复杂网络上的同步及趋同性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,我们探讨了复杂网络模型的两种动力学行为:同步和趋同性。
     第一类是同步问题,我们在前人研究的基础上,主要研究了线性耦合的复杂网络上的几类同步问题:首先,我们研究由右端非Lipschitz甚至不连续的常微分方程所描述的动力系统通过线性耦合构成的复杂网络上的同步问题。结合了Fillipov关于右端不连续的微分方程理论和传统的同步分析的手段,我们给出了在此类复杂网络上实现完全同步的一个充分条件。如果把连续函数看成是不连续函数的特例,则我们的结果推广了前人关于满足Lipschitz条件或者QUAD条件的复杂网络上的同步分析的结果,使之可以应用到更多的网络上去。同时,以前的关于Lipschitz或者QUAD的条件也作为特例包含于我们的条件之中。其次,我们研究了线性耦合的复杂网络上的分群同步问题。在我们所研究的网络里,同一群内的节点具有相同的动力学性质,而不同的群之间的动力学方程则不同。在这一框架下,我们分别研究了连续时间和离散时间的网络模型,并给出了网络实现分群同步的充要条件。同时,我们还分别给出了通过自适应控制在这两类网络中实现分群同步的方案。最后,我们研究了动态结构网络上的完全同步问题。也就是,网络的耦合结构是随时间而变化的,我们首先给出了在一般情形下实现完全同步的一个充分条件。然后,我们又讨论了两种具体的随机切换的耦合结构:独立同分布过程和Markov过程。
     第二类是趋同性问题。这是一类与同步问题密切关联的问题。首先,我们研究了具有随机切换的拓扑结构的加权网络上的趋同性问题。在这一框架下,我们也主要做了两方面的工作:一是在任意权重的复杂网络上的趋同性。这意味着描述网络结构的拓扑图上可以出现负权重的边,这可以用来刻画网络中两种相互竞争的倾向。我们给出了在这一情形下具有一般随机切换结构的网络实现趋同的充分条件。二是在网络的权重为非负的情况下,我们仍然假定网络的结构切换为一般的随机过程,不同的是这次我们用了一个适应过程来刻画它。在这一框架下,我们以条件期望的形式给出了网络实现趋同的充分条件。在这两种情形下,我们的研究都包含了离散时间网络和连续时间网络。并且我们都给出了一般理论结果在切换过程为独立同分布和Markov链的情形下的具体推论。其次,我们还研究了网络在不连续的趋同性协议下的趋同性问题。我们也是同时研究了固定网络结构和切换网络结构。在固定网络结构的情形下,我们给出了网络实现趋同性的一个充要条件。而在网络结构随机切换的情形下,我们则给出了网络实现几乎必然趋同性的一个充分条件。
In this dissertation, we mainly discuss two aspects of problems concerning the dynamics in complex networks. One is synchronization and the other is consensus.
     In the part of synchronization analysis, we investigate the following problems:
     ·Complete synchronization. We investigate the complete synchronization in complex networks of linearly coupled dynamical systems described by dif-ferential equations with non-Lipschitz or even discontinuous righthand sides; By integrating the Fillipov theory of differential equations with discontinuous righthand sides and the classical synchronization analysis as the basic tool, we give some sufficient conditions for complete synchronization of such net-works. These conditions can be seen as a generalization of previous results on synchronization of complex networks of linearly coupled dynamical systems described by differential equations with continuous righthand sides.
     ·Cluster synchronization. We investigate cluster synchronization of lin-early coupled nonidentical dynamical systems. In such networks, the nodes of the complex networks are divided into serval clusters. The nodes in the same cluster have the same dynamical properties, while different clusters have distinguishable nodes. Under this framework, we investigate the cluster syn-chronization in both discrete-time and continuous-time network models. In both cases, we provide the sufficient and necessary conditions for the cluster synchronization of the networks. Furthermore, we propose an adaptive control scheme to realize cluster synchronization in these networks.
     ·Synchronization under time-varying coupling We investigate complete synchronization in networks with time-varying coupling. First, we give a suf-ficient condition for a class of such networks to achieve complete synchroniza-tion. Then, we discuss two special stochastic switching processes:independent and identically distributed process and Markov process. In both cases, we have give sufficient conditions for the network to achieve complete synchronization almost surely.
