大豆糖蜜中功能性低聚糖的纯化分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大豆糖蜜为原料,通过高效液相对其中的糖分进行检测,分别采用了发酵降解,大孔吸附树脂脱色,离子交换树脂脱盐等方法对大豆糖蜜中的功能性糖分进行纯化分离。
     糖蜜中总固形物含量为66.58%,总糖占48.61 %,蛋白占8.14%,灰分5.54%,其余还包括脂类、异黄酮、皂苷等。其中蔗糖、棉子糖、水苏糖含量分别是317.53mg·mL~(-1),43.66mg·mL~(-1),175.42mg·mL~(-1)。
     通过对酵母菌、乳酸菌、红曲及它们的混合菌进行筛选,确定了酵母7号菌才能满足去除大豆糖蜜中蔗糖,同时保留棉子糖,水苏糖的要求。可以使功能性低聚糖占总糖的比例由原来的40.24%提高到88.57%。
     经过单因素实验优化,确定酵母7号菌发酵大豆糖蜜的最佳条件为:pH 5.0,接种量2%,稀释8倍,28℃,180rpm·min~(-1),发酵时间12h。大豆糖蜜发酵液中各糖分的保留率为:蔗糖:5.76%,棉子糖:99.61%,水苏糖:95.72%。
     用20L的发酵罐进行中试发酵,在实验室的最优条件下,对中试发酵中的pH是否恒定、溶氧量两个因素进行研究,确定了最优条件是:发酵期间不需要控制pH值和溶氧量。此条件下,蔗糖的保留率达到19.69 %,棉子糖和水苏糖的保留率分别为98.07%、99.96%。
     确定了发酵液的酸沉蛋白的最佳条件:4%HCL、pH为3.0、搅拌时间为10min,6000rpm·min~(-1)离心10min,正交实验的最佳结果显示蛋白质清除率可达到55.50%,总糖的保留率为99.70%。总糖占总固含物百分比由酸沉前的53.30%提高至58.65%。
     利用大孔树脂对酸沉后的发酵液进行脱色,选用三种不同的大孔树脂,进行静态吸附比较,确定AB-8为最佳脱色树脂,其脱色最佳条件为:pH 3,吸附时间2h,脱色率达到93.96%,总糖保留率达到96.87%;动态实验优化,最终确定最佳条件为流速在1.5BV/h,流出体积4.5BV,脱色率为92%,总糖保留率为98.30%,总糖占总固含物的75.40%。此时蔗糖为2.23mg·mL~(-1)、棉子糖为5.31mg·mL~(-1)、水苏糖为20.51mg·mL~(-1)、蛋白含量为0.14mg·mL~(-1)。
     选用强酸性阳离子交换树脂001×7联用强碱性阴离子交换树脂201×7或弱碱性阴离子交换树脂D301对大孔树脂脱色后的粗糖浆进行离子交换,确定了001×7和D301组合对脱色糖浆的离子交换效果较好。操作条件为:先阳后阴的方式连接,室温、流速1.2BV/h,001×7型树脂的交换能力约为9BV,D301型树脂的交换能力为6BV左右。最终得到的糖液的所有的含氮物质被去除,糖的保留率为89.74%;总糖占总固含物94.00%,此时蔗糖为2.05 mg·mL~(-1),棉子糖4.88 mg·mL~(-1),水苏糖18.87mg·mL~(-1)。功能性成分占总固形物的86.51%。
     将纯化的低聚糖液体经过冷冻干燥,001×7和D301组合的回收液得到了白色透明的粉末,味微甜的大豆低聚糖,总糖含量0.94g·g~(-1);001×7和201×7组合回收的冻干样品成浅黄色,总糖含量201×7为0.83 g·g~(-1)。
This paper was studied on using fermentation, macroporous resins and ion exchange resins to extract soybean oligosaccharides detected by HPLC from soy molasses.
     There are 66.58% soluble solid, 8.14% protein, 5.54% ash content and 48.61% total sugar which contain sucrose 317.53mg mL~(-1), raffinose 43.66mg mL~(-1) and stachyose 175.42mg mL~(-1).
