三株植物内生真菌次级代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生菌是具有高度多样性的微生物资源,代谢产物多种多样,包括杀虫、抗菌、抗肿瘤等活性物质,是目前人们寻找新型抗菌、抗肿瘤天然药物的重要资源。本研究利用上海来益生物药物研究开发中心的植物内生菌资源,通过抗肿瘤和抗菌模型的筛选,在获得的活性菌株中,对其中的3株进行了菌种鉴定,并对它们的次级代谢产物进行分离、纯化及活性研究。主要研究工作包括以下几个方面:
     对1280株植物内生真菌进行了筛选,经模型初筛、复筛,共获得28份具有高且稳定的抗肿瘤活性的菌株发酵样品,8份具有较强抗菌活力的菌株发酵样品,选取其中3株抗肿瘤活性菌株HCCB1614、HCCB1778及HCCB2310进一步研究。
     根据菌株的形态、培养特征、18S rDNA以及ITS序列分析结果,对活性菌株HCCB1614、HCCB1778及HCCB2310进行菌种鉴定,结果分别鉴定为拟茎点霉属、链格孢霉属以及扁棒壳菌属。
     对菌株HCCB1778的代谢产物进行研究,分离纯化得到5个次级代谢产物,分别为HCCB1778-1~5。利用质谱和核磁共振波谱对这些产物进行结构鉴定,确定HCCB1778-1为6,8-二甲基-四氮奈-2,4(3H,10H)二酮,分子量242;HCCB1778-2为4’,7-二羟基异黄酮,分子量254;HCCB1778-3为4’,5,7-三羟基异黄酮,分子量270,对A549、LoVo细胞均具有很强的抑制作用,其中HCCB1778-3对LoVo细胞的抑制率最高,可达78.95%,目前HCCB1778-3已经开发为药物;HCCB1778-4为链格孢毒素(Altertoxin-I),分子量为352,具有较强的诱变作用和一定的抑制血小板聚集的作用;HCCB1778-5(新化合物)化学命名为1,4,9,12-四羟基-1,2,12,12a-四氢苝-3,10(11H,12bH)-二酮,为HCCB01778-4同系物,分子量352,是首次分离得到的新化合物,具有一定的抗肿瘤活性。对菌株HCCB2310次级代谢产物的分离研究得到两个化合物,分别为3,22,24-三羟基-齐果墩烷-12-烯和琥珀酸。
     为了快速分离得到菌株HCCB1614活性成分,本研究利用传统方法和高速逆流色谱法结合对其活性代谢产物进行了分离。选取两相溶剂系统为正己烷-乙酸乙酯-甲醇-水(1:3:3:3),体系上相为固定相,下相为流动相。成功地从内生真菌HCCB1614的次级代谢物中快速分离得到一细胞毒活性组分。经高效液相色谱分析,其纯度为99%以上。其化学结构由1H-NMR和13C-NMR鉴定确认为Cytochalasin N。
     从菌株HCCB1778次级代谢产物中分离得到的Altertoxin I (ATX I)是一种链格孢霉菌产生的真菌毒素,一直被认为是一种重要的食品和粮食的污染物。最近研究表明Altertoxin I具有很好的抗凝血作用,能够阻止血小板聚集,IC50为29μM,因此具备作为药物开发的潜力。为了得到足够量的Altertoxin I用于进一步的研究和开发,本研究首次建立了一种利用高速逆流色谱一次性分离制备ATX I的方法。实验利用溶剂体系正己烷-乙酸乙酯-甲醇-水(2:5:5:6)对发酵产物的萃取物进行分离,利用HPLC分析以及质谱和核磁共振波谱对目标产物进行鉴定。结果表明该方法每次可以分离得到毫克级的目标产物。本研究从18L发酵产物中共分离得到45mg AXT I,纯度可以达到95%以上。因此该方法将为以后AXT I的快速分离制备提供有效的帮助。
Endophyte is a special and important group of microorganisms with taxonomic diversity, which can produce various bioactive substances, including insecticidal, antimicrobial and antitumor compounds etc. In this research work, a large amount of endophytes had been screened based on several models and dozens of strains showed activities. Three of them were taxonomically identified and their secondary metabolites were studied.
     The fermentation samples were prepared from 1280 strains of endophytes. After primary and secondary screening on two models, 28 samples showed high and stable antitumor activities while 8 samples showed strong antibiotic activities. Among them, the strains HCCB1614, HCCB1778 and HCCB2310 were selected for further study.
     According to their morphology, cultural characteristics, 18S rDNA and ITS sequences, the strains HCCB1614, HCCB1778 and HCCB2310 were indentified as Phomopsis sp., Alternaria sp. and Ascospermum sp., respectively.
     Five compounds from the metabolites, named as HCCB1778-1~5 respectively, were purified by means of solvent extraction, silica gel chromatography, gelatum LH-20, and HPLC preparation. MS and NMR analyses showed that the molecular weights of these compounds are 242, 254, 270, 352, 352, respectively, and their molecular structures were identified as HCCB1778-1: 6, 8, 10- trimethylbenzopteridine- 2, 4 (3H, 10H)- dione; HCCB1778-2: 4’, 7- dihydroxyisoflavone; HCCB1778-3: 4’, 5, 7- trihydroxy- 7 methoyisoflavone; HCCB1778-4: Altertoxin-I; HCCB1778-5: 1, 4, 9, 12- tetrahydroxy- 1, 2, 12, 12a- tetrahydroperylene- 3, 10 (11H, 12bH)- dione; respectively. Compounds HCCB1778-3 and 5 showed strong cytotoxyties against A549 and LoVo cell lines. HCCB1778-4, which is a kind of cytotoxins, hosts strong mutagenicity and inhibition of platelet aggregation. HCBB1778-5 is a new compound. Meanwhile, two compounds isolated from the fermentation broth of strain HCCB2310 were identified as 3, 22, 24-trihydroxy-olean-12-ene and succinic acid.