     In the part of consensus analysis, we investigate the following consensus prob-lems in networks of multiagents:
     ·Consensus in networks with cooperation and competition. It means that the underlying graph topologies can have both positive and negative weights, which can be used to describe cooperative and competitive trends in the networks. We give sufficient conditions for almost sure consensus in both discrete-time and continuous-time network models with general stochastically switching topologies. And the results are applied to the switching topologies of independent and identically distributed process and Markov chains.
     ·Consensus in networks with adapted switching processes. When the weights are nonnegative, we use an adapted process to describe the topology switching process. Under this framework, we provide sufficient conditions for almost sure consensus and moment consensus, called Lp consensus, which is the first time to be introduced and is equivalent to almost sure consensus in our case. The conditions are in terms of conditional expectations of the union of the graphs with a fixed length and include both discrete-time and continuous-time network models. And the results apply to the switching topologies of independent and identically distributed process and Markov chains.
引文
[1]Strogatz, S. H. Exploring complex networks [J]. Nature,2001,410(6825):268-276.
    [2]VanWiggeren, G. D., and Roy, P. Communication with laser [J]. Science,1998, 279(20):1198-1200.
    [3]Vieria, M. de S. Chaos and synchronized chaos in an earthquake model [J]. Phys. Rev. Lett.,1999,82(1):201-204.
    [4]Hoppensteadt, F. C., and Izhikevich, E.M. Pattern recognition via synchroniza-tion in phase-locked loop neural networks [J]. IEEE Trans. Neural Networks, 2000,11:734-738.
    [5]Mirollo, R., and Strogatz, S. Synchronization of pulsed-coupled biological os-cillators [J]. SIAM Journal on Applied Mathematics,1990,50(6):1645-1662.
    [6]Collins, J. J., and Stewart, I. Coupled nonlinear oscillators and the symetries of animal gaits [J]. Science,1993,3(3):349-392.
    [7]Honerkamp, J. The heat as a system of coupled nonlinear oscillators [J]. Journal of Mathematical Biology,1983,19:69-88.
    [8]Torre, V. A. theory of synchronization of two heart pacemaker cells [J]. Journal of Theoretical Biology,1976,61:55-71.
    [9]Netoff, T. I., and Schiff, S.J. Decreased Neuronal Synchronization During Ex-perimental Seizures [J]. Journal of Neuroscience,2002,22(16):7297-7307.
    [10]Kuramoto, Y. Chemical Oscillations, Waves and Turbulence [M]. Berlin:Springer,1984.
    [11]Ohtsubop, J. Feedback Induced Instability and Chaos in Semiconductor Lasers and Their Applications [J]. Optical Review,1999,6(1):1-15.
    [12]Duane, G. S., Webster, P. J., and Weiss, J. B. Go-occurrence of Northern and Southern Hemisphere blocks as partially synchronized chaos [J]. Journal of the Atmospheric Sciences,1999,56(24):4183-4205.
    [13]Liberzon, D., and Morse, A. S. Basic problems in stability and design of switched systems [J]. IEEE Control Systems Magazine,1999,19(5):59-70.
    [14]Liberzon, D. Switched systems (Control engineering series) [M]. Boston: Birkhauser,2005.
    [15]Chatterjee, D., and Liberzon, D. Stability analysis and stabilization of randomly switched systems [C]. Proceedings of the 45th IEEE conference on decision and control,2006,1-14:1217-1222.
    [16]Zhao, J., and Hill, D. J. Passivity and stability of switched systems:A multiple storage function method [J]. Systems& Control Letters,2008,57:158-164.
    [17]Petreczky, M. Realization theory for linear switched systems:Formal power se-ries approach [J]. Systems& Control Letters,2007,56:588-595.
    [18]Lu, W. L., and Chen, T. P. Synchronization of coupled connected neural net-works with delays [J]. IEEE Trans. Circuits Syst. Ⅰ,2004,51(12):2491-2503.
    [19]Lu, W. L., and Chen, T. P. New approach to synchronization analysis of linearly coupled ordinary differential systems [J]. Physica D,2006,213:214-230.
    [20]Chen, M. Y. Chaos synchronization in complex networks [J]. IEEE Trans. Cir-cuits Syst. Ⅰ,2008,55(5):1335-1346.
    [21]Aubin, J. P., and Frankowska, H. Set-valued analysis [M]. Boston:Birkhauser, 1990.