     Screening of yeasts, lactobacillus, Monascus rubber and mixed culture fermentation of them, 7 yeast is selected which can decompose sucrose as well as retain raffinose and stachyose, raise functionality of oligosaccharides from 40.24 % to 88.57% in total sugar.
     The results of odd fator tests 7 yeast showed that the optimum fermentation conditions for soybean molasses was: the inoculation concentration was 2%, the temperature was 28℃, the initial pH was 5.0, the soybean oligosaccharide dilute 8 times,after 12 h the remainder rate of residule sucrose 5.76%, raffinose 99.61%, stachyose 95.72% in the fermentation broth of soybean molasses.
     Evaluating whether fixed pH and dissolved oxygen content to ferment by fermenter of volum 20L, we defined the optimization condition is not necessary to control pH and oxygen content in the course of fermentation, at this time, the remainder rate of residule sucrose 19.69%, raffinose 98.07%, stachyose 99.96%.
     The optimum conditions of Acid-Precipitatio protein was: 4% HCL, pH 3.0, stir 10min, centrifuge 10min. The result of perpendicular is deposit protein rate 55.50%, total sugar remainder rate 99.70%, functionality of oligosaccharides raise from 53.30% to 58.65 in soluble solid.
     We selected three macroporous resins to decoloratio the fermentation solution after Acid-Precipitatio and definited AB-8 is best for decoloratio. The optimization condition is taht the flow rate is 1.5BV/h, the volum of decoloration is 4.5BV, decoloratio rate is 92%, total sugar remainder rate is 99.70%. The total sugar occupied 75.40% of soluble solid. The content of sucrose is 2.23mg mL~(-1), raffinose is 5.31mg mL~(-1) and stachyose is 20.51mg mL~(-1), the protein is 0.14mg mL~(-1).
     001×7 cation exchange resin combined 201×7 anion exchange resin or D301 anion exchange resin to ion exchange the crude soybean oligosaccharides and the result is 001×7 combining D301 is better. The optimum conditions is that the ion exchange resins combined according to the cation antecedently, ordinary temperature, flow rate is 1.2BV/h and under this condition 001×7 exchange capacity is about 9BV, D301 is about 6BV. The result of ion exchange is that the solution of soybean oligosaccharides has no nitrogen-containing material. The total sugar is 89.74% times of soluble solid. The content of sucrose is 2.05mg mL~(-1), raffinose is 4.88mg mL~(-1) and stachyose is 18.87mg mL~(-1), and functionality of oligosaccharides occupied 86.51% of total soluble solid.
     The freeze-dried solution of soybean oligosaccharides obtained from 001×7 combining D301 is white, taste somewhat sweet, the total sugar content is 0.94 g·g~(-1) and from 001×7 combining 201×7 is light yellow, and the total sugar content is 0.83 g.g~(-1).
引文
毕金峰,李春红.2004.酵母发酵法在分离提纯低聚异麦芽糖中应用的研究[J].食品科学,10.
    大连轻工业学院等合编,1994.食品分析[M].中国轻工业出版社,1994.
    董群,郑丽伊,方积年.1996.改良的苯酚硫酸法测定多糖和寡糖含量的研究[J].中国药学杂志,31(9):550-553.
    杜连起,张洪新,尚艳芬等.1994.国产干酵母活化方法的研究[J].河北农业技术师范学院学报,1994,8(4):41-44.
    段素芳.2009.微生物提取水苏糖的研究[J].优秀硕士论文,9,3.
    方伟辉.2004.大豆糖蜜分离及低聚糖成分生物净化的研究[J].江南大学硕士学位论文, 3(9).
    方伟辉,华欲飞,张喆等.2004.大豆粕酒精可溶物的成分分离与鉴定[J].中国油脂, 29(1):57-61.
    高英,俞玉忠.2004.福林酚法测定脑蛋白水解物溶液中的多肽含量[J].海峡药学,16.
    龚云表,石安富.1993.合成树脂与塑料手册,上海:上海科学技术出版社,367.
