量子点系统的动力学和输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要涵盖了三方面的工作,可分为三部分。第一部分是有关含时双量子点系统的动力学性质的研究,这一部分的推导主要采用紧束缚Hubbard模型。在第二部分,利用非平衡态格林函数的方法,我们讨论了通过单个包含电子-电子相互作用的量子点的非弹性输运性质。在第三部分,我们同样利用非平衡态格林函数的方法,研究了包含两个耦合的量子点,对称隧穿耦合到电极的AB环的输运性质,在这里量子点之间的库仑相互作用被考虑进去。
     第一部分为第1章共分7节。第1节简略地描述了量子点系统。第2节介绍了含时介观物理体系的研究背景。激光技术的迅速发展,为我们研究激光和物质相互作用引起的一些非线性性质打开了方便之门。第3节我们系统的介绍了用于研究周期含时哈密顿量的一个好的数值方法:Floquet理论方法。在第4节我们研究了在周期外场驱动下,双电子在不对称耦合的量子点分子的动力学行为。数值结果显示动态局域化和Rabi振荡现象也出现在这个量子系统。在第5节我们研究了在一个周期外场驱动下对称量子点分子中的激子的动力学行为。在较强的电子和空穴库仑相互作用的下,我们理论上分析了这个系统,指出动态局域化产生的条件。电子和空穴的相互库仑吸引相互作用在形成纠缠态中扮演着一个重要的角色。我们提供的近似结果和来自Floquet理论的数值结果符合的很好。在第6节我们研究了在随机脉冲下,在量子点分子中的激子的动力学行为。当两个局域化态的Rabi振荡发生,最大纠缠贝尔态被形成在这个量子点分子。最后在第7节我们给出工作小结以及工作展望。
     第二章包括8节。在第1节我们简单介绍一下通过量子点系统量子输运的研究背景。第2节给出了格林函数的定义。在第3节,我们列举了三个简单的完全可解的模型:粒子之间无相互作用模型,共振能级模型和Einstein模型。在第4节中,我们介绍了在处理介观系统的输运性质时用到的Keldysh技术,它是研究含时或非含时量子点系统输运性质的一个重要的方法。一个光子辅助隧穿模型被介绍在第5节中。在第6节,我们介绍了一个声子辅助隧穿模型。第7节也就是本章的重点,我们利用非平衡态格林函数方法和正则变换,研究了低温下单个量子点的非弹性输运性质。在这里我们考虑了电子-电子的相互作用,电子-声子,电子-光子相互作用。时间平均占据数,时间平均电导以及时间平均电流被自洽计算得到。时间平均电导随着外场强度和入射电子能量的变化也被研究。
     由于电荷的积累,两种声子发射峰可能同时存在在这个系统。在最后一节我们对工作做了总结和展望。
     第三章包含了6节。在第1节,我们简单介绍了通过两个量子点输运研究背景。在第2节,我们给出将要研究的一个理论模型。两个平行耦合的单能级量子点被连在电极上。在第3节,我们用运动学方法计算了两个点中的格林函数。在第4节,用Keldysh格林函数,一个隧穿电流公式被给出。在第5节,我们介绍了数值结果和讨论。工作总结和展望被写在最后一小节中。
This dissertation mainly includes three parts. The first part presents the theoretical research on dynamics property of the time-dependent double quantum dots system. The results of this part are mainly obtained by using the tight-bonding Hubbard model. The second part discusses the electronic inelastic transport through a quantum dot in the presence of the electron-electron interaction by using the Keldysh nonequilibrium Green function approach. In the third part, we study electronic transport properties of an Aharonov-Bohm ring with embedded coupled double quantum dots connected to two electrodes in a symmetrical parallel configuration in the presence of strong interdot Coulomb interaction by using the Keldysh nonequilibrium Green function approach.