     High speed counter-current chromatography (HSCCC) was applied to the separation of anti-tumor constituents from an endophyitic fungi HCCB1614 isolated from Trachelospermum jasminosides. A biphasic solvent system composed of n-hexane-ethyl acetate-methanol-water (1:3:3:2.5, v/v) was successfully performed. The bioactive compound purified and collected was analyzed by HPLC. A white powder was obtained in purity above 99% with the method. The chemical structure of the bioactive compound was identified by MS, 1H NMR and 13C NMR.
     Altertoxin I (ATX I), isolated from strain HCCB1778, is one of the common mycotoxins produced by genus Alternaria which is a common food pathogen of fruits and grains, diminishing the value of human foodstuffs. Recent research found that it can be used for the prophylaxis and therapy of deseases in which high blood platelet aggregations occur. To prepare enough quantity of pure ATX I for further research of mutagenicity, toxicology tests and anti-platelet aggregation, a novel method using preparative high-speed counter-current chromatography (HSCCC) was developed for the first time. The ethyl acetate crude extracts of the acetone washes obtained from fermentation liquor of Alternaria sp. was separated by a two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (2:5:5:6, v/v). Collected fractions were analyzed by HPLC and identified by EI–MS and NMR analysis. The technique can isolate target compound at milligram amount in one run, which produced 45mg ATX I with purity better than 95% from 18L fermentation culture. The recovery field of ATX I from the crude extracts was 86.8%. This one-step purification method provided a simple and effective tool for obtaining a relatively large amount of ATX I for the purpose of various studies.
引文
[1] Anon, Herbalgram, 1998, 33.
    [2] Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery [J]. Natural Product Reports, 2000, 17(3): 215-234.
    [3] Dev S. Ancient-modern concordance in ayurvedic plants: Some examples [J]. Environmental Health Perspectives, 1999, 107(10): 783-789.
    [4] Fallarino M. Herbalgram, 1994, 31: 38-44.
    [5] Grabley S, Thiericke R. Adv. Biochem. Eng./ Biotech., 1999, 64: 104.
    [6] Chang HM, But PPH. Pharmacology and Applications of Chinese Materia Medica, 1987.
    [7] Kapoor LD. Handbook of Ayurvedic Medicinal Plants, 1990.
    [8] Schultes RE, Raffauf RF. The Healing Forest, 1990.
    [9] Arvigo R, Balick M. Rainforest Remedies, 1993.
    [10] Grifo F, Newman D, Fairfield AS, et al. The origins of prescription drugs [J]. Biodiversity and Human Health, 1997: 131-163.
    [11] Baker JT, Borris RP, Carte B, et al. Natural product drug discovery and development: New perspectives on international collaboration [J]. Journal of Natural Products, 1995, 58(9): 1325-1357.
    [12] Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years [J]. Journal of Natural Products, 2007, 70(3): 461-477.
    [13] Cragg GM, Newman DJ. Biodiversity: A continuing source of novel drug leads [J]. Pure and Applied Chemistry, 2005, 77(1): 7-24.
    [14] Bérdy J. Bioactive Microbial Metabolites [J]. Journal of Antibiotics, 2005, 1(58): 1-26.
    [15] Belenky A, Hughes D, Korneev A, et al. Capillary electrophoretic approach to screen for enzyme inhibitors in natural extracts [J]. Journal of Chromatography A, 2004, 1053(1-2 SPEC. ISS.):247-251.
    [16] Besemer J, Harant H, Wang S, et al. Selective inhibition of cotranslational translocation of vascular cell adhesion molecule 1 [J]. Nature, 2005, 436(7048): 290-293.
    [17] Butler MS. The role of natural product chemistry in drug discovery [J]. Journal of Natural Products, 2004, 67(12): 2141-2153.
    [18] Butler MS. Natural products to drugs: Natural product derived compounds in clinical trials [J]. Natural Product Reports, 2005, 22(2): 162-195.
    [19] Charan RD, Schlingmann G, Janso J, et al. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp [J]. Journal of Natural Products, 2004, 67(8): 1431-1433.
    [20] Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib [J]. Cancer Cell, 2005, 8(5): 407-419.
    [21] Garrison JL, Kunkel EJ, Hegde RS, et al. A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum [J]. Nature, 2005, 436(7048): 285-289.
    [22] Gravestock MB. Recent developments in the discovery of novel oxazolidinone antibacterials [J]. Current Opinion in Drug Discovery and Development, 2005, 8(4): 469-477.
    [23] Chin YW, Balunas MJ, Chai HB, et al. Drug discovery from natural sources [J]. AAPS Journal, 2006, 8(2): E239-E253.
    [24] Lam KS. New aspects of natural products in drug discovery [J]. Trends in Microbiology, 2007, 15(6): 279-289.
    [25] Kahan BD. FTY720: From bench to bedside [J]. Transplantation Proceedings, 2004, 36(2 SUPPL.).
    [26] Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery [J]. Environmental Health Perspectives, 2001, 109 (SUPPL. 1): 69-75.
    [27] Kinghorn AD. The discovery of drugs from higher plants [J]. The Discovery of Natural Products with Therapeutic Potential, 1994: 81-108.
    [28] Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: An evidence-based review of itsuse in Parkinson's disease [J]. Drugs and Aging, 2004, 21(11): 687-709.
