基于几种介孔结构材料的电阻型湿度传感器的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Resistive-type Humidity Sensors Based on Several Kinds of Mesoporous Materials
  • 作者:王蕊
  • 论文级别:博士
  • 学科专业名称:微电子学与固体电子学
  • 学位年度:2010
  • 导师:张彤
  • 学科代码:080903
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-05-01
摘要
本文主要以几种介孔材料为基础,研究了基于这几种材料的电阻型湿度传感器的湿度敏感性能,将新型的介孔材料引入到化学传感领域。
     在绪论部分,简要介绍了湿度传感器的发展历程、应用领域及国内外研究、发展现状,并对近年来新兴发展的介孔材料做了简要的介绍;第二章中以传统的LiCl为湿度活性物质,将其分别组装到介孔二氧化硅SBA-15和SBA-16的孔道中,并制备了电阻型湿度传感器,研究该材料体系的湿度敏感性能。经测试表明:介孔复合材料湿敏性能优越,基于该材料体系的湿敏元件全湿度量程内均表现出良好的湿敏特性;在此基础上,第三章主要介绍了基于一步合成法制备的介孔SBA-15担载传统氧化物(MgO、ZnO)材料的湿度敏感性能。通过适当比例金属氧化物的担载,虽然介孔的有序度有所下降,但是大大改善了该材料所制备元件的湿敏性能(灵敏度)。提高了元件的响应恢复时间,减小了湿滞。在第四章中,在总结前面实验的基础上,作者利用硬模板法制备了介孔金属氧化物In2O3和WO3,通过使传统的金属氧化物半导体材料介孔化的方法,增加材料的表面积及内部缺陷,由于比表面积的增大,大大提高了传统材料的化学敏感活性。基于介孔金属氧化物In2O3和WO3所制备的湿度传感器不但响应恢复迅速,而且湿滞很小,稳定性好。通过对传统化学敏感材料的介孔化改进,获得了性能优良的新型湿度敏感元件。在第五章中,作者主要研究了有机高分子聚合物PPY材料,PPY与SBA-15复合材料及K掺杂LaCo0.3Fe0.7O3材料的湿度敏感性能。通过延长聚合时间的方法,改善了PPY的湿敏特性;通过有机聚合物PPY与介孔SBA-15的复合,提高了湿度敏感元件的灵敏度;通过对传统陶瓷LaCo0.3Fe0.7O3材料湿敏性能的研究,发现适量碱金属盐的掺杂可以提高元件的敏感性能。在本部分,作者还以LaCo0.3Fe0.7O3材料体系为例,利用瞬时极性直流反转测试、直流、交流复阻抗分析法及介电损耗法探究了湿敏元件的感知机理,获得了研究湿度感知(湿)机理的一般性方法。
Humidity sensors have been used in an increasing number of applications in industrial processing and environmental control. According to the operation principle, humidity sensors can be divided into resistive-type or capacitive-type. In our experiments, we studied the humidity sensitive properties of resistive-type humidity sensor. Growing demands for controlling water vapor have led to considerable interest in the development of sensing materials. Many kinds of materials including inorganic ceramic, organic polymer and electrolyte have been selected in fabricating humidity sensors. Among these materials, ceramics have been extensively investigated at both room and elevated temperatures. But it may unstable when it absorbed acid atmosphere. Polymers can not work under high temperature and electrolyte may soluble in highly humidity environments. That means all of them exist some disadvantages.
     Since a family of novel mesoporous silica materials was synthesized by the scientists from Mobil Oil Corporation, mesoporous materials have been receiving wide attention from both the scientific and industry communities. In recent years, The development of material science accelerated the application in many fields. The large surface area created by mesoporous materials enables an improvement in the water adsorption properties of humidity sensor. In this paper, several functional mesoporous materials have been synthesized and their application property in humidity sensors has been studied.
     In chapterⅡ, the author uses the mesoporous silica SBA-15 and SBA-16 as humidity sensing material. Mesoporous silica SBA-15 and SBA-16 are selected as the host material and LiCl is selected as humidity functional material. After loading optimized amount of LiCl, The humidity-sensitive properties were improved a lot. Except traditional LiCl, what about metal oxide semiconductor? Therefore, in chapterⅢ, the author loaded metal oxide into the mesoporous SBA-15. We obtained MgO/SBA-15 and ZnO/SBA-15 composites by one-pot synthesizing method and fabricated resistive-type humidity sensor. After testing the humidity-sensitive response, the optimized mount of metal oxide was obtained. When the molar ratio of the metal oxide and SBA-15 was 1:1, the humidity sensors show best sensitivity. Test results show that the appropriate introduction of metal oxides improved the performance of the humidity-sensitive properties.