     The first part is composed of seven subsections. The first subsection simply introduces quantum dots system. In the second subsection, we introduce the background of the study on the time-dependent mesoscopic system. The development of laser technologies open the doorway for studying the new quantum effects in nonlinear quantum systems which interact with strong electromagnetic field. In the third subsection, we introduce a good approach (Floquet theory) to study of quantum systems with their Hamiltonian being a periodic function in time. In the 4th subsection, we study the dynamics of the two interacting electrons in an asymmetric double coupled quantum dot under an ac electric field. The numerical results demonstrate that the dynamical localization and Rabi oscillation still excite in the system. In the 5th subsection, we investigate the dynamical behaviors of an interacting electron - hole pair in a double coupled quantum dot molecule under an ac electric field. We theoretically analyze the phenomenon of localization of an exciton in the quantum system under the strong Coulomb interaction, and indicate the conditions that dynamical localization occurs. The attractive Coulomb interaction plays an important role in forming the entangled states of the system. In the 6th subsection, we theoretically analyze the dynamical behaviors of an interacting electron - hole pair in a double coupled quantum dot molecule in radiation pulses. It is found the maximally entangled Bell states can be prepared when a resonant transfer occurs between two localized states. A summary and prospec-tion are given in 7th subsection.
     The second part includes 8 subsections. The first subsection briefly introduces the background of the study on the transport through the quantum dot system. In the second subsection, the definitions of Green functions are introduced. The third subsection introduces three exactly solvable models : free-particle model, resonant-level model and Einstein model. In the 4th subsection, we introduce the nonequilibrium keldysh technologies, which is an important approach to study the transport properties of the time-dependent or time-independent quantum dots system. Photon- assisted tunneling processes are introduced in the 5th subsection. In the 6th subsection a phonon-assisted model is given. The 7th subsection is the important part in the second chapter. We study the low-temperature inelastic transport properties of a single quantum dot with the on-site Coulomb repulsive interaction, the electron-phonon interaction and the electron-photon interaction by using the nonequilibrium Green function(NEGF) approach and the canonical transformation. The time-averaged occupation number, the time-averaged differential conductance and time-averaged current are calculated self-consistently in the quantum dot. The variation in the differential conductance with the frequency of the external field and the incident electron energy is presented. It is found that the two kinds of phonon-emission peaks may coexist in the time-averaged differential conductance spectrum due to the charge accumulations. In the last subsection the summary and prospection are present.
     The third part includes 6 subsections. The first subsection briefly introduces the background of the study on the transport through the double quantum dots system. In the second subsection, we give a model consists of two single-level coupled quantum dots attached in a parallel configuration to the leads. In the third subsection, we calculate the Green's function of the two dots by using the standard equation-of-motion technique. In the 4th subsection, we give tunneling current formula by using the Keldysh Green function. Numerical results and discussion are given in the 5th subsection. The summary and prospect are written in the last subsection.