    [29] Koumis T, Samuel S. Tiotropium bromide: A new long-acting bronchodilator for the treatment of chronic obstructive pulmonary disease [J]. Clinical Therapeutics, 2005, 27(4): 377-392.
    [30] Hall MG, Wilks MF, McLean Provan W, et al. Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers [J]. British Journal of Clinical Pharmacology, 2001, 52(2): 169-177.
    [31] Mitchell G, Bartlett DW, Fraser TEM, et al. Mesotrione: A new selective herbicide for use in maize [J]. Pest Management Science, 2001, 57(2): 120-128.
    [32] Heinrich M, Teoh HL. Galanthamine from snowdrop- The development of a modern drug against Alzheimer's disease from local Caucasian knowledge [J]. Journal of Ethnopharmacology, 2004, 92(2-3): 147-162.
    [33] Howes MJR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders [J]. Phytotherapy Research, 2003, 17(1): 1-18.
    [34] Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants [J]. Life Sciences, 2005, 78(5): 431-441.
    [35] Van Agtmael MA, Eggelte TA, Van Boxtel CJ. Artemisinin drugs in the treatment of malaria: From medicinal herb to registered medication [J]. Trends in Pharmacological Sciences, 1999, 20(5): 199-205.
    [36] Cirla A, Mann J. Combretastatins: From natural products to drug discovery [J]. Natural Product Reports, 2003, 20(6): 558-564.
    [37] Pinney KG, Jelinek C, Edvardsen K, et al. The discovery and development of the combretastatins [J]. Anticancer Agents from Natural Products, 2005: 23-46.
    [38] West CML, Price P. Combretastatin A4 phosphate [J]. Anti-Cancer Drugs, 2004, 15(3): 179-187.
    [39] Young SL, Chaplin DJ. Combretastatin A4 phosphate: Background and current clinical status [J]. Expert Opinion on Investigational Drugs, 2004, 13(9): 1171-1182.
    [40] Powell RG, Weisleder D, Smith Jr CR, et al. Structures of harringtonine, isoharringtonine, and homoharringtonine [J]. Tetrahedron Letters, 1970, 11: 815-818.
    [41] Kantarjian HM, Talpaz M, Santini V, et al. Homoharringtonine: History, current research, and future directions [J]. Cancer, 2001, 92(6): 1591-1605.
    [42] Kedei N, Lundberg DJ, Toth A, et al. Characterization of the Interaction of Ingenol 3-Angelate with Protein Kinase C [J]. Cancer Research, 2004, 64(9): 3243-3255.
    [43] Ogawa M. Novel anticancer drugs in Japan [J]. Journal of Cancer Research and Clinical Oncology, 1999, 125(3-4): 134-140.
    [44] Kamsteeg M, Rutherford T, Sapi E, et al. Phenoxodiol - An isoflavone analog - Induces apoptosis in chemoresistant ovarian cancer cells [J]. Oncogene, 2003, 22(17): 2611-2620.
    [45] Constantinou AI, Mehta R, Husband A. Phenoxodiol, a novel isoflavone derivative, inhibits dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats [J]. European Journal of Cancer, 2003, 39(7): 1012-1018.
    [46] Jia W, Yan H, Bu X, et al. Aglycone protopanaxadiol, a ginseng saponin, inhibits P-glycoprotein and sensitizes chemotherapy drugs on multidrug resistant cancer cells [J]. J Clin Oncol, 2004, 22: 9663.
    [47] Shibata S, Tanaka O, Sado M, et al. On the genuine sapogenin of ginseng [J]. Tetrahedron Lett., 1963: 795-800.
    [48] Kiviharju TM, Lecane PS, Sellers RG, et al. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells [J]. Clinical Cancer Research, 2002, 8(8): 2666-2674.
    [49] Fidler JM, Li K, Chung C, et al. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy [J]. Molecular cancer therapeutics, 2003, 2(9): 855-862.
    [50] Busti E, Monciardini P, Cavaletti L, et al. Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes [J]. Microbiology, 2006, 152(3): 675-683.
    [51] Davis KER, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria [J]. Applied and Environmental Microbiology, 2005,71(2): 826-834.
    [52] Leeds JA, Schmitt EK, Krastel P. Recent developments in antibacterial drug discovery: microbe-derived natural products - From collection to the clinic [J]. Expert Opinion on Investigational Drugs, 2006, 15(3): 211-226.
    [53] Saintpierre-Bonaccio D, Amir H, Pineau R, et al. Amycolatopsis plumensis sp. nov., a novel bioactive actinomycete isolated from a new-caledonian brown hypermagnesian ultramafic soil [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2057-2061.
    [54] Strobel G. Harnessing endophytes for industrial microbiology [J]. Current Opinion in Microbiology, 2006, 9(3): 240-244.
    [55] Tan GYA, Ward AC, Goodfellow M. Exploration of amycolatopsis diversity in soil using genus-specific primers and novel selective media [J]. Systematic and Applied Microbiology, 2006, 29(7): 557-569.
    [56] Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002 [J]. Journal of Natural Products, 2003, 66(7): 1022-1037.
    [57] Frattarelli DAC, Reed MD, Giacoia GP, et al. Antifungals in systemic neonatal candidiasis [J]. Drugs, 2004, 64(9): 949-968.
    [58] Jarvis B, Figgitt DP, Scott LJ. Micafungin [J]. Drugs, 2004, 64(9): 969-982.
    [59] Zhanel GG, Homenuik K, Nichol K, et al. The glycylcyclines: A comparative review with the tetracyclines [J]. Drugs, 2004, 64(1): 63-88.
    [60] Chapman TM, Perry CM. Everolimus [J]. Drugs, 2004, 64(8): 861-872.