     Since we found that the humidity-sensitivity can be improved by introduction of metal-oxide semiconductor into mesoporous pore. We considered about that if traditional metal-oxide semiconductor can be provided with mesopore, the sensitivity will be improved a lot. In the fourth chapter, we use nanocasting method in preparing mesoporous In2O3 and WO3 mesoporous materials. Then, studied the humidity-sensitive property based on mesoporous In2O3 and WO3. The sensor fabricated by mesoporous In2O3 and WO3 show quite satisfactory results. Combined with the material structure analysis, we also studied the humidity-sensing mechanism based on mesoporous In2O3 and WO3.
     Chapter V studied the humidity-sensitivity of organic polymer materials PPY and a traditional ABO3-type ceramics oxide LaCO0.3Fe0.7O3 material. Conducting polymers have been extensively studied because of their remarkable mechanical and electrical properties. Compare with other conducting polymers, PPY has relative high conductivity and environmental stability. In the experiments, we synthesized PPY with different polymerization times, and studied the effect of polymerization time on the humidity-sensitive properties. At last, we found that the humidity-sensitive properties were improved greatly by extending the polymerization time to 96 hours. In order to improve the humidity-sensitive property further, we also encapsulated conducting polymer NiO-PPY into the channel of mesoporous silica SBA-15 to form host-guest material. After loading the PPY into the mesoporous material, the sensitivity of the humidity sensor was improved greatly. This method combined the advantage of conductive polymer and mesopore structure. In the same chapter, we also studied the humidity-sensitive property of traditional ABO3-type ceramics oxide LaCO0.3Fe0.7O3. ABO3-type ceramics oxide is one of the traditional humidity-sensitive materials. We provided nano-LaCO0.3Fe0.7O3 by sol-gel method. K+ was doped by adding to the precursor and the appropriate doping of K' improved the sensitivity of material in the low relative humidity.
     The author has employed different method in study the humidity-sensitive mechanism. For example, the polarization theory, complex impedance plots, the Direct-current method and so on. Finally, the conductive carriers were confirmed though the mechanism analysis.
引文
[1]张洪润,传感器技术大全[M],北京航空航天大学出版社2007.
    [2]高志贤,李小强,纳米生物医药[M],化学工业出版社2007.
    [3]李科杰等,现代传感器技术[M],北京:电子工业出版社,2005.
    [4]易洪,李占元,任长青,饱和盐溶液标准相对湿度表(国际会议)介绍,第七届全国湿度与水分子学术交流会暨第五届全国气湿敏学术交流会,1998,70-72.
    [5]张彤,电阻型湿敏元件的电特性研究与集成一体化多功能传感器的设计研制,吉林大学博士学位论文, 2001.
    [6]康昌鹤,唐省吾,气、湿敏器件及其应用[M],北京:科学出版社,1988.
    [7]张彤,徐宝琨,用直流、交流方法分析高分了电阻型湿敏元件的敏感机理,传感技术学报,2001, 1: 129-133.
    [8] Yen Y C, Tseng T Y. Analysis of the d.c and a.c. properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor [J]. J. Mater. Sci., 1989, 24: 2739.
    [9]李翰如,张良莹,电介质物理导论[M],成都科学技术出版社,1990.
    [10]姚熹,电介质物理[M],西安交通大学出版社,1991.
    [11] Wang J, Wang X H, Wang X D. Study on dielectric properties of humidity sensing nanometer materials [J]. Sensors and Actuators B, 2005, 108: 445–449.
    [12]徐贾强,张全法,范福玲,传感器技术[M],哈尔滨工业大学出版社,2004.
    [13]王涛,张立德,纳米非晶氮化硅的极化行为及其机制,科学通报,1992, 39 (11):983.
    [14]张丽华,王子忱,赵纯,掺杂Sb3+的Zn0纳米晶敏感材料的性能,材料研究学报,1994, 8,348.
    [15]林元华,张中太,袁方利,Zn0导电陶瓷的制备及其性能表征,半导体学报,1999, 20 (10):867.