    [22]Filippov, A. F. Differential equations with discontinuous right-hand sides. Mathematics and its applications(Soviet Series) [M]. Boston:Kluwer Academic Publishers,1988.
    [23]Pecora, L. M., and Carroll, T. L. Synchronization in chaotic systems [J]. Phys. Rev. Lett.,1990,64(8):821-825.
    [24]Wu, C. W., and Chua, L.O. Synchronization in an array of linearly coupled dynamical systems [J]. IEEE Trans. Circuits Syst.-Ⅰ,1995,42(8):430-447.
    [25]Wu, C. W. Synchronization in coupled arrays of chaotic oscillators with nonre-ciprocal coupling [J]. IEEE Trans. Circuits Syst. Ⅰ,2003,50(2):294-297.
    [26]Wu, C. W. Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling [J]. IEEE Trans. Circuits Syst.Ⅱ,2005, 52(5):282-286.
    [27]Belykh, I. V., Belykh, V. N., and Hasler, M. Connection graph stability method for synchronized coupled chaotic systems [J]. Physica D,2004,195(1-2):159-187.
    [28]Belykh, I. V., Belykh, V. N., and Hasler, M. Blinking model and synchroniza-tion in small-world with a time-varying coupling [J]. Physica D,2004,195(1-2): 188-206.
    [29]Belykh, I. V., Belykh, V. N., and Hasler, M. Synchronization in asymmetrically coupled networks with node balance [J]. Chaos,2006,16:015102.
    [30]Yang, T., and Chua, L. Impulsive control and synchronization of nonlinear dy-namical systems and application to secure communication [J]. Int. J. Bifurcation and Chaos,1997,7:645-664.
    [31]Horn, P. A., and Johnson, C. R. Matrix Analysis [M]. New York:Cambridge University Press,1991.
    [32]Clarke, F. H. Optimization and Nonsmooth Analysis [M]. New York:Wiley and Sons,1983.
    [33]Wang, W., and Slotine, J. J. E. On partial contraction analysis for coupled nonlinear oscillators [J]. Biological Cybernetics,2005,92(1):38-53.
    [34]Pavlov, A. V., van de Wouw, N., and Nijmeijer, H. On convergence properties of piecewise affine systems [J]. International Journal of Control,2007,80(8): 1233-1247.
    [35]van de Wouw, N., and Pavlov, A. Tracking and synchronisation for a class of PWA systems [J]. Automatica,2008,44(11):2909-2915.
    [36]Porfiri, M., Stilwell, D. J., and Bollt, E. M. Synchronization in random weighted directed networks [J]. IEEE Trans. Circuits Syst. Ⅰ,2008,55(10):3170-3177.
    [37]Russo, G., di Bernardo, M. Contraction theory and master stability function: linking two approaches to study synchronization of complex networks [J]. IEEE Trans. Circuits Syst. Ⅱ,2009,56(2):177-181.
    [38]Duan, Z. S., and Chen, G. R. Global robust stability and synchronization of networks with Lorenz-Type nodes [J]. IEEE Trans. Circuits Syst. Ⅱ,2009,56(8): 679-683.
    [39]Huygens(Hugenii), C. Horoloquim oscilatorium [M]. Parisiis:Aqud F. Muguet., 1673.
    [40]Pikovsky, A., Rosenblum, M., and Kurths, J. Synchronization:a universal concept in nonlinear sciences [M]. Cambridge:Press Syndicate of the University of Cambridge,2001.
    [41]Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U. Complex networks:structure and dynamics [J]. Phys. Rep.,2006,424:175-308.
    [42]Wang, X. F., and Chen, G. R. Complex networks:small-world, scale-free and beyond [J]. IEEE Circ. Syst. Mag.,2003,3(1):6-20.
    [43]Strogatz, S. H., and Stewart, I. Coupled oscillators and biological synchroniza-tion [J]. Sci. Amer.,1993,269(6):102-109.
    [44]Gray, C. M. Synchronous oscillations in neuronal systems:Mechanisms and functions [J]. J. Comput. Neurosci.,1994,1:11-38.
    [45]Glass, L. Synchronization and rhythmic processes in physiology [J]. Nature, 2001,410(6825):277-284.
    [46]Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., and Zhou, C. S. The synchronization of chaotic systems [J]. Phys. Rep.,2002,366:1-101.
