两种锂离子电池负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池以其高能量、安全可靠、寿命长、无污染等优点,成为目前最具有发展前途的高能二次电池。随着锂离子电池的进一步发展的需要,人们越来越多的要求可充电锂离子电池电极材料具有更高的比容量和更好的安全性,寻找和开发能够取代现有碳材料的新型负极材料成为当今研究的热点。本论文针对非碳类负极材料主要进行了两方面的初步探索研究。
     论文采用圆柱型电池对Si/C复合负极材料和石墨化碳负极材料的循环和倍率性能进行了研究,并对实际应用中存在的问题以及失效原因进行了分析。Si/C负极电池200次循环后容量维持率仅为69.5%,并且放电平台低于石墨化碳负极材料。造成其容量衰减快的主要原因为电极体积膨胀导致的电极活性物质脱落,电接触性能变差,极化增大容量损失,SEI膜被破坏,进而电解液不断的分解,界面膜增大,电阻增加,以及材料本身结构造成的插入的锂无法全部脱出,是造成容量损失是的最主要原因。
     论文对尖晶石结构的锂钛复合氧化物Li_4Ti_5O_(12)负极材料的固相合成法及材料的性能进行了研究。对不同锂源、不同培烧温度、培烧时间、有无分散剂等条件进行了实验研究,优化了最佳合成材料条件。制备的Li_4Ti_5O_(12)负极样品在1.55V(vs Li/Li+)附近有平稳的放电平台,充电电压平台略高于放电电压平台,电池首次放电容量为146mAh/g,具有稳定的循环性能,该材料结构稳定,是一种高安全长寿命的锂离子电池负极材料。
Lithium-ion batteries are most promising high power secondary batteries due to its advantages of higher energy density, more safety, longer lifetimes and no pollution. In order to satisfy the demand of Lithium-ion batteries development, it is necessary for people to find electrode material with high capacity and better safe. And it is a research topic to find new type anode material to replace traditional carbon materials. The paper is mainly focused on the preliminary study on two aspects of anode material.
     The cycle and rate performance of the cyclindrical cell with Si/C and graphite anode were studied in this paper. Also the problem occurred in application as well as the failure mechanism was analyzed. Capacity retainment was keeping 69.5% of the initial capacity after 200 cycles. And discharge platform was a bit lower than that of graphite anode. The reason of fast capacity fading mainly are the electrode active material felling off due to electrode volume swelling leading to worse electric contact that result in greater polarization and less capacity; SEI film was destroyed and followed gradually electrolyte decomposition which result in thicker interface film and greater impedance. And the main reason for the capacity loss is the Li~+ ion can not be fully deserted due to internal structure of the material.
     The solid phase synthesize method of Li_4Ti_5O_(12) and its performance was studied in this paper. The condition of different lithium resources, different calcining temperature and time, and with or without dispersing agent and so on were studied. The best synthesis experiment condition was optimized. There is steady discharging platform around 1.55V(vs Li/Li~+) of Li_4Ti_5O_(12) samples where charging platform was a bit higher than the discharging platform. The first specific discharging capacity is 146mAh/g. It exhibit steady cycle performance. The material is a higher safe and longer lifetimes lithium ion anode material.
引文
[1]. Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries, Nature, 2001,414(15): 359-367
    [2]. Armand M, et al. In material for advanced batteries. New York, 1980:145
    [3]. Bruno S. Lithium rocking chair batteries: an old concept. J. Electrichem. Soc, 1992,139(10):2776-2781
    [4]. Nagaura T., Progress in Battery and Battery Materials, 1991,10:209.
    [5]. Kang Xu. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004, 104: 4303-4417
    [6].钟俊辉,锂离子电池及其材料,电池,1996,26:91~95
    [7]. Doron A, Yair E. E, Orit C., et al. The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable "Rocking -Chair" type batteries. J. Electrochem. Soc., 1994, 141(3): 603-611
    [8]. Winter M., Besenhard J. O., Spahr M. E., et al. Insertion electrode materials for rechargeable lithium batteries, Advanced materials, 1998, 10(10): 725-751
    [9]. Koksbang R.,Barker J.,Shi H.,et al,Cathode materials for lithium rocking chair batteries,Solid state Ionics, 1996,84: 1~21
    [10]. Dahn J.R., Zheng T., Liu Y., et al., Mechanisms for Lithium Insertion in Carbonaceous Materials, Science, 1995,270:590-593
    [11]. Scrosati B., Challenge of portable power. Nature, 373 (1995) 557.