引文
[1] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel Phys. Rev. Lett. 60, 535 (1988)
    [2] G. Yusa and H. Sakaki Appl. Phys. Lett. 70, 345 (1997)
    [3] E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, M. A. Kastner and S. J. Wind Phys. Rev. B 47, 010020 (1993)
    [4] N. Kirstaedter, N. N. Ledentsov, M. Grundmann et al. Electron. Lett. 30, 1416 (1994)
    [5] Z. Zou, D. L. Huffaker, S. Csutak et al. Appl. Phys. Lett. 75, 22 (1999)
    [6] F. R. Waugh, M. J. Berry, D. J. Mar, K. L. Campman, A. C. Gossard and R. M. Westervelt Phys. Rev. Lett. 75, 705 (1995)
    [7] L. R Kouwenhoven, F. W. J. Hekking, B. J. Vanwees, C. J. P. M. Harmans, C. E. Timmering and C. T. Foxon Phys. Rev. Lett. 65, 361 (1990)
    [8] N. L. Manankov, V. D. Ovisiannikov and L. P. Rapoport Phys. Rep. 141,.319 (1986)
    [9] S. I. Chu Adv. Chem. Phys. 73,739 (1986)
    [10] A. G. Fainshtein, N. L. Manakov, V. D. Ovsiannikov and L. P. Rapoport Phys. Rep. 210, 111 (1992)
    [11] M. Kleber Phys. Rep. 236, 331 (1994)
    [12] W. Domcke, P. Hanggi and D. Tannor Chem. Phys. 217, 117 (1997)
    [13] A. H. Dayem and R. J. Martin Phys. Rev. Lett. 8, 246 (1962)
    [14] P. K. Tien and J. P. Gordon Phys. Rev. 129, 647 (1963)
    [15] F. Grossmann, T. Dittrich, P. Jung and P. Hanggi Phys. Rev. Lett. 67, 516 (1991)
    [16] F. Grossmann, T. Dittrich, P. Jung and P. Hanggi Z. Phys. B 84, 315 (1991)
    [17] F. Grossmann and P. Hanggi Europhys. Lett 18, 571 (1992)
    [18] J. M. Gomez Llorente and J. Plata Phys. Rev. A 45, R6958 (1992)
    [19] W. A. Lin and L. E. Ballentine Phys. Rev. A 45, 3637(1992)
    [20] M. Holthaus Phys. Rev. Lett. 69, 1596 (I992)
    [21] R. Bavli and H. Metiu Phys. Rev. Lett. 69, 1986 (1992)
    [27] R. Bavli and H. Metiu Phys. Rev. A 47, 3299 (1993)
    [23] Y. Dakhnovskii and R. Bavli Phys. Rev. B 48, 11020 (1993)
    [24] Y. Daklmovskii and H. Metiu Phys. Rev. A 48, 2342 (1993)
    [25] M. Grifoni, M. Sassetti, J. Stockburger and U. Weiss Phys. Rev. E 48, 3497 (1993)
    [26] D. Farrelly and J. A. Milligan Phys. Rev. E 48, R2225 (1993)
    [27] R. Bavli and H. Metiu Phys. Rev. A 47, 3299 (1993)
    [28] M. Grifoni, M. Sassetti J. Stockburger and U. Weiss Phys. Rev. E 48, 3497 (1993)
    [29] Y. Dakhnovskii and R. Bavli Phys. Rev. B 48, 11010 (1993)
    [30] L. Wang and J. S. Shao Phys. Rev. A 49, R637 (1994)
    [31] D. H. Dunlap and V. M. Kenkre Phys. Rev. B 34, 3625 (1986)
    [32] A. Z. Zhang, P. Zhang, S. Q. Duan, X. G. Zhao and J. Q. Liang Phys. Rev. B 63, 045319 (2001)
    [33] R. Graham, M. Schlautmann and P. Zoller Phys. Rev. A 45, R19 (1996)
    [34] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin and C. Salomon Phys. Rev. Lett. 76, 4508 (1996)
    [35] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu and M. G. Raizen Phys. Rev. Lett. 76, (1996)
    [36] Q. Niu, X. G. Zhao, G. A. Georgakis and M. G. Raizen 76, 4054 (1996)
    [37] K. Drese and M. Holthaus Physical Review Letters 78, 2932 (1997)
    [38] S. Friebel, C. D. Andrea, J. Walz, M. Weitz and T. W. Hansch Phys. Rev. A 57, R20 (1998)
    [39] B. J. Keay, S. J. Allen. Jr., J. Galan, J.R Kaminski, J.L. Campman, A.C. Gossard, U. Bhattacharya and M.J.W. Rodwell Phys. Rev. Lett. 75, 4098 (1995)
    [40] B. J. Keay, S. Zeuner, S. J. Allen Jr., K.D. Maranowski, A.C. Gossard, U. Bhattacharya and M.J.W. Rodwell Phys. Rev. Lett. 75, 4102 (1995)