    [16] Taurino A M, Capone S, Toccoli T, et al. Nanostructured TiO} thin film prepared by supersonic beams and their application in a sensor array for the discrimibation of VOC [J]. Sens. Actuator B, 2003, 92: 292-302
    [17] Cun W, et a1. Preparation, characterization and photocatalytic activity of nano-sizedZn0/SnO coupled photocatalysts [J]. Appl. Cata. Environ.,2002, 39 (3):269.
    [18] Wang J, Xu B K, Liu G F, Zhang J C, Zhang T. Improvement of nanocrystalline BaTiO3 humidity sensing properties [J]. Sensors and Actuators B, 2000, 66: 159-160.
    [19] Wang J, Yan W P, Zhang J C, Qiu F B, Zhang T. Property analysis and humidity sensitivity of the composite material of BaTiO3 and RMX [J], Materials Chemistry and Physics, 2001, 69: 288–291.
    [20] Wang J, Lin Q H, Zhou R Q, Xu B K. Humidity sensors based on composite material of nano- BaTiO3 and polymer RMX [J]. Sensors and Actuators B, 2002, 81: 248-253.
    [21] Wang J, Xu B K, Ruan S P, Wang S P. Preparation and electricalproperties of humidity sensing films of BaTiO3/polystrene sulfonic sodium [J]. Materials Chemistry and Physics, 2003, 78: 746–750.
    [22] Wang J, Wang X H, Wang X D. Study on dielectric properties of humidity sensing nanometer materials [J]. Sensors and Actuators B, 2005, 108: 445–449.
    [23] Wang J, Wu F Q, et al. Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin [J]. Sensors and Actuators B,2004, 99: 586-591.
    [24] Wang X H, Ding Y F, et al Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance [J]. Sensors and Actuators B, 2006, 115: 421-427.
    [25] Zhou X F, Jiang T, Zhang J, Wang X H, Zhu Z Q. Humidity sensor based on quartz tuning fork coated with sol–gel-derived nanocrystalline zinc oxide thin film [J]. Sensors and Actuators B, 2006, 123: 299-305.
    [26] Pi-Guey Su , Yi-Lu Sunb, Chu-Chieh Lin. Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance [J]. Talanta, 2006, 69: 946–951.
    [27] Yoshiro Sakai, Yoshihiko, Masanobu Matsuguchi, Hiroki Sakai, et al. Humidity sensor durable at high humidity using simultaneously crosslinked and quaternized poly(chloromethyl styrene) [J]. Sensors and Actuators, B, 1995, 24-25: 689-691.
    [28] Sakai Y, Matsuguchi M and Hurukawa. Humidity sensor using cross-linked poly(chloromethyl styrene) [J]. Proceeding of the Second East Asia Conference onChemical Sensors, 1995, Xi′an, China, 336-338.
    [29] Matsuguchi M, Umeda S, Sadaoka Y, Sakai Y. Characterization of polymers for a capacitate-type humidity sensor based on water sorption behavior [J]. Sensors and Actuators, B, 1998, 49: 179-185.
    [30] Sakai Y, Rao V L, Sadaoka Y and Matsuguchi M. Humidity sensor composed of a mocroporous film of polyethylene-graft-poly-(2-acrylamido-2-methlpropane sulfonate) [J]. Polymer Bulletin, 1987, 18: 501-506.
    [31] Sakai Y Sadaoka Y and Matsuguchi M. Humidity sensors based on polymer thin films [J]. Sensors and Actuators, B, 1995, 35-36: 85-90.
    [32] Li Y, Yang M J, She Y. Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate) [J]. Sensors and Actuators, B, 2005, 107: 252-257.
    [33] Li Y, Yang M J, Camaioni N and Casalbore-Miceli G. Humidity sensors based on polymer solid electrolytes: investigation on the capacitive and resistive devices construction [J]. Sensors and Actuators B, 2001, 77: 625-631.
    [34] Li Y, Yang M J, Casalbore-Miceli G and Camaioni N. Humidity sensitive properties and sensing mechanism ofπ-conjugated polymer p-diethyny lbenzene -co- propargyl alcohol [J]. Sensors and Actuators B, 2002, 85: 73-78.
    [35] Yang M J, Li Y, Camaioni N, Casalbore-Miceli G, Martelli A and Ridolfi G.Polymer electrolytes as humidity sensors: progress in improving an impedance device [J]. Sensors and Actuators B, 2002, 8: 229-234.