    [47]Ashwin, P., Buescu, J., and Stewart, I. From attractor to chaotic saddle:A tale of transverse instability [J]. Nonlinearity,1996,9:703-737.
    [48]Jost, J., Joy, M. P. Spectral properties and synchronization in coupled map lattices [J]. Phys. Rev. E,2001,65(1):016201.
    [49]Wang, X. F., and Chen, G. R. Synchronization in scale-free dynamical networks: Robustness and fragility [J]. IEEE Trans. Circ. Syst.-1,2002,49(1):54-62.
    [50]Rangarajan, G., and Ding M. Stability of synchronized chaos in coupled dy-namical systems [J]. Phys. Lett. A,2002,296(4-5):204-209.
    [51]Chen, Y. H., Rangarajan, G., and Ding M. General stability analysis of syn-chronized dynamics in coupled systems [J]. Phys. Rev. E.,2003,67(2):026209.
    [52]Wu, C. W. Synchronization in networks of nonlinear dynamical systems coupled via a directed graph [J]. Nonlinearity,2005,18(3):1057-1064.
    [53]Schnitzler, A., and Gross, J. Normal and pathological oscillatory communica-tion in the brain [J]. Nat. Rev. Neurosci,2005,6(4):285-296.
    [54]Chandler, P. R., Patcher, M., and Rasmussen, S. UAV cooperative control [C]. Proceedings of the American Control Society,2001,1-6:50-55.
    [55]Passino, K. M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control Syst. Mag.,2002,22(3):52-67.
    [56]Finke, J., Passino, K., and Sparks, A. G. Stable task load balancing strategies for cooperative control of networked autonomous air vehicles [J]. IEEE Control Syst. Mag.,2006,14(5):789-803.
    [57]Blasius, B., Huppert, A., and Stone, L. Complex dynamics and phase synchro-nization in spatially extended ecological systems [J]. Nature,1999,399(6734): 354-359.
    [58]Montbrio, E., Kurths, J., and Blasius, B. Synchronization of two interacting populations of oscillators [J]. Phy. Rev. E,2004,70(5):056125.
    [59]Rulkov, N. F. Images of synchronized chaos:Experiments with circuits [J]. Chaos,1996,6(3):262-279.
    [60]Stone, L., Olinky, R., Blasius, B., Huppert, A., and Cazelles, B. Complex synchronization phenomena in ecological systems [C]. Proceedings of the Sixth Experimental Chaos Conference,2002,662:476-487.
    [61]Jones, E., Browning, B., Dias, M. B., Argall, B., Veloso, M., and Stentz, A. Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks [C]. Proceedings IEEE International Conference on Robotics and Automa-tion, Orlando,2006,1-10:570-575.
    [62]Hwang, K., Tan, S., and Chen, C. Cooperative strategy based on adaptive Q-learning for robot soccer systems [J]. IEEE Trans. Fuzzy Syst.,2004,12(4): 569-576.
    [63]Belykh, V. N., Belykh, I. V., and Hasler, M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems [J]. Phy. Rev. E,2000,62(5):6332-6345.
    [64]Belykh, V. N., Belykh, I. V., and Mosekilde, E. Cluster synchronization modes in an ensemble of coupled chaotic oscillators [J]. Phys. Rev. E,2001,63(3): 036216.
    [65]Ma, Z., Liu, Z., and Zhang, G. A new method to realize cluster synchronization in connected chaotic networks [J]. Chaos,2006,16(2):023103.
    [66]Wu, W., and Chen, T. P. Partial synchronization in linearly and symmetrically coupled ordinary differential systems [J]. Physica D,2009,238(4):355-364.
    [67]Wu, W., Zhou, W. J., and Chen, T. P. Cluster Synchronization of Linearly Coupled Complex Networks Under Pinning Control [J]. IEEE T. Circuits Syst.-Ⅰ,2008,56(4):829-839.
    [68]Jalan, S., and Amritkar, R. E. Self-organized and driven phase synchronization in coupled maps [J]. Phys. Rev. Lett.,2003,90(1):014101.
    [69]Jalan, S., Amritkar, R. E., and Hu, C. K. Synchronized clusters in coupled map networks. Ⅰ. Numerical studies [J]. Phys. Rev. E,2005,72(1):016211
    [70]Jalan, S., Amritkar, R. E., and Hu, C.-K. Synchronized clusters in coupled map networks. Ⅱ. Stability analysis [J]. Phys. Rev. E,2005,72(1):016212.