    [41] K. Unterrainer, B.J. Keay, M.C. Wanke, S.J. Allen, D. Leonard, G. Medeiros-Ribeiro, U. Bhattacharya and M.J.W. Rodwell Phys. Rev. Lett. 76, 2973 (1996)
    [42] C. Waschke, H. Roskos, R. Schwedler, K. Leo, H. Kurz and K. Kohler Phys. Rev. Lett. 70, 3319 (1993)
    [43] V. G. Lyssenko, G. Valusis, F. Loser, T. Hasche, K. Leo, M. M. Dignam and K. Kohler Phys. Rev. Lett. 79, 301 (1997)
    [44] M. Holthaus, G.H. Ristow and D.W. Hone Phys. Rev. Lett. 75, 3914 (1995)
    [45] W. Zhang and S. E. Ulloa Phys. Rev. B 74, 115304 (2006)
    [46] E. Diez, A. Sanchez, F. Dominguez-Adame and G. P. Berman Phys. Rev. B 54, 14550 (1996)
    [47] S. Longhi Phys. Rev. B 73, 1.93305 (2006)
    [48] F. H. M. Faisal and J.Z. Kami nski, Phys. Rev. A 54, R1769 (1996); Phys. Rev. A 56, 748 (1997)
    [49] F. H. M. Faisal, J. Z. Kaminski and E. Saczuk Laser Physics 16, 284 (2006)
    [50] J. H. Shirley, Phys. Rev. 138, B979 (1965)
    [51] H. Sambe Phys. Rev. A 7 2203, (1972)
    [52] M. Grifoni and P. Hanggi, Phys. Rep. 304,229 (1998)
    [53] D. V. Averin and Yu. V. Nazarov Phys. Rev. Lett. 65, 2446 (1990)
    [54] L. J. Geerligs, D. V. Averin and J. E. Mooij Phys. Rev. Lett. 65, 3037 (1990)
    [55] C.W. Beenakker Phys. Rev. B 44, 1646 (1991)
    [56] A. A. Staring, H. van Houten, C. W. Beenakker and C. T. Foxon Phys. Rev. B 45, 9222 (1992)
    [57] K. Flensberg Phys. Rev. B 48, 11156 (1993)
    [58] H. Schoeller and Gerd Sch6 Phys. Rev. B 50, 18436 (1994)
    [59] J. J. Palacios, L. W. Liu and D. Yoshioka Phys. Rev. B 55, 15735 (1997)
    [119] S. M. Cronenwett, S. R. Patel, C. M. Marcus, K. Campman and A. C. Gossard Phys. Rev. Lett. 79, 2312 (1997)
    [61] A. Kaminski and L. I. Glazman Phys. Rev. B 61, 15927 (2000)
    [62] Y.B. Lyanda-Geller, I. L. Aleiner and B. L. Altshuler Phys. Rev. Lett. 89, 107602 (2002)
    [63] Z. Y. Zhang and S. J. Xiong Phys. Rev. B 57, 3668 (1998)
    [64] P. Zhang and X. G. Zhao J. Phys.: Condens. Matter 12, 2351 (2000)
    [65] P. Zhang and X. G. Zhao J. Phys.: Condens. Matter 13, 8389 (2001)
    [66] P. Zhang and X. G. Zhao Phys. Lett. A 271,419 (2000)
    [67] P. Zhang, Q. K. Xue, X. G. Zhao and X. C. Xie Phys. Rev. A 66, 022117 (2002)
    [68] A. V. Tsukanov Phys. Rev. A 72, 022344 (2005)
    [69] P. I. Tamborenea and H. Metiu Europhys. Lett. 53, 776 (2001)
    [70] C.E. Creffield and G. Platero Phys. Rev. B 65, 113304 (2002)
    [71] C.E. Creffield and G. Platero Phys. Rev. B 66, 235303 (2002)
    [72] C.E. Creffield Phys. Rev. B 67, 165301 (2003)
    [73] C. E. Creffield and G. Platero Phys. Rev. B 69, 165312 (2004)
    [74] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland and C. Monroe Nature 404,256 (2000)
    [75] E. Solano, G. S. Agqrwal and H. Walther Phys. Rev. Lett. 90, 027903 (2003)
    [76] V. N. Gorbachev and A. I. Trubilko Journal of Experiment and Theoretical Physics 101, 1 (2005)
    [77] E. Hagley, X. Ma itre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond and S. Haroche Phys. Rev. Lett. 79, 1 (1997)
    [78] J. van Enk, J. I. Cirac and P. Zoller Phys. Rev. Lett. 79, 5178 (1997)
    [79] E. Solano, R. L. de Matos Filho and N. Zagury Phys. Rev. A 59, R2539 (1999)
    [80] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Better, M. Bmne, J. M. Raimond and S. Haroche Science 288, 2024 (2000).
    [81] M. Yang, Y. Zhao, W. Song and Z. L. Cao Phys. Rev. A 71, 044302 (2005)
    [82] M. Amniat-Talab, S. Guerin, N. Sangouard and H. R. Jauslin Phys. Rev. A 71, 023805 (2005)
    [83] P. Lougovski, E. Solano and H. Walther Phys. Rev. A 71, 013811 (2005).