    谷成燕.2009.AB-8大孔树脂与硅胶柱层析分离姜酚的对比[J].优秀硕士论文,5.
    何炳林,黄文强.1995.离子交换与吸附树脂[M].北京:人民卫生出版社,1995.
    洪专,黄宏南,许晨,许建中.2007.HPLC - ELSD测定氨基葡萄糖含量[J].中国卫生检验杂志, (17):6(1025-1026).
    胡箭卫,缪正瀛,程瑛等.2004.离子交换树脂用于蜂蜜脱色的机理探析[J].养蜂技术,5:37-38.
    黄海,杨瑞金,王璋.2002.低聚木糖的脱色工艺[J].无锡轻工大学学报,21 (2)125-129.
    黄贤校,谷克仁,赵一凡.2006.大豆低聚糖的生产工艺研究[J].粮油食品科技,14(5)29-30.
    黄祥斌,于淑娟,高大维.2001.几种离子交换树脂用于糖浆脱色的比较研究[J].食品科学, 22(4)11-13.
    蒋丽华.2007.大豆糖蜜中低聚糖的分离纯化[D]:[硕士学位论文].无锡:江南大学食品学院.
    江曼.2009.混合菌种固态发酵法发酵豆粕生产大豆肽的研究[J].山东食品发酵,1(26-29).
    李玫,尚明华.2003.影响凯氏定氮法准确性的因素[J].中国饲料,(9):25- 251.
    李善吉,伍胜君.2005.大孔树脂的应用研究概况[J].广东轻工职业技术学院学报,4(2): 11-13.
    刘国庆,朱翠萍,王占生.2003.大孔树脂对大豆乳清废水中异黄酮的吸附特性研究[J].离子交换与吸附,2003,19(3):229-234.
    刘欣.2006.乳酸菌发酵法生产高活性大豆低聚糖的研究[J].食品工业科技,11(27).
    龙祯,蒋丽华,华欲飞.2008.大孔树脂对大豆糖蜜超滤液的脱色效果研究[J].中国油脂,33(2).
    孟雷,袁其朋.2007.利用大孔树脂从大豆糖蜜中回收大豆异黄酮[J].大豆科学, 26(3):435-438.
    马莺,骆承序,肖志刚.2000.超滤法提取大豆低聚糖的研究[J].粮油食品科技.8(5)17-19.
    宓晓黎,杨炎,成恒蒿等.1997.大孔吸附树脂技术应用与复方中成药制备工艺的研究[J].离子交换与吸收,13 (6):594.
    齐文娟,岳红卫,王伟.2005.大豆磷脂的理化特性及其开发与应用[J].中国油脂,30(8): 35-37.
    钱庭宝.1989.离子交换树脂[J].高分子通报,(1): 51-56.
    宋宏哲,蒋大海等.2008.HPLC-ELSD法测定大豆糖蜜中低聚糖的研究[J].中国油脂,33 (77):77-79.
    田娟娟,崔元峰,白志明.2008.用酸沉淀法分离大豆糖蜜中蛋白质的研究[J].黑龙江粮食, (1)43-46.
    王恩大,邵广武.2000.离子交换树脂在玉米淀粉糖生产中的应用[J].辽宁化工, 29(4):242-246.册21(5)201-211.
    王海吉.2009.混合乳酸菌发酵胡萝卜的研究[J].中国调味品, 5(34)75-87.
    汪洪武,刘艳清.2005.大孔吸附树脂的应用研究进展[J]材,28(4):353-356.
    王立梅,齐斌,周惠明.2007.日本曲霉菌体固定化及改性大豆低聚糖的研究[J].食品机械, 23(01).
    叶振华等.1998.化学工程手册[M].北京:化学工业出版社,1998.
    严希康.2000.吸附与离子交换及其在生物技术上的应用[J].国外医药抗生素分册, 21(5):201-211.
    袁其朋.发酵法精制大豆低聚糖的研究[J].微生物学通报,001.28(6).
    袁其朋,张恭孝,姜焱.2003.树脂及活性炭吸附技术回收大豆乳清中的异黄酮和低聚糖[J].大豆科学,22(1):6-10.
