang, Chih Chi Chiang,et al. Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. The Canadian Journal of Veterinary Research., 2005,69:39–45.
    156. Suriyasathaporn, W., Y. H. Schukken, M. Nielen, and A. Brand. Low somatic cell count: A risk factor for subsequent clinical mastitis in a dairy herd. J. Dairy Sci., 2000,83:1248–1255.
    157. Talamo Fabio; D'Ambrosio Chiara; Arena Simona,et al. Proteins from bovine tissues and biological fluids: defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics., 2003,3(4):440-60.
    158. Tammen Harald, Imke schulte, Hess Rudiger, et al. Peptidomic analysis of human blood specimens: Comparison between plasma specimens and serum by differential peptide display. Proteomics., 2005, 5:3414-3422.
    159. Terry Nguyen-Khuong, Anna Fitzgerald, Zhejun Zhao,et al. Improvements for the visualization of low-molecular weight protein and peptides of human tears using MALDI. Proteomics., 2008,8: 3424– 3432.
    160. Thomas Linke, Sundari Doraiswamy, and Ear1 H.Harrison.Rat plasma proteomics:effects of abundant protein depletion on proteomics analysis. Journal of chromatography B.,2007,849:273-281.
    161. Vitor Faca, Alexei Krasnoselsky, and Samir Hanash. Innovative proteomic approaches for cancer biomarker discovery. Bio Techniques.2008,43: 279-283.
    162. Wait Robin, Miller Ingrid, Eberini Ivano, et al. Strategies for proteomics with incompletely characterized genomes: The proteome of Bos taurus serum. Electrophoresis., 2002, 23:3418-3427.
    163. Wellnitz, P. Reith, S.C. Haas and H.H.D. Meyer, Immune relevant gene expression of mammary epithelial cells and their influence on leukocyte chemotaxis in response to different mastitis pathogens, Vet. Med., 2006, 51: 125–132
    164. Wildgruber, R., Harder, A., Obermaier, C., Boguth, G., Weiss, W., Fey, S.J.,Larsen, P.M., G?rg, A.; Towards higher resolution: two dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis., 2000,21(13): 2610-6.
    165. Wirawan, R. E., Klesse, N. A., Jack, R. W. & Tagg, J. R. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol., 2006, 72:1148–1156.
    166. Xiangming Fang, Wei-wei Zhang. Affinity separation and enrichment methods in proteomic analysis. Journal of proteomics., 2008:284-303.
    167. Xingping Wang , Shangzhong Xu , Xue Gao. Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle.J Genet Genomics., 2007,34 (5): 406-412.
    168. X. Zhao, P. Lacasse. Mammary Tissue Damage during Bovine Mastitis: Causes and Control. Journal of Animal Science., 2007. public online.
    169. Yonghui Wang, Shiaw-lin Wu, and William S.Hancock. Approached to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap-Fourier transform mass spectrometry. Glycobiology.,2006,16:514-523.
    170. Yu CL, Tsai MH. Embryonic apoptosis-inducing proteins exhibited anticancer activity in vitro and in vivo. Anticancer Res., 2001,21(3B):1839-56.
    171. Zecconi A, Bronzo V, Piccinini R, et al. Phagocytic activity of bovine polymorphonuclear neutrophil leucocytes. The journal of dairy research.,1994,61(2):271-279.
    172. Ziad J.Sahab, Suzan M.Semaan and Qing-Xiang Amy Sang. Methodology and applications of disease biomarker identification in human serum.. Biomarker insights.,2007,2:21-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700