    [71]Sorrentino, F., and Ott, E. Network synchronization of groups [J]. Phys. Rev. E,2007,76(5):056114.
    [72]Chen, L., and Lu, J. Cluster synchronization in a complex dynamical network with two nonidentical clusters [J]. J. Syst. Sci. Complexity,2008,20(1):21-33.
    [73]Belykh, I. V., Belykh, V. N., and Hasler, M. Persistent clusters in lattices of coupled nonidentical chaotic systems [J]. Chaos,2003,13(1):165-178.
    [74]Pham, Q. C., and Slotine, J. J. Stable concurrent synchronization in dynamic system networks [J]. Neural Networks,2007,20(1):62-77.
    [75]Lohmiller, W., and Slotine, J. J. On contraction analysis for non-linear systems [J]. Automatica,1998,34(6):683-696.
    [76]Chua, L. O. Special issue on nonlinear waves, patterns, and spatiotemporal chaos in dynamical arrays [J]. IEEE Trans. Circ. Syst.,1995,42.
    [77]Chavez, M., Hwang, D. U., Hentschel, H. G. E., and Boocaletti, S. Synchro-nization is enhanced in weighted complex networks [J]. Phys. Rev. Lett.,2005, 94(21):218701.
    [78]Zhou, C., and Kurths, J. Dynamical weights and enhanced synchronization in adaptive complex networks [J]. Phys. Rev. Lett.,2006,96(16):164102.
    [79]Boccaletti, S., Hwang, D. U., Chavez, M., Amann, A., Kurths, J., and Pecora, L. M. Synchronization in dynamical networks:Evolution along commutative graphs [J]. Phys. Rev. E,2006,74(1):016102.
    [80]Zhou, C. S., Motter, A. E., and Kurths, J. Universality in the synchronization of weighted random networks [J]. Phys. Rev. Lett.,2006,96(3):034101.
    [81]Liu, X. W., Chen, T.P. Boundedness and synchronization of y-coupled Lorenz systems with or without controllers [J]. Physica D,2008,237(5):630-639.
    [82]Lu, J., and Cao, J. Adaptive complete synchronization of two identical or differ-ent chaotic (hyperchaotic) systems with fully unknown parameters [J]. Chaos, 2005,15(4):043901.
    [83]Huang, D. Simple adaptive-feedback controller for identical chaos synchroniza-tion [J]. Phys. Rev. E,2005,71(3):037203.
    [84]Zhou, J., Lu, J. A., and Lu, J. Adaptive synchronization of an uncertain com-plex dynamical network [J]. IEEE Trans. Automatic Control,2006,51(4):652-656.
    [85]Lu, W. Adaptive dynamical networks via neighborhood information:Synchro-nization and pinning control [J]. Chaos,2007,17(2):023122.
    [86]Barabasi, A. L., and Albert, R. Emergence of scaling in random networks [J]. Science,1999,286:509-512.
    [87]Kocarev, L., Janjic, P., Parlitz, U., and Stojanovski, T. Controlling spatio-temporal chaos in coupled oscillators by sporadic driving [J]. Chaos, Solitons & Fractals,1998,9(1/2):283-293.
    [88]Shibata T., and Kaneko, K. Coupled mab gas:structures formation and dy-namics of interacting mobile elements with internal dynamics [J]. Physica D: Nonlinear Phenomena,2003,181:197-214.
    [89]Lu, J., Yu X., and Chen, G. Chaos synchronization of general complex dynam-ical networks [J]. Physica A:Statistical Mechanics and its Applications,2004, 334:281-302.
    [90]Lu J., and Chen, G. A time-varying complex dynamical network model and its controlled synchronization criteria [J]. IEEE Transactions on Automatic Control,2005,50(6):841-846.
    [91]Papachristodoulou, A., and Jadbabaie, A. D. Synchronization in oscilator net-works:Switching topologies and nonhomogeneous delays [C]. Proceedings of the 44th IEEE Conference on Decision and Control, European Control Confer-ence,2005,5692-5697.
    [92]Skufca, J. D., and Bollt, E. M. Communication and synchronization in discon-nected networks with dynamic topology:Moving neighborhood networks [J]. Mathematical Biosciences and Engineering,2004,1(2):347-359.