    [61] Zhanel GG, Walters M, Noreddin A, et al. The ketolides: A critical review [J]. Drugs, 2002, 62(12): 1771-1804.
    [62] Paterson I, Anderson EA. The renaissance of natural products as drug candidates [J]. Science, 2005, 310(5747): 451-453.
    [63] Weinreb NJ, Barranger JA, Charrow J, et al. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease [J]. American Journal of Hematology, 2005, 80(3): 223-229.
    [64] Scott LJ, Curran MP, Figgitt DP. Rosuvastatin: A review of its use in the management ofdyslipidemia [J]. American Journal of Cardiovascular Drugs, 2004, 4(2): 117-138.
    [65] Mukhtar RYA, Reid J, Reckless JPD. Pitavastatin [J]. International Journal of Clinical Practice, 2005, 59(2): 239-252.
    [66] Fenton C, Keating GM, Curran MP. Daptomycin [J]. Drugs, 2004, 64(4): 445-455.
    [67] Sugiura T, Ariyoshi Y, Negoro S, et al. Phase I/II study of amrubicin, a novel 9-aminoanthracycline, in patients with advanced non-small-cell lung cancer [J]. Investigational New Drugs, 2005, 23(4): 331-337.
    [68] Perry CM, Ibbotson T. Biapenem [J]. Drugs, 2002, 62(15): 2221-2234.
    [69] Keating GM, Figgitt DP. Caspofungin: A review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis [J]. Drugs, 2003, 63(20): 2235-2263.
    [70] Letscher-Bru V, Herbrecht R. Caspofungin: The first representative of a new antifungal class [J]. Journal of Antimicrobial Chemotherapy, 2003, 51(3): 513-521.
    [71] McCormack PL, Perry CM. Caspofungin: A review of its use in the treatment of fungal infections [J]. Drugs, 2005, 65(14): 2049-2068.
    [72] Sader HS, Gales AC. Emerging strategies in infectious diseases: New carbapenem and trinem antibacterial agents [J]. Drugs, 2001, 61(5): 553-564.
    [73] Gupta AK, Chow M. Pimecrolimus: A review [J]. Journal of the European Academy of Dermatology and Venereology, 2003, 17(5): 493-503.
    [74] Giles F, Estey E, O'Brien S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia [J]. Cancer, 2003, 98(10): 2095-2104.
    [75] Lee MD, Dunne TS, Siegel MM, et al. Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicinγ1I [J]. Journal of the American Chemical Society, 1987, 109(11): 3464-3466.
    [76] Lam KS, Veitch JA, Forenza S, et al. Biosynthesis of elsamicin A, a novel antitumor antibiotic [J]. Journal of Natural Products, 1989, 52(5): 1015-1021.
    [77] Portugal J. Chartreusin, elsamicin A and related anti-cancer antibiotics [J]. Current Medicinal Chemistry - Anti-Cancer Agents, 2003, 3(6): 411-420.
    [78] Broggini M, Marchini S, Fontana E, et al. Brostallicin: A new concept in minor groove DNA binder development [J]. Anti-Cancer Drugs, 2004, 15(1): 1-6.
    [79] Di Marco A, Gaetani M, Orezzi P, et al. Experimental studies on distamycin A - A new antibiotic with cytotoxic activity [J]. Cancer Chemother. Rep., 1962, 18: 15-19.
    [80] Geroni C, Marchini S, Cozzi P, et al. Brostallicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione [J]. Cancer Research, 2002, 62(8): 2332-2336.
    [81] Bisht KS, Bradbury CM, Mattson D, et al. Geldanamycin and 17 - allylamino - 17 - demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity [J]. Cancer Research, 2003, 63(24): 8984-8995.
    [82] Kaur G, Belotti D, Burger AM, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin: An orally bioavailable heat shock protein 90 modulator [J]. Clinical Cancer Research, 2004, 10(14): 4813-4821.
    [83] Chen J, DeAngelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40): 14479-14484.
    [84] Kondapaka SB, Zarnowski M, Yver DR, et al. 7-Hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation: A basis for decreased insulin-stimulated glucose transport [J]. Clinical Cancer Research, 2004, 10(21): 7192-7198.
    [85] Long BH, Rose WC, Vyas DM, et al. Discovery of antitumor indolocarbazoles: Rebeccamycin, NSC 655649, and fluoroindolocarbazoles [J]. Current Medicinal Chemistry– Anti - Cancer Agents, 2002, 2(2): 255-266.
    [86] Marshall JL, Kindler H, Deeken J, et al. Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor [J]. Investigational New Drugs, 2005, 23(1): 31-37.
    [87] Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, showsbiologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia [J]. Blood, 2004, 103(10): 3669-3676.
    [88] Yoshinari T, Ohkubo M, Fukasawa K, et al. Mode of action of a new indolocarbazole anticancer agent, J-107088, targeting topoisomerase I [J]. Cancer Research, 1999, 59(17): 4271-4275.
    [89] Zaugg K, Rocha S, Resch H, et al. Differential p53-dependent mechanism of radiosensitization in vitro and in vivo by the protein kinase C-specific inhibitor PKC412 [J]. Cancer Research, 2001, 61(2): 732-738.
    [90] Tsuji N, Kobayashi M, Nagashima K. A new antifungal antibiotic, trichostatin [J]. Journal of Antibiotics, 1976, 29(1): 1-6.
    [91] Arts J, de Schepper S, Van Emelen K. Histone deacetylase inhibitors: From chromatin remodeling to experimental cancer therapeutics [J]. Current Medicinal Chemistry, 2003, 10(22): 2343-2350.