    [36] Li Y and Yang M J. A novel highly reversible humidity sensor based on poly (2-propyn-2-furoate) [J]. Sensors and Actuators B, 2002, 86: 155-159.
    [37] Li Y and Yang M J. Bilayer thin film humidity sensors based on sodium polystyrenesulfonate and substituted polyacetylenes [J].Sensors and Actuators B,2002, 87: 184-189.
    [38] Li Y, Yang M J and She Y.Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites [J]. Talanta, 2004, 62: 707-712.
    [39] Casalbore-Miceli G, Yang M J, Li Y, et al. A polyelectrolyte as humidity sensingmaterial: Influence of the preparation parameters on its sensing property [J]. Sensors and Actuators B, 2006, 114: 584-590.
    [40] Pi-Guey Su, Shuay-Chwen Huang. Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride [J]. Sensors and Actuators, B, 2005, 105: 170–175.
    [41] Pi-Guey Su , Sun Y L, Wang C S , Chu-Chieh Lin. Humidity sensing and electrical properties of hybrid films prepared from [3-(methacrylamino)propyl] trimethyl ammonium chloride, aqueous monodispersed colloidal silica and methyl methacrylate [J]. Sensors and Actuators, B, 2006, 119: 483-489.
    [42] Pi-Guey Su, Cheng K H. Self-assembly of polyelectrolytic multilayer thin films of polyelectrolytes on quartz crystal microbalance for detecting low humidity [J]. Sensors and Actuators, B, 2009, 142: 123-129.
    [43] Luoh R, Hahn H T. Electrospun nanocomposite fiber mats as gas sensors [J]. Compos. Sci.Technol, 2006, 66: 2436–2441.
    [44] Wang G, Ji Y, Huang X, Yang X, Gouma P I, Dudley M. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia [J]. Sensing, J. Phys. Chem. B, 2006, 110 (47):23777-23782.
    [45] Arsat R, Yu X F, Li Y X, Wlodarski W, Kalantar-zadeh K. Hydrogen gas sensor based on highly ordered polyaniline nanofibers [J]. Sens. Actuators B, 2009, 137(2): 529-532.
    [46] Zhu Y, Zhang J C, Zhai J, Jiang L. Preparation of superhydrophilicα-Fe2O3 nanofibers with tunable magnetic properties [J]. Thin Solid Films, 2006, 510: 271-274.
    [47] Zhang Y, He X, Li J, Miao Z, Huang F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers [J]. Sens. Actuators B, 2008, 132: 67–73.
    [48] Ji S, Li Y, Yang M. Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline [J]. Sens. Actuators B, 2008, 133: 644-649.
    [49] Qi Q, Zhang T, Yu Q J, Wang R, Zeng Y, Liu L, Yang H B. Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing [J]. Sensors andActuators B, 2008, 133: 638–643.
    [50] Zhang T, Zeng Y, Fan H T,Wang L J,Wang R, Fu W Y ,Yang H B. Synthesis,optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process [J]. J. Phys. D: Appl. Phys, 2009, 42 045103.
    [51] Zeng Y, Zhang T, Qiao L. Preparation and gas sensing properties of the nutlike ZnO microcrystals via a simple hydrothermal route [J]. Materials Letters, 2009, 63: 843–846.
    [52] Qi Q, Zhang T, Liu L, Zheng X J, Yu Q J, Zeng Y, Yang H B. Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery [J]. Sensors and Actuators B, 2008, 134: 166–170.
    [53] Zeng Y, Zhang T, Wang L J, Kang M H, Fan H T, Wang R, He Y. Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO Nanostructures [J]. Sensors and Actuators B, 2009, 140: 73–78.
    [54] Zhang Y Y, Fu W Y, Yang H B, Qi Q, Zeng Y, Zhang T,Ge R X, Zou G T . Synthesis and characterization of TiO2 nanotubes for humidity sensing [J]. Applied Surface Science, 2008, 254: 5545–5547.
    [55] Zeng Y, Zhang T, Qiao L. Preparation and gas sensing properties of the nutlike ZnO microcrystals via a simple hydrothermal route [J]. Materials Letters, 2009, 63: 843–846.
    [56] Qi Q, Zhang T, Liu L, Zheng X J, Lu G Y .Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123 [J]. Sensors and Actuators B, 2009, 141: 174–178.