    [84] B. M. Rodiguez-Lara, H. Moya-Cessa and A. B. Klimov Phys. Rev. A 71, 023811 (2005)
    [85] F. R. Waugh, M. J. Berry, D. J. Mar, R.M. Westvelt, K. L. Campman and A. C. Gossard Phys. Rev. Lett. 75, 705 (1995)
    [86] N. F. Johnson J. Phys.: Condens. Matter 7, 965 (1995)
    [87] B. Partoens, A. Matulis and F. M. Peeters Phys. Rev. B 59, 1617 (1999)
    [88] D. G. Austing, T. Honda, K. Muraki, Y. Tokura and S. Tamcha Physica B 249, 113 (1998)
    [89] C. Livermore, C. H. Crouch, R. M. Westvelt, K. L. Campman and A. C. Gossard Science 274, 1332 (1996)
    [90] X. G. Wang, M. Feng and B. C. Sanders Phys. Rev. A 67, 022302 (2003)
    [91] T. Calarco, A. Datta, P. Fedichev, E. Pazy and P. Zoller Phys. Rev. A 68, 012310 (2003)
    [92] X. D. Hu, B. Koiller and S. D. Sarma Phys. Rev. B 71, 235332 (2005)
    [93] B. E. Kane Nature 393, 193 (1998)
    [94] M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern and A. Forchel Science 291,451 (2001)
    [95] M. S. Sherwin, A. Imamoglu and T. Montroy Phys. Rev. A 60, 3508 (1999)
    [96] T. Tanamoto Phys. Rev. A 61, 022305 (2000)
    [97] N. H. Bonadeo, G. Chen, D. Gammon, D.S. Katzer, D. Park and D.G. Steel Phys. Rev. Lett. 81, 2759 (1998)
    [98] N. H. Bonadeo, J. Erland, D. Gammon, D.S. Katzer, D. Park and D.G. Steel Science 282, 1473 (1998)
    [99] G. Burkard, D. Loss and D. P. DiVincenzo Phys. Rev. B 59, 2070 (1999)
    [100] C. S. Liu and B. K. Ma Phys. Lett. A 315,301 (2003)
    [101] C. S. Liu and B. K. Ma, Acta. Phys. Sin. 52, 2027 (2003)
    [102] G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park and L. J. Sham Science 289, 1906 (2000)
    [103] P. Zhang, C. K. Chan, Q. K Xue and X. G. Zhao Phys. Rev. A 67, 012312 (2003)
    [104] E. Paspalakis, Phys. Rev. B 67, 233306 (2003)
    [105] E. Paspalakis and A. F. Terzis Phys. Lett. A 350, 396 (2006)
    [106] J. M. Villas-B6as, S. E. Ulloa andN. Studart Phys. Rev. B 70, (041302) 2004
    [107] Z. Jiang, S. Q. Duan andX. G. Zhao J. Phys.: Condensed Matter 17, 4207 (2005)
    [108] A. H. Rodri guez, L. Meza-Montes, C. Trallero-Giner, S. E. Ulloa physica status solidi (b) 242, 1820 (2005)
    [109] I. Wilson-Rae and A. Imamoglu Phys. Rev. B 65, 235311 (2002)
    [110] K. D. Zhu and W. S. Li Phys. Lett. A 314, 380 (2003)
    [111] X. Z. Yuan and K. D. Zhu Phys. Lett. A 334, 226 (2005)
    [112] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel Phys. Rev. Lett. 60, 535 (1988)
    [113] L. L. Chang, L. Esaki and R. Tsu Appl. Phys. Lett. 24, 593 (1974)
    [114] B. Su, V. J. Goldman and J. E. Cunningham Phys. Rev. B 46, 7644 (1992)
    [115] U. Meirav, M. A. Kastner and S. J. Wind Phys. Rev. Lett. 65, 771 (1990)
    [116] J. H. Davies, S. Hershfield, P. Hyidgaard and J. W. Wilkins Phys. Rev. B 47, 4603 (1993)
    [117] F. Simmel, R. H. Blick, J. Kotthaus, W. Wegscheider and M. Bichler Phys. Rev. Lett. 83, 804 (1999)
    [118] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav and M. A. Kastner Nature 391, 156 (1998)
    [119] S. M. Cronenwett, T. H. Oosterkamp and L. P. Kouwenhoven Science 281,540 (1998)