    [92] Atadja P, Gao L, Kwon P, et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824 [J]. Cancer Research, 2004, 64(2): 689-695.
    [93] Monneret C. Histone deacetylase inhibitors [J]. European Journal of Medicinal Chemistry, 2005, 40(1): 1-13.
    [94] Plumb JA, Finn PW, Williams RJ, et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101 [J]. Molecular cancer therapeutics, 2003, 2(8): 721-728.
    [95] Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms [J]. Clinical Cancer Research, 2002, 8(3): 718-728.
    [96] Shiraga T, Tozuka Z, Ishimura R, et al. Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes [J]. Biological and Pharmaceutical Bulletin, 2005, 28(1): 124-129.
    [97] Goodin S, Kane MP, Rubin EH. Epothilones: Mechanism of action and biologic activity [J]. Journal of Clinical Oncology, 2004, 22(10): 2015-2025.
    [98] Kosmidis PA, Manegold C. Advanced NSCLC: New cytostatic agents [J]. Lung Cancer, 2003,41(SUPPL. 1).
    [99] Rizvi N, Villalona-Calere M, Lynch T. Phase II study of KOS-862 (epothilone D) as second-line therapy in non-small cell lung cancer [J]. Lung Cancer, 2005, 49: 266-267.
    [100] Starks CM, Zhou Y, Liu F, et al. Isolation and characterization of new epothilone analogues from recombinant myxococcus xanthus fermentations [J]. Journal of Natural Products, 2003, 66(10): 1313-1317.
    [101] Chun E, Han CK, Yoon JH, et al. Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model [J]. International Journal of Cancer, 2005, 114(1): 124-130.
    [102] Bernier SG, Lazarus DD, Clark E, et al. A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(29): 10768-10773.
    [103] McMorris TC, Anchel M. Fungal metabolites. The structures of the novel sesquiterpenoids illudin-S and–M [J]. Journal of the American Chemical Society, 1965, 87(7): 1594-1600.
    [104] McMorris TC, Kelner MJ, Wang W, et al. (Hydroxymethyl) acylfulvene: An illudin derivative with superior antitumor properties [J]. Journal of Natural Products, 1996, 59(9): 896-899.
    [105] Wang J, Wiltshire T, Wang Y, et al. ATM-dependent CHK2 activation induced by anticancer agent, irofulven [J]. Journal of Biological Chemistry, 2004, 279(38): 39584-39592.
    [106] Newman DJ, Cragg GM. Advanced preclinical and clinical trials of natural products and related compounds from marine sources [J]. Current Medicinal Chemistry, 2004, 11(13): 1693-1713.
    [107] Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials [J]. Journal of Natural Products, 2004, 67(8): 1216-1238.
    [108] Haefner B. Drugs from the deep: Marine natural products as drug candidates [J]. Drug Discovery Today, 2003, 8(12): 536-544.
    [109] Jensen PR, Fenical W. Marine microorganisms and drug discovery: Current status and future potential [J]. Drugs from the Sea, 2000: 6-29.
    [110] Schroeder CI, Smythe ML, Lewis RJ. Development of small molecules that mimic the binding ofω-conotoxins at the N-type voltage-gated calcium channel [J]. Molecular Diversity, 2004, 8(2): 127-134.
    [111] Taraboletti G, Poli M, Dossi R, et al. Antiangiogenic activity of aplidine, a new agent of marine origin [J]. British Journal of Cancer, 2004, 90(12): 2418-2424.
    [112] Hayakawa Y, Rovero S, Forni G, et al.α-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9464-9469.
    [113] Honore S, Kamath K, Braguer D, et al. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation [J]. Molecular cancer therapeutics, 2003, 2(12): 1303-1311.
    [114] Newman DJ, ed. The bryostatins, 2005.
    [115] Keating GM. Exenatide [J]. Drugs, 2005, 65(12): 1681-1692.
    [116] Malhotra R, Singh L, Eng J, et al. Exendin-4, a new peptide from heloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini [J]. Regulatory Peptides, 1992, 41(2): 149-156.
    [117] Gladwell TD. Bivalirudin: A direct thrombin inhibitor [J]. Clinical Therapeutics, 2002, 24(1): 38-58.
    [118] Ledizet M, Harrison LM, Koski RA, et al. Discovery and pre-clinical development of antithrombotics from hematophagous invertebrates [J]. Current Medicinal Chemistry: Cardiovascular and Hematological Agents, 2005, 3(1): 1-10.
    [119] Wang J, Kodali S, Sang HL, et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(18): 7612-7616.
    [120] Hopwood DA. Genetic contributions to understanding polyketide synthases [J]. Chemical Reviews, 1997, 97(7): 2465-2497.
    [121] Cane DE, Walsh CT, Khosla C. Harnessing the biosynthetic code: Combinations, permutations, and mutations [J]. Science, 1998, 282(5386): 63-68.
    [122] Katz L. Manipulation of modular polyketide synthases [J]. Chemical Reviews, 1997, 97(7): 2557-2575.
    [123] Khosla C. Harnessing the biosynthetic potential of modular polyketide synthases [J]. Chemical Reviews, 1997, 97(7): 2577-2590.
    [124] Staunton J, Wilkinson B. Biosynthesis of erythromycin and rapamycin [J]. Chemical Reviews, 1997, 97(7): 2611-2629.
    [125] McDaniel R, Thamchaipenet A, Gustafsson C, et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 1846-1851.
    [126] Shen Y, Yoon P, Yu TW, et al. Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3622-3627.