    [57] Zeng Y, Zhang T, Fan H T, Lu G Y, Kang M H Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons [J]. Sensors and Actuators B, 2009, 143: 449–453.
    [58] He Y, Zhang T, Zheng W, Wang R, Liu X W, Xia Y, Zhao J W. Humidity Sensing Properties of BaTiO3 Nanofiber Prepared via Electrospinning, Sensors and Actuators B, 2010, 146: 98–102.
    [59]徐如人,庞文琴,分子筛与多孔材料化学[M],科学出版社2004.
    [60] Cronstedt A R, Vetenskaps K, Acad Handle Stockholm, 1756, 17, 120.
    [61] Barer R. M., J. Chem. Soc., 1948, 10: 2158.
    [62] IUPAC Manual of Symbols and Terminology. 31. 1972, Pure Appl. Chem. 578.
    [63] Kresge, C T, Leonowicz M E, and Roth W J.Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism [J]. Nature, 1992, 359: 710-712.
    [64] Zhao, D. Y., Feng J. L., Huo Q. S., et al.. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279: 548-552.
    [65] Xu, Q., Zhu J J, and Hu X Y. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction [J]. Analytica Chimica Acta, 2007, 597: 151-156.
    [66] Tao S Y, Li G T. Porphyrin-doped mesoporous silica films for rapid TNT detection [J]. Colloid and Polymer Science, 2007, 285: 721-728.
    [67] Rossinyol, E., et al. Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications [J]. Advanced Functional Materials, 2007, 17(11): 1801-1806.
    [68] Mohammadi M R and Fray D J. Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route [J]. Acta Materialia, 2007, 55(13): 4455-4466.
    [69] Dickey E C, Varghese O K, Ong K G, Gong D W, Paulose M, Grimes C A. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films [J]. Sensors, 2002, 2(3): 91-110.
    [70] Cho J H, Yu J B, Kim J S, Sohn S O, Lee D D, Huh J S. Sensing behaviors of polypyrrole sensor under humidity condition [J]. Sens. Actuators B, 2005, 108: 389-392.
    [71] Gong Q X, Wang S L, Huang M J, Gan F X. A humidity-resistant highly sensitive holographic photopolymerizable dry film [J]. Materials Letters 2005, 59(23): 2969-2972.
    [72] Su P G, Sun Y L, Wang C S, Lin C C. Humidity sensing and electrical properties of hybrid films prepared from [3-(methacrylamino)propyl] trimethyl ammonium chloride, aqueous monodispersed colloidal silica and methyl methacrylate [J]. Sensors and Actuators B-Chemical, 2006, 119(2): 483-489.
    [73] Park S, Kang J, Park J, Mun S. One-bodied humidity and temperature sensor havingadvanced linearity at low and high relative humidity range [J]. Sens. Actuators B, 2001, 76: 322-326.
    [74] Hassen M A, Clarke A G, Swetnam M A, Kumar R V, Fray D J. High temperature humidity monitoring using doped strontium cerate sensors [J]. Sens. Actuators B, 2000, 69: 138-143.
    [76] Connolly E J, Pham H T M, Groeneweg J et al. Relative humidity sensors using porous SiC membranes and Al electrodes [J]. Sens. Actuators B,2004, 100: 216-220.
    [77] Zhang Y S, Yu K, Ouyang S X, et al. Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films [J]. Phys. B 2005, 368: 94–99.
    [78] Rezlescu N, Doroftei C, Rezlescu E, Popa P D, Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite [J]. Sens. Actuators B: Chem. 2006, 115: 589–59.
    [79] Wang X H, Ding Y F, Zhang J, et al. Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance [J]. Sens. Actuators B: Chem. 2006, 115: 421–427.
    [80] Wu R J, Sun Y L, Lin C C , et al. Composite of TiO2 nanowires and nafion as humidity sensor material [J]. Sens. Actuators B: Chem. 2006, 115: 198–204.
    [81] Nohria R., Khillan R.K., Su Y., et al. Humidity sensor based on ultrathin polyaniline film deposited using layerby-layer nanoassembly [J]. Sens. Actuators B: Chem. 2006, 114: 218–222.
    [82] Su P G , Sun Y L , Lin C C, Humidity sensor based on PMMA simultaneously doped with two different salts [J]. Sens. Actuators B: Chem. 2006, 113: 883–886.