    [120] D. C. Ralph and R. A. Buhrman Phys. Rev. Lett. 72, 3401 (1994)
    [121] D. Goldhaber-Gordon, J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu and U. Meirav Phys. Rev. Lett. 81, 5225 (1998)
    [122] W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha and L. P. Kouwenhoven Science 289, 2105 (2000)
    [123] X. Lu, J. Wang and C. Q. Wu European Physical Journal B 49 325 (2006)
    [124] P. A. Orellana, M. L. Ladron de Guevara and F. Claro Phys. Rev. B 70, 233315 (2004)
    [125] M. L. Ladron de Guevara, F. Claro and Pedro A. Orellana Phys. Rev. B 67, 195335 (2003)
    [126] G. H. Ding, C. K. Kim and K. Nahm Phys. Rev. B 71, 205313 (2005)
    [127] Bjorn Kubala and Jurgen Konig, Phys. Rev. B 65, 245301 (2002)
    [128] Z. M. Bai, M. F. Yang and Y. C. Chen J. Phys.: Condens. Matter 16, 2053 (2004)
    [129] K. Kang and S. Y. Cho J. Phys.: Condens. Matter 16, 117 (2004)
    [130] H. Z. Lu, R. Lu and B. F. Zhu Phys. Rev. B 71 235320 (2005)
    [131] A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl and R. H. Blick Phys. Rev. Lett. 87 256802 (2001); A. W. Holleitner, R. H. Biick, A. K. Huttel, K. Eberl and J. P. Kotthaus Science 297, 70 (2002); A. W. Holleitner, R. H. Blick and K. Eberl Appl. Phys. Lett. 82, 1887 (2003)
    [132] B. G. Wang, J. Peng, D. Y. Xing and J. Wang Phys. Rev. Lett. 95, 086608 (2005)
    [133] J. Peng, B. G. Wang, and D. Y. Xing Phys. Rev. B 71, 214523 (2005)
    [134] X. F. Cao, Y. M. Shi, X. L. Song, S. P. Zhou and H. Chen Phys. Rev. B 70, 235341 (2004)
    [135] Y. Zhu, T. H. Lin and Q. F. Sun Phys. Rev. B 69, 121302 (2004)
    [136] T. Yamashita, H. Imamura, S. Takahashi and S. Maekawa Phys. Rev. B 67, 094515 (2003)
    [137] J. F. Feng and S. J. Xiong Phys. Rev. B 67, 045316 (2003)
    [138] A. F. Morpurgo and F. Beltram Phys. Rev. B 50, 1325 (1994)
    [139] A. P. Jauho, N. S. Wingreen and Y. Meir Phys. Rev. B 50, 5528 (1994)
    [140] H. Zhou and T. H. Lin Phys. Rev. B 53, 2051 (1996)
    [141] X. Q. Li and Z. B. Su Phys. Rev. B 54, 10807 (1996)
    [164] C. Niu and D. L. Lin Phys. Rev. B 56, R12752 (1997)
    [143] Q. F. Sun and T. H. Lin Phys. Rev. B 56, 3591 (1997)
    [144] Q. F. Sun, J. Wang and T. H. Lin Phys. Rev. B 58, 13007 (1998)
    [145] Q. F. Sun, H. Guo and J. Wang Phys. Rev. B 65, 075315 (2002)
    [146] Z. S. Ma, J. R Shi and X. C. Xie Phys. Rev. B 62, 15352 (2000)
    [147] A. P. Jauho and N. S. Wingreen Phys. Rev. B 58, 9619 (1998)
    [148] T. Kwapiski Phys. Rev. B 69, 153303 (2004)
    [149] C. K. Lui, B. G. Wang and J. Wang Phys. Rev. B 70, 205316 (2004)
    [150] Z. G. Zhu, G. Su, Q. R. Zheng and B. Jin Phys. Rev. B 70, 174403 (2004)
    [151] S. Kohler, J. Lehmann and P. Hanggi Phys. Rep. 406, 379 (2005)
    [152] L. Arrachea and M. Moskalets Phys. Rev. B 74, 245322 (2006)
    [153] M. H. Pedersen and M. Buttiker Phys. Rev. B 58, 12993 (1998)
    [154] R A. Orellana and M. Pacheco Phys. Rev. B 75, 115427 (2007)
    [155] D. A. Ryndyk and J. Keller Phys. Rev. B 71, 073305 (2005)
    [156] U. Lundin and R. H. McKenzie Phys. Rev. B 66, 075303 (2002).