    [12]. Nohma T., Kurokauwa H., Vehara M., et al., Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries, J. Power Sources, 1995,54:522-524
    [13]. Ohzuku T., Uedo A., Nagayama M., Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells, J. Electrochem. Soc., 1993, (140): 1862-1870.
    [14]. Morales J, Pérez-Vicente C, Tirado J. L., Cation distribution and chemical deintercalation ofLi1-x Ni1+x O2. Mat Res Bull, 1990, 25:623-630.
    [15]. Moshtev R V, Zlatilova P, Manev V, et al. The LiNiO2 solid solution as a cathode material for rechargeable lithium batteries. J. Power Sources, 1995, 54: 329-333.
    [16]. Biensan P, Simon B, Pérès J P, et al. On safety of lithium-ion cells. J. Power Sources, 1999, 82:906-912.
    [17]. Arai H, Okada S, Sakurai Y, et al. Thermal behavior of Li1y NiO2 and the decomposition mechanism. Solid State Ionics, 1998, 109:295-302.
    [18]. Broussely M, Bieusan P, Simon B. Lithium insertion into host materials: the key to success for Li ion batteries. Electrochim Acta, 1999, 45:3-22.
    [19]. Vitins G., West K., Lithium Intercalation into Layered LiMnO2, J. Electrochem. Soc.,1997,144: 2587-2592.
    [20]. Jang Y. I., Huang B., Chiang Y. M., et al., Stabilization of LiMnO2 in theα-NaFeO2 Structure Type by LiAlO2 Addition, Electrochem. Solid-State Lett, 1998,1:13-16.
    [21]. Lu Z., MacNeil D. D., Dahn J. R., Layered Cathode Materials Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 for Lithium-Ion Batteries, Electrochem. Solid-State Lett, 2001,3:A191-A194
    [22]. Lu Z., Dahn J. R., Understanding the Anomalous Capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies, J. Electrochem. Soc., 2002, 149: A815-A822.
    [23]. Ohzuku T., Makimura Y., Layered Lithium Insertion Material of LiNi1/2Mn1/2O2: A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries, Chem. Lett, (2001)744-745.
    [24]. Lu Z. H., Dahn J.R., The Effect of Co Substitution for Ni on the Structure and Electrochemical Behavior of T2 and O2 Structure Li2/3[CoxNi1/3–xMn2/3]O2, J. Electrochem. Soc., 2001, 148(3): A237-A240.
    [25]. Chen Y., Wang G. X., Konstantinov K., et al., Synthesis and characterization of LiCoxMnyNi1?x?yO2 as a cathode material for secondary lithium batteries, J. Power Sources, 2003, 119-121:184-188.
    [26]. Oh S. W., Park S. H., Park C. W., et al., Structure and electrochemical properties of layered Li[Ni0.5Mn0.5]1-xCoxO2 positive material synthesized by ultrasonic spray prolysis method, Solid State Ionics, 2004,171:167-172.
    [27] Yabuuchi N., Okzuku T., Novel lithium insertion material of LiNi1/3Mn1/3Co1/3O2 for advanced lithium-ion batteries, J. Power Sources, 2003, 119-121:171-174.
    [28]. Huang B.J., Tsai Y.W., Carlier D., et al., A combined computational/experimental study on LiNi1/3Mn1/3Co1/3O2, Chem. Mater., 2003,15:3676-3682.
    [29]. J.M. Tarascon, E.Wang, F.K.Shokoohi, et al., The spinel phase of LiMn2O4 as a cathode in secondary lithium cells, J. Electrochem. Soc. 1991,138:2859-2864.
    [30]. D. Guyomand, J.M. Tarascon, Li metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization,J. Electrochem. Soc. 1992,139(4): 937-947.
    [31]. Manthilam A., Goodenough J. B., Lithium insertion into Fe2(MO4)3 frameworks: comparison of M = W with M = Mo. J. Solid State Chem ,1987 ,71 :349 - 360.
    [32]. Manthiram A., Goodenough J. B., Lithium insertion into Fe2(MO4)3 frameworks.J. Power Sources, 1989, 26(3 - 4): 403 - 408.