    [127] Zhao L, Ahlert J, Xue Y, et al. Engineering a methymycin/pikromycin-calicheamicin hybrid: Construction of two new macrolides carrying a designed sugar moiety [J]. Journal of the American Chemical Society, 1999, 121(42): 9881-9882.
    [128] Colwell RR. Microbial diversity: The importance of exploration and conservation [J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18(5): 302-307.
    [129] Rondon MR, Goodman RM, Handelsman J. Tibtech, 1999, 17: 403.
    [130] Caporale LH. Chemical ecology: A view from the pharmaceutical industry [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(1): 75-82.
    [131] Mayer LD. Future developments in the selectivity of anticancer agents: Drug delivery and molecular target strategies [J]. Cancer and Metastasis Reviews, 1998, 17(2): 211-218.
    [132] Vitetta ES, Thorpe PE, Uhr JW. Immunotoxins: Magic bullets or misguided missiles? [J]. Immunology Today, 1993, 14(6): 252-259.
    [133] Sherwood RF. Advanced drug delivery reviews: Enzyme prodrug therapy [J]. Advanced Drug Delivery Reviews, 1996, 22(3): 269-288.
    [134] Duncan R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? [J]. Pharmaceutical Science and Technology Today, 1999, 2(11): 441-449.
    [135] Julyan PJ, Seymour LW, Ferry DR, et al. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine [J]. Journal of Controlled Release, 1999, 57(3): 281-290.
    [136] Omelyanenko V, Kopeckova P, Gentry C, et al. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate [J]. Journal of Controlled Release, 1998, 53(1-3): 25-37.
    [137] Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2- hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents - Drug-polymer conjugates [J]. Clinical Cancer Research, 1999, 5(1): 83-94.
    [138] Gianasi E, Wasil M, Evagorou EG, et al. HPMA copolymer platinates as novel antitumour agents: In vitro properties, pharmacokinetics and antitumour activity in vivo [J]. European Journal of Cancer, 1999, 35(6): 994-1002.
    [139] Wennstrom A. Systemic diseases on hosts with different growth patterns [J]. Oikos, 1994, 69(3): 535-538.
    [140] Wilson D. Fungal endophytes: Out of sight but should not be out of mind [J]. Oikos, 1993, 68(2): 379-384.
    [141] Tan RX, Zou WX. Endophytes: A rich source of functional metabolites [J]. Natural Product Reports, 2001, 18(4): 448-459.
    [142] Bacon CW, White JF. Microbial Endophytes. New York: Marcel Dekker, 2000.
    [143] Hawksworth DL, Rossman AY. Where are all the undescribed fungi? [J]. Phytopathology, 1997, 87(9): 888-891.
    [144] Wu J, Lin L. Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction [J]. Applied Microbiology andBiotechnology, 2003, 62(2-3): 151-155.
    [145] Wang C, Wu J, Mei X. Enhanced taxol production and release in Taxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding [J]. Biotechnology Progress, 2001, 17(1): 89-94.
    [146] Wang C, Wu J, Mei X. Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal [J]. Applied Microbiology and Biotechnology, 2001, 55(4): 404-410.
    [147] Strobel G, Li JY, Sugawara F, et al. Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens [J]. Microbiology, 1999, 145(12): 3557-3564.
    [148] Strobel GA. Rainforest endophytes and bioactive products [J]. Critical Reviews in Biotechnology, 2002, 22(4): 315-333.
    [149] Strobel GA. Microbial gifts from rain forests [J]. Canadian Journal of Plant Pathology, 2002, 24(1): 14-20.
    [150] Castillo UF, Strobel GA, Ford EJ, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans [J]. Microbiology, 2002, 148(9): 2675-2685.
    [151] Strobel GA, Stierle A, Stierle D, et al. Taxomyces andreanae a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew [J]. Mycotaxon, 1993, 47: 71-78.
    [152] Guptars. Synthesis and biological activities of c4 esters of 4’-demethylepipodophyllotoxin [J]. Anticancer Drug Design, 1987, 2: 13-15.
    [153] Singh SB, Jayasuriya H, Dewey R, et al. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites [J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(12): 721-731.
    [154] Strobel G, Daisy B, Castillo U, et al. Natural Products from Endophytic Microorganisms [J]. Journal of Natural Products, 2004, 67(2): 257-268.
    [155] Strobel GA, Miller RV, Martinez-Miller C, et al. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina [J]. Microbiology, 1999, 145(8): 1919-1926.
    [156] Li JY, Strobel G, Harper J, et al. Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina [J]. Organic Letters, 2000, 2(6): 767-770.
    [157] Lu H, Zou.WX, Meng JC, et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua [J]. Plant Science 2000, 151(1): 67-73.
    [158]陈光英,刘晓红,温露等.南海红树林内生真菌1893代谢产物研究[J].中山大学学报(自然科学版), 2003, 42(1): 49-54.
    [159] Li JY, Strobel GA. Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri [J]. Phytochemistry, 2001, 57(2): 261-265.
    [160] Stinson M, Ezra D, Hess WM, et al. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds [J]. Plant Science, 2003, 165(4): 913-922.
    [161]姜广策,林永成,周世宁.中国南海红树内生真菌No.1403次级代谢物的研究[J].中山大学学报(自然科学版), 2000, 39(6): 68-72.
    [162] Peláez F. The historical delivery of antibiotics from microbial natural products - Can history repeat? [J]. Biochemical Pharmacology, 2006, 71(7): 981-990.
    [163] Brady SF, Wagenaar MM, Singh MP, et al. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus [J]. Organic Letters, 2000, 2(25): 4043-4046.
    [164] Brady SF, Clardy J. CR377, a new pentaketide antifungal agent isolated from an endophytic fungus [J]. Journal of Natural Products, 2000, 63(10): 1447-1448.