    [83] Li Y, Yang M J, Humidity sensitive properties of a novel soluble conjugated copolymer: ethynylbenzene-co-propargyl alcohol [J]. Sens. Actuators B: Chem. 2002, 85: 73–78.
    [84] Tandon R P , Tripathy M R, Arora A K, Hotchandani S, Gas and humidity response of iron oxide-polypyrrole nanocomposites [J]. Sens. Actuators B 2006, 114: 768–773.
    [85] Parvatikar N, Jain S, Khasim S, Revansiddappa M,. Bhoraskar S V, et al.Electrical and humidity sensing properties of polyaniline/WO3 composites [J].Sens. Actuators B, 2006, 114: 599–603.
    [86] Xu X, Tian B, Kong J, Zhang S, Liu B, Zhao D. Ordered Mesoporous Niobium Oxide Film: A Novel Matrix for Assembling Functional Proteins for Bioelectrochemical Applications [J]. Adv.Mater, 2003, 15(22): 1932-1936.
    [87] Anderson J H, Parks G A. The electrical conductivity of silica gel in the presence of adsorbed water [J]. J. Phys. Chem. B, 1968, 72: 3662-3668.
    [88] Wang C T, Wu C L. Electrical sensing properties of silica aerogel thin films to humidity [J]. Thin Solid Films, 2006, 496: 658-664.
    [89] Casalbore-Miceli G, Yang M J, Li Y, Camaioni N, Martelli A, Zanelli A, Effect oft the doping level on the conductance of polymer-saltscomplexes in the presence of humidity [J]. Sens. Actuators B, 2004,97: 362–368.
    [90] Vijaya J J, Kennedy L J, Sekaran G, Nagaraja K S.Synthesis, characterization and humidity sensing properties of Sr(II)-added BaAl2O4 composites [J]. Sens. Actuators B, 2007, 124: 542–548.
    [91] Pokhrel S, Nagaraja K S. Electrical and humidity sensing properties of chromium(III) oxide–tungsten(VI) oxide composites [J]. Sens. Actuators B, 2003, 92: 144–150.
    [92] Neri G, Bonavita A, Galvagno S, Pace C, Patane S, Arena A, Humidity sensing properties of Li–iron oxide based thin films [J]. Sens. Actuators B, 2001, 73: 89–94.
    [93] Li C. C., Du Z. F., Humidity fixed points of binary satueated aqueous solutions [J]. J. Res. NBS, 1977, 81A: 89-96.
    [94] Wu R J, Sun Y L, Lin C C, Chen H W, Chavali M. Composite of TiO2 nanowires and Nafion as humidity sensor material [J]. Sens. Actuators B, 2006, 115: 198-204.
    [95] Li W C, Lu A H, Weidenthaler C, Schuth F. Hard-templating pathway to create mesoporous magnesium oxide [J]. Chem. Mater,2004, 16: 5676-5681.
    [96] Agarwal S, Sharma G L.Sens. Actuators B, 2002, 85: 205–211.
    [97] Wang J, Xu B K, Ruan S P, Wang S P. Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium[J]. Mater. Chem. Phys, 2003, 78: 746–750.
    [98] Hogan M J, Brinkman A W. Humidity-depandent impedance in porous spinel nickel germinate ceramic [J]. Applied Physics Letters ,1998,Volume 72, Number 23.
    [99] Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D Y, Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts [J]. J. Am. Chem. Soc, 2002, 124: 4556–4557.
    [100] Ernsberger F M. The nonconformist ion, J. Am. Ceram. Soc, 1983, 11: 747–750.
    [101] Wang Y M, Wu Z Y, Wei Y L, Zhu J H. In situ coating metal oxide on SBA-15 in one-pot synthesis [J]. Micropor. Mesopor. Mater, 2005, 84: 127–136.
    [102] Kulwicki B M. Humidity sensors [J]. J. Am. Ceram. Soc, 1991, 74: 697–708.
    [103] Zhang J, Wang S, Wang Y, Xu M Y, Xia H J, Zhang S M, Huang W P, Guo X Z, Wu S H. ZnO hollow spheres: Preparation, characterization, and gas sensing properties [J]. Sens. Actuators B, 2009, 139: 411-417.
    [104] Shalaka C. Navale, Ravi V, Mulla I S. Investigations on Ru doped ZnO: Strain calculations and gas sensing study [J].Sens. Actuators B, 2009, 139: 466-470.