    [33]. Higuchi M., Katayama K., Azuma Y., et al. Synthesis of LiFePO4 cathode material by microwave processing. J. Power Sources, 2003, 119-121: 258—261.
    [34]. Streltsov V. A., Belokoneva E. L., Tsirelson V. G., et al. Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data. Acta Cryst, 1993,147: B 49.
    [35]. Garcia M. O., Alvarez-vega M., Garciaal V. F., et al. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO4 (M = Fe and Ni).Chem. Mater, 2001,13:1570-1576.
    [36]. Ravet N. Improved iron based cathode material, Abstract No. 127. Electrochemical Society Fall meeting. Honolulu, Hawaii: 1999.
    [37]. Prosini P. P., Zane D., Pasquali M., Improved electrochemical performance of a LiFePO4 based composite cathode. Electrochimica Acta, 2001, 46 (23): 3517-3523.
    [38]. Huang H., Yin S. C., Nazar L. F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem and Solid State Lett, 2001,4 (10) :A170-A172.
    [39]. Ravet N., Chouinard Y., Magnan J. F., et al. Electroactivity of natural and synthetic triphylite. J. Power Sources, 2001, 97 - 98:503-507.
    [40]. Zhaohui C., Dahn J. R., Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tapdensity. J. Electrochem Soc., 2002, 149 (9): A1184 - A1189.
    [41]. Croce F., Epifanio A. D., Hassoun J., et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem and Solid State Lett, 2002,5 (3): A47-A50.
    [42]. Chung S. Y., Blocking J, T., Chiang Y. M., Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater, 2002, 2:123-128.
    [43]. Thuckeray M., An unexpected conductor. Nature Mater, 2002, 2: 81 - 82.
    [44] Jose L. Tirado. Inorganic materials for the negative electrode of lithium-ion batteries state-of-the-art and future prospects. Materials Science and Engineering R. 2003,40:103-136
    [45].张文,龚克成,锂离子电池用碳负极材料,电池,1997, 27(3): 132-135
    [46]. Yazami R., Reynier Y. F., Mechanism of self-discharge in graphite lithium anode, Electrochim Acta, 2002, 47:1217-1233
    [47]. Zheng T., Zhong Q., Dahn J. R., High-capacity carbons prepared from phenolic resin for anodes of lithium ion batteries. J. Electrochem Soc., 1995, 142 (11): L211 - L214.
    [48]. Xue J. S., Dahn J. R., Dramatic effect of oxidation on lithium insertion incarbons made from epoxy resins. J. Electrochem Soc., 1995, 142(11): 3668-3677.
    [49]. Zheng T., Mckinnon W. R., Dahn J. R., Hysteresis during lithium insertion in hydrogen containing carbons. J. Electrochem Soc., 1996, 143(7): 2137-2145.
    [50]. Takami N., Satoh A., Ohsaki T., et al. Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis. Electrochim Acta, 1997, 42 (8): 2537-2543.
    [51]. Mabuchi A., Tokumitsu K., Fujimoto H., et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures. J. Electrochem Soc., 1995, 142 (4): 1041-1046.
    [52]. Kim C., Fujino T., Miyashita K., et al. Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads. J. Electrochem. Soc., 2000,147 (2): 1257-1264.
    [53]. Thomas W Ebbessen, Carbon nanotubes, Phys Today, 1996, 49(6): 26-32
    [54]. Wu G. T., Wang C. B., Zhang X. B., et al., Structure and Lithium Insertion Properties of Carbon Nanotubes, J. Electrochem. Soc., 1999, 146:1696-1701.
    [55]. Endo M., Kim C., Nishimura K., et al., Recent development of carbon materials for Li ion batteries, Carbon, 2000, 38(2): 183-197.
    [56]. Wang Q., Chen L. Q., Huang X. J., Anomalous Electrochemical Behavior of Multiwalled Carbon Nanotubes as Host Material for Lithium Insertion/Extraction, Electrochem.Solid-State Lett, 2002,5(9): A188-A190.
    [57]. Peled E., Menachem C., Bar T. D., et al. Improved graphite anode for lithium ion batteries. J.Electrochem Soc., 1996, 143 (1): 14-17.