    [165] Castillo UF, Strobel GA, Ford EJ, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans [J]. Microbiology, 2002, 148(9): 2675-2685.
    [166]王永中,肖亚中.植物内生菌及其活性代谢产物[J].生物学杂志, 2004, 21(4): 1-5.
    [167] Wagenaar MM, Corwin J, Strobel G, et al. Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella [J]. Journal of Natural Products, 2000, 63(12): 1692-1695.
    [168]张玲琪,王海昆,邵华等.美登木内生真菌产抗癌物质球毛壳甲素的分离及鉴定[J].中国药学杂志, 2002, 37(3): 172-175.
    [169] Wang J, Huang Y, Fang M, et al. Brefeldin A, a cytotoxin produced by Paecilomyces sp. andAspergillus clavatus isolated from Taxus mairei and Torreya grandis [J]. FEMS Immunology & Medical Microbiology, 2002, 34(1): 51-57.
    [170] Stierle DB, Stierle AA, Bugni T. Sequoiamonascins A-D: Novel anticancer metabolites isolated from a redwood endophyte [J]. Journal of Organic Chemistry, 2003, 68(12): 4966-4969.
    [171] Stierle AA, Stierle DB, Bugni T. Sequoiatones A and B: Novel antitumor metabolites isolated from a redwood endophyte [J]. Journal of Organic Chemistry, 1999, 64(15): 5479-5484.
    [172] Singh SB, Zink DL, Liesch JM, et al. Isolation and structure of chaetomellic acids A and B from Chaetomella acutiseta: Farnesyl pyrophosphate mimic inhibitors of Ras farnesyl-protein transferase [J]. Tetrahedron, 1993, 49(27): 5917-5926.
    [173] Strobel G. Harnessing endophytes for industrial microbiology [J]. Current Opinion in Microbiology, 2006, 9(3): 240-244.
    [174] Strobel G, Yang X, Sears J, et al. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana [J]. Microbiology, 1996, 142(2): 435-440.
    [175] Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products [J]. Microbiology and Molecular Biology Reviews, 2003, 67(4): 491-502.
    [176] Lin X, Lu C, Huang Y, et al. Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: Isolation, identification and bioactivity [J]. World Journal of Microbiology and Biotechnology, 2007, 23(7): 1037-1040.
    [177] Huang Y, Wang J, Li G, et al. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis [J]. FEMS Immunology and Medical Microbiology, 2001, 31(2): 163-167.
    [178] Phongpaichit S, Rungjindamai N, Rukachaisirikul V, et al. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species [J]. FEMS Immunology and Medical Microbiology, 2006, 48(3): 367-372.
    [179] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays [J]. Journal of Immunological Methods, 1983, 65(1-2): 55-63.
    [180]陈瑞铭.动物组织培养技术及其应用[M].北京:科学出版社, 1991.
    [181] Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons [J]. Trends in Genetics, 2003, 19(7): 370-375.
    [182]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社, 1979.
    [183] China PCoPsRo. Pharmacopoeia of People's Republic of China, Vol. 11. Beijing: Chemical Industry Press, 2000.
    [184] Tan XQ, Chen HS, Liu RH, et al. Lignans from Trachelospermum jasminoides [J]. Planta medica, 2005, 71(1): 93-95.
    [185]谭兴起,陈海生,周密,张岳.络石藤中的三萜化合物[J].中草药, 2006, 37(2): 171-174.
    [186]胡海峰,朱龚.微生物来源的胆固醇生物合成酶抑制剂.Ⅸ.抗生素SIPI-8917-Ⅳ的研究[J].中国抗生素杂志, 1999, 22(4 ): 32-35.
    [187]吉文亮,秦王.射干的化学成分研究(Ⅰ) [J].中国药科大学学报, 2001, 32(3): 39-41.
    [188] Kinjo J MI, Murakami K, et al. Oleanene-Sapogenols from puerariae radix [J]. Chem Pharm Bull, 1985, 33(3): 1293.
    [189] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography [J]. Journal of Chromatography A, 2005, 1065(2): 145-168.
    [190] Ito Y. High-speed countercurrent chromatography [J]. CRC Crit. Rev. Anal. Chem., 1986, 17(1): 65-143.
    [191]袁黎明,傅若农,张天佑.高速逆流色谱[J].国外分析仪器, 1996, 3: 27-30.
    [192] Friesen JB, Pauli GF. Rational development of solvent system families in counter-current chromatography [J]. Journal of Chromatography A, 2007, 1151(1-2): 51-59.
    [193] Chen L, Sutherland IA. How to achieve rapid separations in counter-current chromatography [J]. Journal of Chromatography A, 2006, 1114(1): 29-33.
    [194] Alvi KA, Peterson J, Hofmann B. Rapid identification of elaiophylin and geldanamycin in Streptomyces fermentation broths using CPC coupled with a photodiode array detector and LC-MS methodologies [J]. Journal of Industrial Microbiology 1995, 15: 80-84.
    [195] OuYang XK, Jin MC, He CH. Preparative separation of four major alkaloids from medicinalplant of Tripterygium Wilfordii Hook F using high-speed counter-current chromatography [J]. Separation and Purification Technology, 2007, 56(3): 319-324.
    [196] Lu HT, Jiang Y, Chen F. Preparative high-speed counter-current chromatography for purification of shikonin from the Chinese medicinal plant Lithospermum erythrorhizon [J]. Journal of Chromatography A, 2004, 1023(1): 159-163.
    [197] Li HB, Fan KW, Chen F. Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography [J]. Journal of Separation Science, 2006, 29(5): 699-703.