    [157] J. X. Zhu andA. V. Balatsky Phys. Rev. B 67, 165326 (2003).
    [158] A. Zazunov, D. Feinberg and T. Martin Phys. Rev. B 73, 115405 (2006)
    [159] M. Galperin, M. A. Ratner and A. Nitzan J. Phys.: Condensed Matter 19, 103201 (2007)
    [165] P. Pals and A. MacKinnon J. Phys.: Condens. Matter 8, 5401 (1996)
    [161] Y. Meir, N. S. Wingreen, and P. A. Lee Phys. Rev. Lett. 66, 3048 (1991)
    [162] P. Zhang, Q. K. Xue, Y. P. Wang and X. C. Xie Phys. Rev. Lett. 89, 286803 (2002)
    [163] P. Zhang, Q. K. Xue and X. C. Xie Phys. Rev. Lett. 91, 196602 (2003)
    [164] C. Niu, D. L. Lin and T. H. LinJ. Phys.:CondenS. Matter 11, 1511 (199.9)
    [165] P. Pals and A. MacKinnon J. Phys.:Condens. Matter 8, 5401 (1996)
    [166] R. Swirkowicz, J. Barnas and M. Wilczyfiski Phys. Rev. B 68, 195318 (2003)
    [167] K. Kang and B. I. Min Phys. Rev. B 52, 10689 (1995)
    [168] P. Coleman Phys. Rev. B 29, 3035 (1984).
    [169] D.M. Newns and N. Read Adv. Phys. 36, 799 (1987)
    [170] A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism Cambridge University Press, Cambridge,(1993)
    [171] A. Georges and Y. Meir, Phys. Rev. Lett. 82, 3508 (1999)
    [172] P. A. Orellana, G.A. Lara, and Enrique V. Anda, Phys. Rev. B 65, 155317 (2002)
    [173] J. Martinek, Y. Utsumi, H. Imamura, J. Barnas, S. Maekawa, S. Maekawa, J. Konig and G. Schon Phys. Rev. Lett. 91, 127203 (2003)
    [174] J. Schwinger J. Math. Phys 2, 407 (1961)
    [175] G. D. Mahan Many-perticle Physics, 2nd ed. (Plenum Press, New York, 1990)
    [176] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)
    [177] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964)[Sov. Phys. JETP 20, 1018 (1965)]
    [178] D.C. Langreth, in Linear and Nonlinear Electron Transport in Solids, Vol. 17 of Nato Advanced Study Institute, Series B: Physics, edited by J.T. Devreese and V.E. Van Doren (Plenum, New York, 1976).
    [179] J. Rammer and H. Smith, Rev. Mod. Phys. 58,323 (1986)
    [180] A. P. Jauho, Solid State Electron. 32, 1265 (1989)
    [181] Y. Meir and N. S. Wingreen Phys. Rev. Lett. 68, 2512 (1992)
    [182] Molecular Electronics: Science and Technology, edited by A. Aviram and M. Ratner[Ann, N. Y. Acad. Sci. 852, (1998).