    [58]. Yang Z. H., Wu H. Q., Electrochemical intercalation of lithium into carbon nanotubes, Solid State Ionics, 2001, 143: 173-180
    [59]. Frackowiak E., Gautier S., Garcher H., et al., Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, 1999, 37: 61-69
    [60] T. Brousse , O. Crosnier , X. Devaux , P. Fragnaud, Advanced oxide and metal powders for negative electrodes in lithium-ion batteries,Powder Technology ,2002,128 :124– 130
    [61] Wanuk Choi , Jeong Yong Lee , Bok Hwan Jung , Hong Sup Lim. Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries. Journal of Power Sources, 2004,136 :154-159
    [62]Basker Veeraraghavan,Anand Durairajan,Bala Haran , Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries, Journal of Electrochemical Society,2002,149(6):A675-A681
    [63] Minato Egashira, Hideyasu Takatsuji, Shigeto Okada, Jun-ichi Yamaki. Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. Journal of Power Sources, 2002,107:56-60
    [64] T. Prem Kumar , R. Ramesh, Y.Y. Lin, George Ting-Kuo Fey. Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochemistry Communications, 2004, 6:520-525
    [65] Wei Xiang Chen , Jim Yang Lee, Zhaolin Liu. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochemistry Communications, 2002,4 :260-265
    [66] Yan-Na Nuli,Sheng-Li Zhao, QiZong Qin, Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries, Journal of Power Sources,2003,114:113-120
    [67] Naichao Li,Charles R.Martin,Bruno Scrosati, Nanomaterial-based Li-ion battery electrodes, Journal of Power Sources,2001,97-98:240-243
    [68] Feng Huang, Zhengyong Yuan, Hui Zhan, A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries,Materials Letters 2003,57: 3341– 3345
    [69] P.A.Conner,J.T.S.Irvine, Novel tin oxide spinel-based anodes for Li-ion batteries, Journal of Power Sources,2001,97-98:223-225
    [70]Martos M,Morales J,Sanchez L, Journal of Material Chemistry, 2002, 12: 2979
    [71] Morimoto H,Tatsumisago M,Minami T, Electrochem Solid-State Letters, 2001, 4: A16
    [72] Hitomi Mukaibo, Atsuhito Yoshizawa, Toshiyuki Momma, Tetsuya Osaka, Particle size and performance of SnS2 anodes for rechargeable lithium batteries,Journal of Power Sources 2003,119–121 :60–63
    [73] Paul A. Connor, John T.S. Irvine. Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrodes for Li-ion batteries. Electrochimica Acta, 2002,47: 2885-2892
    [74] Marten Behm, John T.S. Irvine. Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries. Electrochimica Acta, 2002,47:1727-1738
    [75] Joong Kee Lee, D.H. Ryu, Jeh Beck Ju, Y.G. Shul, B.W. Cho, D. Park. Electrochemical characteristics of graphite coated with tin-oxide and copper by fluidized-bed chemical vapour deposition. Journal of Power Sources, 2002,107: 90-97
    [76] R. Zhang, Jim Y. Lee, Z.L. Liu. Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion batteries. Journal of Power Sources, 2002,112:596-605
    [77] A. Chandra Bosea, D. Kalpanab, P. Thangaduraia, S. Ramasamy. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. Journal of Power Sources, 2002,107:138-141
    [78] J.Wolfestine,S.Campos,D.Foster,J.Read,W.K.Behl,Nano-scale Cu6Sn5 anodes,Journal of Power Sources,2002,109:230-233
    [79] Noriyuki Tamura, Ryuji Ohshita, Masahisa Fujimoto, Shin Fujitani, Maruo Kamino, Ikuo Yonezu. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes. Journal of Power Sources, 2002,107: 48-55
    [80] H. Kim , Y.-J. Kim , D.G. Kim , Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries,Solid State Ionics, 2001 ,144 :41–49
    [81] Irmgard Rom , Mario Wachtler , Ilse Papst , Mario Schmied ,Jurgen O. Besenhard , Ferdinand Hofer , Martin Winter. Electron microscopical characterization of Sn-SnSb composite electrodes for lithium-ion batteries. Solid State Ionics, 2001, 143:329-336