    [93]Stilwell, D. J., Bollt, E. M., and Roberson, D. G. Sufficient conditions for fast switching synchronization in time varying network topologies [J]. SIAM Journal on Applied Dynamical Systems,2006,5(1):140-156.
    [94]Olfati-Saber, R., Fax, J. A., and Murray, R. M. Consensus and cooperation in networked multi-agent systems [C]. Proc. IEEE,2007,95(1):215-233.
    [95]Olfati-Saber, R., and Murray, R. M. Consensus protocols for networks of dy-namic agents [C]. Proc.2003 Am. Control Conf.,2003,951-956.
    [96]Olfati-Saber, R., and Murray, R. M. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Trans. Autom. Control, 2004,49(9):1520-1533.
    [97]Ren, W., Beard, R. W., and McLain, T. W. Coordination variables and consen-sus building in multiple vehicle systems [C] Cooperative Control. ser. Lecture Notes in Control and Information Sciences, V. Kumar, N.E. Leonard, and A.S. Morse, Eds. New York:Springer-Verlag,2004,309:171-188.
    [98]Ren, W., and Beard, R. W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies [J]. IEEE Trans. Autom. Control, 2005,50(5):655-661.
    [99]Fax, J. A., and Murray, R. M. Information flow and cooperative control of vehichel formations [J]. IEEE Trans. Autom. Control,2004,49(9):1465-1476.
    [100]Jadbabaie, A., Lin, J., and Morse, A. S. Coordination of groups of mobile au-tonomous agents using nearest neighbour rules [J]. IEEE Trans. Autom. Con-trol,2003,49(6):988-1001.
    [101]Moreau, L. Stability of multi-agent systems with time-dependent communica-tion links [J]. IEEE Trans. Autom. Control,2005,50(2):169-182.
    [102]Lin, Z., Broucke, M., and Francis, B. Local control strategies for groups of mobile autonomous agents [J]. IEEE Trans. Autom. Control,2005,49(4):169-182.
    [103]Xiao, L., and Boyd, S. Fast linear iterations for distributed averaging [J]. Syst. Control Lett.,2004,53:65-78.
    [104]Porfiri, M., and Stilwell, J. D. Consensus Seeking Over Random Weighted Directed Graphs [J]. IEEE Trans. Autom. Control,2007,52(9):1767-1773.
    [105]Durrett, R. Probability:Theory and Examples,3rd ed. [M]. Belmont, CA: Duxbury Press,2005.
    [106]Salehi, A. T. and Jadbabaie, A. Necessary and Sufficient Conditions for Con-sensus over Random Independent and Identically Distributed Switching Graphs [J]. Proceedings of the 46th IEEE Conference on Decision and Control,2007, 4209-4214.
    [107]Breiman, L. The Strong Law of Large Numbers for a Class of Markov Chains [J]. Annals of Mathematical Statistics,1960,31(3):801-803.
    [108]Fischer, M. J., Moran, S., Rudich, S., and Taubenfeld G. The wake up problem [J]. SIAM J. Comput.,1996,25:1332-1357.
    [109]Dutta, P., Guerraoui, R., and Pochon B. The Time-Complexity of Local De-cision in Distributed Agreement [J]. SIAM J. Comput.,2007,37:722-756.
    [110]Moses Y., and Rajsbaum S. A layered analysis of consensus [J]. SIAM J. Comput.,2002,31:989-1021.
    [111]Reynolds C. W. Flocks, herds, and schools:a distributed behavioral model [J]. Computer Graphics,1987,21:25-34.
    [112]Vicsek, T., Czirook, A., Ben-Jacob, E., Cohen, O. and Shochet I. Novel type of phase transition in a system of self-driven particles [J]. Phys. Rev. Lett. 1995,75:1226-1229.
    [113]Toner J., and Tu Y. Flocks, herds, and schools:a quantitative theory of flocking [J]. Phys. Rev. E,1998,58:4828-4858.
    [114]Smith, S. L., Broucke, M. E., and Francis B. A. A hierarchical cyclic pursuit scheme for vehicle networks [J]. Automatica,2005,41:1045-1053.
    [115]Fang, L., Antsaklis, P. J., and Tzimas A. Asynchronous consensus protocols: Preliminary results, simulations and open questions [C]. Proceeding of the 44th IEEE Conf. Descion and Control,2005,2194-2199.