    [183] V. Langlais, R. R. Schlittler, H. Tang, A. Gourdon, C. Joachim and J.K. Gimzewski Phys. Rev. Lett. 83, 2809 (1999)
    [184] R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin and R. Reifenberger Science 272, 1323 (1996)
    [185] C. Kergueris, J. P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga and C. Joachim Phys. Rev. B 59, 12505 (1999)
    [186] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor and H. V. Lhneysen Phys. Rev. Lett. 88, 176804 (2002)
    [187] J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price and J. M. Tour Appl. Phys. Lett. 77, 1224 (2000)
    [188] R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. van Hemert and J. M. van Ruitenbeek Nature (London) 419, 906 (2002)
    [189] M. Paulsson and S. Stafstr6m, Phys. Rev. B 64, 035416 (2001)
    [190] E. G. Ernberly and G. Kirczenow, Phys. Rev. B 62, 10451 (2000)
    [191] H. Chen, J. Q. Lu, J. Wu, R. Note, H. Mizuseki and Y. Kawazoe Phys. Rev. B 67, 113408 (2003)
    [192] F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki and Y. Kawazoe Phys. Rev. B 72, 155408 (2005)
    [193] Z. Z. Chen, R. Lu and B. F. Zhu Phys. Rev. B 71, 165324 (2006)
    [194] X. Li, H. Chert and S. X. Zhou Phys. Rev. B 52, 12202 (1995)
    [195] D. M. T. Kuo and Y. C. Chang Phys. Rev. B 66, 085311 (2002)
    [196] P. S. Comaglia, H. Ness and D. R. Grempel Phys. Rev. Lett. 93, 147201 (2004)
    [197] L. Yeyati, A. Martin-Rodero and F. Flores Phys. Rev. Lett. 71, 2991 (1993)
    [198] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos and P. L. McEuen Nature (London) 407, 57 (2000)
    [199] G. Platero and R. Aguado, Phys. Rep. 395, 1 (2004), and references therein
    [200] A. S. Alexandrov and A. M. Bratkovsky Phys. Rev. B 67, 235312 (2003)
    [201] A. Mitra, I. Aleiner and A. J. Millis Phys. Rev. B 69, 245302 (2004)
    [202] B. Dong, H. L. Cui and X. L. Lei Phys. Rev. B 69, 205315 (2004)
    [203] H. Bruus and K. Flenserg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press Oxford, 2004)
    [204] B. Kubala and J. Konig Phys. Rev. B 65, 245301 (2002)
    [205] M. L. Ladran de Guevara, F. Claro and P. A. OrelIana Phys. Rev. B 67 195335 (2003)
    [206] F. Chi and S. S. Li J. Appl. Phys. 97 123704 (2005)
    [207] S. Y. Cho, R. H. McKenzie, K. C. Kang and C. K. Kim J. Phys.: Condens. Matter 15, 1147 (2003)
    [208] S. Y. Cho and R. H. McKenzie Phys. Rev. B 71, 045317 (2005)
    [209] T. Kubo, Y. Tokura, T. Hatano and S. Tarucha cond-mat/0602539 (unpubished) (2006)
    [210] K. Kobayashi, H. Aikawa, S. Katsumoto and Y. Iye Phys. Rev. Lett. 88, 256806 (2002)
    [211] B. R. Bulka and T. Kostyrko Phys. Rev. B 70, 205333 (2004)
    [212] V. Meden and F. Marquardt Phys. Rev. Lett. 96, 146801 (2006)
    [213] D. M. T. Kuo and P. W. Li Jpn. J. Appl. Phys. 4S, 2881 (2006)
    [214] H. Z. Lu, R. Lu and B. F. Zhu J. Phys.: Condens. Matter 18, 8961 (2006)
    [215] D. Loss and E. V. Sukhorukov Phys. Rev. Lett. 84, 1035 (2000)
    [216] M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern and A. Forchel Science 291, 7451 (2001)
    [217] T. Fujisawa, T. Hayashi and Y. Hirayama J. Vac. Sci. Technol. B 22, 2053 (2004)
    [218] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama Phys. Rev. Lett. 91, 226804 (2003)
    [219] C. A. Stafford and N. S. Wingreen Phys. Rev. Lett. 76, 1916 (1996)
    [220] L. G. Mourokh and A. Y. Smirnov Phys. Rev. B 72, 033310 (2005)
    [221] Q. F. Sun and H. Guo Phys. Rev. B 66, 155308 (2002)
    [222] H. Bruus and K. Flenserg 2004 Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford)
    [223] H. Haug and A. P. Jauho 1996 Quantum Kinetics in Transport and Optics of Semiconductors, (Spinger-Verlag, Berlin)
    [224] W. Rudzinski, J. Barnas, R. Swirkowicz and M. Wilczynski Phys. Rev. B 71, 205307 (2005)
    [225] V. Kashcheyevs, A. Schiller, A. Aharony and O. Entin-Wohlman Phys. Rev. B 75, 115313 (2007)
    [226] B. H. Wu and J. C. Cao J. Phys.: Condens. Matter 16, 8285 (2004)
    [227] U. Fano Phys. Rev. 124, 1866 (1961)
    [228] M. L. Ladron de Guevara and P. A. Orellana Phys. Rev. B 73, 205303 (2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700