    [82] J. Yang, Y. Takeda, C. Capiglia, X.D. Liu, N. Imanishi, O. Yamamoto. High-capacity composite anodes with SnSb and Li2.6Co0.4N for solid polymer electrolyte cells. Journal of Power Sources, 2003,119-121:56-59
    [83] A. Trifonov, M. Wachtler, M.R. Wagner, H. Schroettner, Ch. Mitterbauer, F. Hofer, K.-C. Moller, M. Winter, J.O. Besenhard. Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb. Solid State Ionics, 2004,168:51-59
    [84] H. Mukaibo, T. Osaka, P. Reale, S. Panero, B. Scrosati, M. Wachtler. Optimized Sn/SnSb lithium storage materials. Journal of Power Sources, 2004,132:225-228
    [85] Q.F. Dong, C.Z. Wu, M.G. Jin, Preparation and performance of nickel–tin alloys used as anodes for lithium-ion battery, Solid State Ionics, 2004,167: 49–54
    [86] O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, D.M. Schleich. New anode systems for lithium ion cells. Journal of Power Sources, 2001, 94: 169-174
    [87] Ki-Lyoung Lee , Ju-Young Jung , Seung-Won Lee , Hee-Soo Moon, Jong-Wan Park. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources, 2004, 129 : 270-274
    [88] Wei-Ren Liu, Zheng-Zao Guo, Wen-Shiue Young, Deng-Tswen Shieh, Hung-Chun Wu, Mo-Hua Yang, Nae-Lih Wu. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of Power Sources, 2005, 140 :139-144
    [89]吴宇平,万春荣,姜长印,方世壁,锂离子二次电池,北京:化学工业出版社,2002
    [90] Wang G,Sun L,Bradhurst D,Zhong S,Dou S,Liu H,Journal of Power Sources,2000,88:278
    [91] Wang G,Sun L,Bradhurst D,Zhong S,Dou S,Liu H,Journal of Alloys Compound,2000,306:249
    [92]Roberts G,Cairns E,Reimer J,Journal of Power Sources,2002,110:424
    [93] Hwang S,Lee H,Jang S,Lee S,Baik H,Lee J.Electrochem Solid-StateLetters,2001,4:A97
    [94] Xiaodong Wu, Zhaoxiang Wang, Liquan Chen , Xuejie Huang, Ag-enhanced SEI formation on Si particles for lithium batteries, Electrochemistry Communications 2003 , 5:935–939
    [95] J. Wolfenstine. CaSi2 as an anode for lithium-ion batteries. Journal of Power Sources, 2003,124:241-245
    [96] Heon-Young Lee, Sung-Man Lee. Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. Journal of Power Sources, 2002,112: 649-654
    [97] Xiang-Wu Zhang , Prashanth K. Patil , Chunsheng Wang ,A. John Appleby, Frank. E. Little , David L. Cocke. Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. Journal of Power Sources, 2004,125:206-213
    [98]蔡振平.锂离子蓄电池负极材料Co3O4的制备及性能.电源技术,2003,2(74):370-372
    [99]黄峰,袁正勇,周运鸿,孙聚堂.纳米钴基氧化物锂离子电池负极材料的研究.电化学,2002,8(4):397-403
    [100] Yong-Mook Kang, Ki-Tae Kim, Jin-Ho Kim, Hyun-Seok Kim, Paul S. Lee ,Jai-Young Lee , H.K. Liu , S.X. Dou. Electrochemical properties of Co3O4, Ni–Co3O4 mixture and Ni–Co3O4 composite as anode materials for Li ion secondary batteries. Journal of Power Sources 133 (2004) 252–259
    [101]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究.电化学,2000,6(3):350-356
    [102] A. D. Robertson, H. Tukamoto, and J. T. S. Irvine. Li1+xFe1-3xTi1+2xO4 (0.0≤x≤0.33) Based Spinels: Possible Negative Electrode Materials for Future Li-Ion Batteries. Journal of The Electrochemical Society, 1999,146 (11):3958-3962
    [103] A. D. Robertson, L. Trevino, H. Tukamoto, J. T. S. Irvine. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries. Journal of Power Sources, 1999, 81–82:352–357
    [104] F. Garc?a-Alvarado , M.E. Arroyo y de Dompablo, E. Moran, M.T. Gutierrez, A. Kuhn, A. Varez. New electrode materials for lithium rechargeable batteries. Journal of Power Sources, 1999, 81–82:85–89
    [105] G. Taillades, J. Sarradin. Silver: high performance anode for thin film lithium ion batteries. Journal of Power Sources, 2004, 125 : 199–205