    [198] Schwarz M, Hillebrand S, Habben S, et al. Application of high-speed countercurrent chromatography to the large-scale isolation of anthocyanins [J]. Biochemical Engineering Journal, 2003, 14(3): 179-189.
    [199] Izawa Y, Hirose T, Shimizu T, et al. Six new 10-phenyl-[11]cytochalasans, cytochalasins N-S from Phomopsis sp [J]. Tetrahedron, 1989, 45(8): 2323-2335.
    [200] Tomioka T, Izawa Y, Koyama K, et al. Three new 10-phenyl-[11]cytochalasans, cytochalasins N, O, and P from Phomopsis sp [J]. Chemical and Pharmaceutical Bulletin, 1987, 35(2): 902-905.
    [201] Bottalico A, Logrieco A. Toxigenic Alternaria species of economic importance [J]. Mycotoxins in Agriculture and Food Safety, 1998: 65-108.
    [202] Solfrizzo M, De Girolamo A, Vitti C, et al. Toxigenic profile of Alternaria alternata and Alternaria radicina occurring on umbelliferous plants [J]. Food Additives and Contaminants, 2005, 22(4): 302-308.
    [203] Drusch S, Aumann J. Mycotoxins in fruits: Microbiology, occurrence, and changes during fruit processing. In: Advances in Food and Nutrition Research, Vol. 50, 2005: 33-78.
    [204] Solfrizzo M, De Girolamo A, Vitti C, et al. Liquid chromatographic determination of Alternaria toxins in carrots [J]. Journal of AOAC International, 2004, 87(1): 101-106.
    [205] Nielsen KF. Mycotoxin production by indoor molds [J]. Fungal Genetics and Biology, 2003, 39(2): 103-117.
    [206] Schrader TJ, Cherry W, Soper K, et al. Examination of Alternaria alternata mutagenicity andeffects of nitrosylation using the ames salmonella test [J]. Teratogenesis Carcinogenesis and Mutagenesis, 2001, 21(4): 261-274.
    [207] Woody MA, Chu FS. Toxicology of alternaria mycotoxins [J]. Alternaria: Biology, Plant Diseases and Metabolites, 1992: 409-434.
    [208] Panigrahi S. Alternaria toxins [J]. Handbook of Plant and Fungal Toxicants, 1997: 319-337.
    [209] Schrader TJ, Cherry W, Soper K, et al. Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro [J]. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 606(1-2): 61-71.
    [210] Liu GT, Qian YZ, Zhang P, et al. Relationship between Alternaria alternata and esophageal cancer [J]. Relevance to Human Cancer of N-Nitroso Compounds, Tobacco and Mycotoxins, 1991: 258-262.
    [211] Ikins WG. Modern methods of analyzing mycotoxins in foods [J]. Instrumental Methods of Quality Assurance in Foods, 1991: 117-154.
    [212] Li FQ, Yoshizawa T. Alternaria mycotoxins in weathered wheat from China [J]. Journal of Agricultural and Food Chemistry, 2000, 48(7): 2920-2924.
    [213] Hasan HAH. Alternaria mycotoxins in black rot lesion of tomato fruit: Conditions and regulation of their production [J]. Acta Microbiologica et Immunologica Hungarica, 1996, 43(2--3): 125-133.
    [214] Li FQ, Toyazaki N, Yoshizawa T. Production of Alternaria mycotoxins by Alternaria alternata isolated from weather-damaged wheat [J]. Journal of Food Protection, 2001, 64(4): 567-571.
    [215] Scott PM, Weber D, Kanhere SR. Gas chromatography-mass spectrometry of Alternaria mycotoxin [J]. Journal of Chromatography A, 1997, 765(2): 255-263.
    [216] Nawaz S, Scudamore KA, Rainbird SC. Mycotoxins in ingredients of animal feeding stuffs: I. Determination of Alternaria mycotoxins in oilseed rape meal and sunflower seed meal [J]. Food Additives and Contaminants, 1997, 14(3): 249-262.
    [217] Stack ME, Prival MJ. Mutagenicity of the Alternaria metabolites altertoxins I, II, and III [J]. Applied and Environmental Microbiology, 1986, 52(4): 718-722.
    [218] Osborne LC, Jones VI, Peeler JT, et al. Transformation of C3H/10T 1/2 cells and induction of EBV-early antigen in Raji cells by altertoxins I and III [J]. Toxicology in Vitro, 1988, 2(2): 97-102.
    [219] Boutin BK, Peeler JT, Twedt RM. Effects of purified altertoxins I, II and III in the metabolic communication V79 system [J]. Journal of Toxicology and Environmental Health, 1989, 26(1): 75-81.
    [220] Lehmann L, Wagner J, Metzler M. Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells [J]. Food and Chemical Toxicology, 2006, 44(3): 398-408.
    [221] Stinson EE, Osman SF, Pfeffer PE. Structure of altertoxin I, a mycotoxin from Alternaria [J]. Journal of Organic Chemistry, 1982, 47(21): 4110-4113.
    [222] Chu F. Isolation of altenuisol and altertoxins I and II, minor mycotoxins elaborated by alternaria [J]. Journal of the American Oil Chemists' Society, 1981, 58(12): A1006-A1008.
    [223] Oka H, Harada KI, Ito Y, et al. Separation of antibiotics by counter-current chromatography [J]. Journal of Chromatography A, 1998, 812(1-2): 35-52.
    [224] Okuno T, Natsume I, Sawai K, et al. Structure of antififungal and phytotoxic pigments produced by Alternaria sps. [J]. Tetrahedron Letters, 1983, 24(50): 5653-5656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700