    [105] Cao Y L, Pan W Y, Zong Y, Jia D Z. Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction [J]. Sens. Actuators B, 2009, 138: 480-484.
    [106] Yadav B C, Richa Srivastava, Dwivedi C D, Pramanik P. Moisture sensor based on ZnO nanomaterial synthesized through oxalate route [J]. Sens. Actuators B, 2008, 131: 216-222.
    [107] Han N, Tian Y J, Wu X F, Chen Y F. Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO [J]. Sens. Actuators B, 2009, 138: 228-235.
    [108] Wang Y M, Wu Z Y, Zhu J H. Surface functionalization of SBA-15 by the solvent-free method [J]. J. Solid State Chem, 2004, 177: 3815-3823.
    [109] Benter T H, Liesner M, Schindler R N, Skov H, Hjorth J, Restelli G, REMPI-MS and FTIR. Study of NO2 and Oxirane Formation in the Reactions of Unsaturated Hydrocarbons with NO3 Radicals [J]. J. Phys. Chem., 1994, 98: 10492–10496.
    [110] Shimizu Y, Hyodo T, Egashira M. Nanostructured semiconducting oxides for gas sensor application [J]. J. Eur. Ceram. Soc, 2004, 24: 1389-1398.
    [111] Zhang J, Liu J, Peng Q, Wang X, Li Y. Nearly monodisperse Cu2O and CuOnanospheres: Preparation and applications for sensitive gas sensors [J]. Chem. Mater, 2006, 18: 867-871.
    [112] Tan O K, Cao W, Hu Y, Zhu W. Nano-structured oxide semiconductor materials for gas-sensing applications [J]. Ceram. Int, 2004, 30: 1127-1133.
    [113] Zhu K, He H, Xie S, Zhang X, Zhou W, Jin S, Yue B. Crystalline WO3 nanowires synthesized by templating method [J]. Chem. Phys. Lett, 2003, 377: 317-321.
    [114] Yue B, Tang H L, Kong Z P, Zhu K, Dickinson C, Zhou W Z, He H Y. Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide [J]. Chem. Phys. Lett, 2005, 407: 83–86.
    [115] Rossinyol E, Arbiol J, Peiro F, Cornet A, JMorante J R, Tian B, Zhao D. Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection [J]. Sens. Actuators B, 2005, 109: 57-63.
    [116] Zhu K, Yue B, Zhou W Z, He H Y. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15 [J]. Chem. Commun, 2003, 98-99.
    [117] Jiao K, Zhang B, Yue B, Ren Y, Liu S, Yan S, Dickinson C, Zhou W, He H. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system [J]. Chem. Commun, 2005, 5618–5620.
    [118] Dickinson C, Zhou W, Hodgkins R P, Shi Y, Zhao D, He H. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica [J]. Chem. Mater, 2006, 18: 3088-3095.
    [119] Tian B Z, Liu X Y, Yang H F, Xie S, Yu C, Tu B, Zhao D. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Adv. Mater, 2003, 15: 1370-1374.
    [120] Tian B Z, Liu X Y, Solovyov L A, Liu Z, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures [J]. J Am Chem Soc, 2004, 126: 865-875.
    [121] WangY Q, Yang C M, Schmidt W, Spliethoff B, Bill E, Schuth F. Adv Mater, 2005, 17: 53-56.
    [122] Zhou W B, Zhou W Z. Porous crystals of cubic metal oxides templated bycage-containing mesoporous silica [J]. J. Mater Chem, 2007, 17: 4947-4952.
    [123] Rossinyol E, Arbiol J, Peiro F, Cornet A, Morante J R, Tian B Z, Zhao D. Nanostructured metal oxides synthesized by hard template method for gas sensing applications [J]. Sens. Actuators B, 2005, 109 : 57-63.
    [124] Laha S C , Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates [J]. Chem. Commun, 2003, 2138-2319.
    [125] Shen W, Dong X, Zhu Y, Chen H, Shi J. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property [J]. Microporous Mesoporous Mater, 2005, 85: 157-162.
    [126] Smatt J H, Weidenthaler C, Rosenholm J B,LindSn M. Hierarchically Porous Metal Oxide Monoliths Prepared by the Nanocasting Route [J]. Chem. Mater, 2006, 18: 1443-1450.