    [116]Olfati-Saber R. Distributed kalman filter with embedded consensus filters [C]. IEEE Conference on Decision and Control,2005,63-70.
    [117]Cortes J., and Bullo F. Coordination and geometric optimization via dis-tributed dynamical systems [J]. SIAM J. Contr. Optim.,2006,44:1543-1574.
    [118]Cortes J. Distributed algorithms for reaching consensus on general functions [J]. Automatica,2008,44:726-737.
    [119]Fang Y. G. Stability analysis of linear control systems with uncertain pa-rameters [D]. Dept. Syst., Control, Ind. Eng., Case Western Reserve Univ. Cleveland, OH,1994.
    [120]Hatano Y., and Mesbahi M. Agreement over random networks [J]. IEEE Trans. Automat. Contr.,2005,50:1867-1872.
    [121]Wu C. W. Synchronization and convergence of linear dynamics in random directed networks [J]. IEEE Trans. Automat. Control,2006,51:1207-1210.
    [122]Cogburn R. On products of random stochastic matrices [C]. Random matrices and their applications, American Mathematical Society,1986,50:199-213.
    [123]Hajnal J. Weak ergodicity in non-homogeneous Markov chains [J]. Proc. Cam-bridge Philos. Soc.,1958,54:233-246.
    [124]Paz, A., and Reichaw M. Ergodic theorems for sequences of infinite stochastic matrices [J]. Proc. Cambridge Philos. Soc.,1967,63:777-784.
    [125]Wolfowitz J. Products of indecomoposable, aperiodic, stochastic matrices [J]. Proceedings of AMS,1963,14:733-737.
    [126]Chatterjee, S., and Seneta E. Towards consensus:Some convergence theorems on repeated averaging [J]. J. Appl. Prob.,1977,14:89-97.
    [127]Moreau L. Stability of continuous-time distributed consensus algorithms [C]. The 43rd IEEE Conference on Decision and Control,2004,3998-4002.
    [128]Salehi, A. T., and Jadbabaie A. Consensus over ergodic stationary graph pro-cesses [J]. IEEE Transactions on Automatic Control,2010,55(1):225-230.
    [129]Cao, M., Morse, A. S., and Anderson B. D. O. Reaching a consensus in a dynamically changing environment:convergence rates, measurement delays and asynchronous events [J]. SIAM J. Contr. Optim.,2008,41:601-623.
    [130]Cao, M., Morse, A. S., and Anderson B. D. O. Reaching a consensus in a dynamically changing environment:a graphical approach [J]. SIAM J. Contr. Optim.,2008,47:575-600.
    [131]Fagnani F., and Zampieri S. Randomized consensus algorithms over large scale networks [J]. IEEE Journal on Selected Areas in Communitcations,2008,26: 634-649.
    [132]Liu B., and Chen T. P. Consensus in networks of multi-agents with cooperation and competition via stochastically switching topologies [J]. IEEE Trans. Neural Networks,2008,19:1967-1973.
    [133]Matei, I., Martins, N., and Baras J. S. Almost sure convergence to consensus in Markovian random graphs [C]. Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico,2008,3535-3540.
    [134]Zhou, J., and Wang, Q. Convergence speed in distributed consensus over dy-namically switching random networks [J]. Automatica,2009,45:1455-1461.
    [135]Kar, S., and Moura, J. M. F. Sensor networks with random links:topology design for distributed consensus, http://arxiv.org/abs/0704.0954.
    [136]Lu, W. L., Atay, F. M., and Jost, J. Consensus and synchronization in discrete-time networks of multi-agents with Markovian jump topologies and delays, preprint.
    [137]Guo, L. Stability of recursive stochastic tracking algorithms [J]. SIAM J Contr. Optim.,1994,32:1195-1225.
    [138]Guo L., and Ljung, L. Exponential stability of general tracking algorithms [J]. IEEE Trans. Automatic Control,1995,40(8):1376-1387.
    [139]Clarke, F. H. Optimization and nonsmooth analysis [M]. New York:Wiley, 1983.
    [140]Cortes, J. Finite-time convergent gradient flows with applications to network consensus [J]. Automatica,2006,42:1993-2000.
    [141]Hui, Q, Haddad, W. M., and Bhat, S.P. Semistability theory for differential inclusions with applications to consensus problems in dynamical networks with switching topology [C]. American Control Conference,2008,3981-3986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700