    [106] Y. Hamon, T. Brousse, F. Jousse, P. Topart. Aluminum negative electrode in lithium ion batteries. Journal of Power Sources, 2001, 97-98 : 185-187
    [107] G.-J. Jeong, Y.U. Kim, H.-J. Sohn, T. Kang. Particulate-reinforced Al-based composite material for anode in lithium secondary batteries. Journal of Power Sources,2001, 101 : 201-205
    [108] Marie-Pierre Bichat, Tatiana Politova, Heriberto Pfeiffer, Franck Tancret. Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances. Journal of Power Sources, 2004, 136 :80–87
    [109] J.L.C. Rowsell, J. Gaubicher, L.F. Nazar. A new class of materials for lithium-ion batteries: iron(III) borates. Journal of Power Sources, 2001, 97-98 : 254-257
    [110] J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek. Structural and mechanistic features of intermetallic materials for lithium batteries. Journal of Power Sources, 2001, 97-98 : 194-197
    [111].徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液相容性研究进展I碳电极界面化学与碳负极/电解液的相容性[[J],电源技术,2000,24(3):171
    [112].徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液相容性研究进展II电解液组成与碳负极/电解液的相容性[[J],电源技术,2000,24(5):295
    [113]. George E B. Electrolytes for advanced batteries[J]. J. Power Sources, 1999, 81-82:112
    [114]. Herr R. Organic electrolytes for lithium ion cells[J]. Electrochimica Acta, 1990, 3 5:1257
    [115].庄全超,武山,刘文元等.锂离子电池电解液锂盐研究进展[[J],化学世界,2002,12:667
    [116] . Katsuya Hayashi, Yasue Nemoto, Shinichi Tobishima et al. Mixed solvent electrolyte for high voltage lithium metal secondary cells[J]. Electrochim Acta, 1999, 44:23 3 7
    [117]. Tarascon J M, Guyoard D. New electrolyte compositions stable over the 0 to 5V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells[J]. Solid State Ionics, 1994, 69:293
    [118]. Dudley J T, Wilkinson D P, Tohoms G et al. Conductivity of electrolytes for rechargeable lithium batteries[J]. J. of Power Sources, 1991, 35:59
    [119]. Amezawa K, Yamamoto N, Tomii Y, et al.Single-electrode peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt [J]. J.Electrochem Soc, 1998, 145(6):1986-1994.
    [120] Hunjoon Jung, Min Park, Yeo-Geon Yoon, Gi-Bum Kim, Seung-Ki Joo. Amorphous silicon anode for lithium-ion rechargeable batteries. Journal of Power Sources,2003,115:346-351
    [121] H. Dong, X.P. Ai, H.X. Yang, Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries,Electrochemistry Communications,2003,5 :952–957
    [122]Dimov N,Fukuda K,Umeno T,Kugino S,Yoshio M. Characterization ofcarbon-coated silicon Structural evolution and possible limitations. Journal of Power Sources,2003,114:88-95
    [123] Z.S. Wen, J. Yang , B.F. Wang, K. Wang, Y. Liu.. High capacity silicon/carbon composite anode materials for lithium ion batteries Electrochemistry Communications,2003,5 :165-168
    [124] J. Xie, G.S. Cao, X.B. Zhao. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells. Materials Chemistry and Physics, 2004, 88: 295-299
    [125] Il-Seok Kim, Prashant N. Kumta. High capacity Si/C nanocomposite anodes for Li-ion batteries. Journal of Power Sources, 2004, 36: 145-149
    [126] Wen Z S, Yang J, Wang B F, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries.[J].Electrochemistry Communications,2003,5(2):165-168.
    [127]Ohzuku T , Ueda A , Yamamoto A . Zero strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J].Electrochem SOC,1995,142:1431—1435.
    [128]Bach S,Pereira—Ramos J P,Baffier N.Electrochemical Properties of Sol—gel Li4Ti5O12[J].Power Sources,1999,81-82:273—276.
    [129]杨书廷,张焰峰,刘立君等.锂离子电池正负极材料研究进展[J].河南师范大学学报,2000,28(4):56—59.
    [130]高玲,仇卫华,赵海雷.Li4Ti5O12作为锂离子电池负极材料电化学性能[J].北京科技大学学报,2005,27(1):82—85.
    [131]吕东生,李伟善.尖晶石锂锰氧化物锂离子嵌脱过程的电化学阻抗谱研究[J].化学学报2003,61(2):225—229。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700