    [127] Imperor-Clerc M, Bazin D, Appay M D, Beaunier P, Davidson A. Crystallization ofβ-MnO2 Nanowires in the Pores of SBA-15 Silicas: In Situ Investigation Using Synchrotron Radiation [J]. Chem. Mater, 2004, 16: 1813-1821.
    [128] Jiao F, Harrison A, Jumas J C, Chadwick A V, Kockelmann W, Bruce P G. Ordered mesoporous Fe2O3 with crystalline walls [J]. J. Am. Chem. Soc, 2006, 128: 5468-5474.
    [129] Yang H F, Shi Q H, Tian B Z, Lu Q Y, Gao F, Xie S H, Fan J, Yu C Z, Tu B, Zhao D Y. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks [J]. J. Am. Chem. Soc., 2003, 125: 4724-4725.
    [130] Kleitz F, Choi C H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem. Commun, 2003, 17: 2136-2137.
    [131] Sadaoka Y, Matsuguchi M, Sakai Y, Aono H, Nakayama S, Kuroshima H. Humidity sensors using KH2PO4-doped porous (Pb, La)(Zr, Ti)O3 [J]. J. Mater. Sci, 1987, 22: 3685-3692.
    [132] Sadaoka Y, Matsuguchi M, Sakai Y, Mitsui S. Electrical properties ofα-zirconiumphosphate and its alkali salts in a humid atmosphere [J]. J. Mater. Sci, 1998, 23: 2666-2675.
    [133] Dellwo U, Keller P, Meyer J U. Fabrication and analysis of a thick?film humidity sensor based on MnWO4 [J]. Sens. Actuators B, 1997, 61: 298-302.
    [134] Yeh Y C, Tseng T Y. Vibrational spectroscopy of cation-site interactions in phosphate glasses [J]. J. Mater. Sci, 1989, 24: 2739-2747.
    [135] Traversa E, Bearzotti A, Miyayama M, Yanagida H. Study of the conduction mechanism of La2CuO4-ZnO Hetero-Contacts at different relative humidities [J]. Sens. Actuators B, 1995, 24–25: 714-718.
    [136] Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M, Adv. Funct. Mater, 2009, 19: 653.
    [137] Prim A, Pellicer E, Rossinyol E, PeiróF, Cornet A, Morante J R. Adv. Funct. Mater, 2007, 17: 2957.
    [138] Bennett B, Benson N, McEwan A G, Bray R C. Multiple states of the molybdenum centre of dimethyl sulphoxide reductase from Rhodocacter capsulatus revealed by EPR spectroscopy [J]. Eur J Biochem, 1994, 225: 321-331.
    [139] Gardnera J W, Bartlettb P N. Application of conducting polymer technology in Microsystems [J]. Sens. Actuator A, 1995, 51: 57-66.
    [140] Radhakrishnan S, Somani P. Sensitization of photocurrents in solid-state electrochemical cells using conducting polypyrrole [J]. Mater. Lett, 1998, 37: 192-196.
    [141] Trojanowicz M, Geschke O, Krawczyk T Kv, Cammann K. Biosensors based on oxidases immobilized in various conducting polymers [J]. Sens. Actuators B 1995, 28: 191-199.
    [142] Bidan G, Billon M, Livache T, Mathis G, Roget A, Torres-Rodriguez L M. Conducting polymers as a link between biomolecules and microelectronics [J]. Synth. Met, 1999, 102:1363-1365.
    [143] Marcos S, Hortigüela R, Galbán J, Castillo J R, Wolfbeis O S. Characterization of a urea optical sensor based on polypyrrole [J]. Mikrochim. Acta, 1999, 130: 267-272.
    [144] Han G Y, Shi G Q. Conducting polymer electrochemical actuator made ofhigh-strength three-layered composite films of polythiophene and polypyrrole [J]. Sens. Actuators B, 2004, 99: 525-531.
    [145] Pringsheim E, Terpetschnig E, Piletsky S A, Wolfbeis O S. A polyaniine with near-infrared optical response to saccharides [J]. Adv. Mater, 1999, 11: 865-868.
    [146] Chakrabarti S, Banerjee D, Bhattacharyya R. Enhancement of room temperature electrical conductivity of polypyrrole by chemical modification [J]. J. Phys. Chem. B, 2002, 106: 3061-3064.
    [147] Chen W, Wan X B, Xu N, Xue G. Ordered conducting polypyrrole doped with sulfopropyl ether ofβ-cyclodextrin [J]. Macromolecules, 2003, 36: 276-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700