    中国科学院植物研究所.1979.中国高等植物图鉴[M].北京:科学出版社.
    周尽花,周春山.2005.大孔吸附树脂法柚皮果胶脱色工艺研究[J].离子交换与吸附, 21(6):542-550.
    张敏,郭顺堂.2006.大豆糖蜜双歧酸奶的研制[J].食品科学,27(10):649-652.
    朱园园,古双喜,陈先明等.2006.离子交换技术在糖品工业中的应用[J].云南化工, 33(2)68-70.
    钟振声,冯焱,孙立杰等.2006.柱色谱法对大豆低聚糖浆脱色效果的研究[J].精细化工, 23(6):565-567.
    Agnes Shanley.1999.Chemical Engineering,[J]106,1,6528.
    Amit Sharma,V.Vivekanand,et al.2008.Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support [J].Bioresource Technology99,3444–3450.
    Arti Dumbrepatil,Mukund Adsul,Shivani Chaudhari,et al.2000.Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii subsp.delbrueckii Mutant Uc-3 in Batch Fermentation[J].APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Jan.2008,p.333–335.
    C.Kunz,S.Rudloff,W.Baier,N.Klein,S.Strobel,Oligosaccharides in human milk:Structural, functional, and metabolic aspects[J].Annu.Rev.Nutr 20,699–722.
    Danie KY Solaiman,Richard D Ashby,Alberto Nunez,et al.2004.Production of sophorolipidsby candida bombicola grown on soy molasses as substrate[J].Biotechnology Letters,(26): 1241-1245.
    Ernesto Acosta Martinez, Batista de Almeida e Silva, Marco Giulietti, et al.2007.Downstream process for xylitol produced from fermented hydrolysate[J] .Enzyme and Microbial Technology,40: 1193-1198.
    F. A.Draughon.2004.Use of botanicals as biopreservatives in foods[J].Food Technol,58,20–28.
    Gugger,Eric,Grabiel,et al.2003.Production of isoflavone enriched fractions from soy protein extracts [P].US Patent:6565912,5-20.
    I.Espinosa-Martos y P.Rupérez.Soybean oligosaccharides.2006.Potential as new ingredients in functional food[J].Nutr Hosp,21(1): 92-6.
    J.Cleveland, T.J.Montville, I.F.Nes, M.L.Chikindas.2001.Bacteriocins: Safe, natural Antimicrobials for food protection.Int[J]. Food Microbiol71,1–20.
    Liu KeShun.2004.Soybean as functional foods and ingredients [M].AOCS press. Waggle Waggle,Doyle H,Bryan, et al.2004.Recovery of isoflavones from soy molasses[P].US Patent:6706292,3-16.
    Maria de Lourdes P. Bianchi, Hugo C.Silva, et al.1984.Oligosaccharide Content of Ten Varieties of Dark-Coated Soybeans[J]. Agric.Food Chem.32 (2), pp 355–357.
    Mark J Messina.1999.Legumes and soybeans:overview of their nutritional profiles and health effects[J].Am J Clin Nutr,70(suppl):439S–50S.
    Mentelongo J L,Chassy B M,McCord J D.1993.Lactobacillus salivarius for conversion of soy molasses into Lactic Acid[J].Journal of Food Science,58(4):863-866.
    Monica Scordino,Alfio Di Mauro,Amedeo Passerini,et al.2007.Highly purified sugar concentrate from a residue of citrus pigments recovery process[J].LWT-Food Science and Technology,40(4):713-721.
    N Qureshi,A Lolas,HP Blaschek.2001.Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101[J]. Journal of Industrial Microbiology and Biotechnology,(26):290-295.
    Paula F.Siqueira,Susan G.Karp,et al.2008.Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory,pilot and industrial scales[J].Bioresource Technology 99,8156~8163.
    Pipolo A E,Sinclair T R,Camara G.2004.Relationship between the content of oil, protein,and sugar in soybean seed cultral in vitro using of differing glutamine concentration.Annales Applied Biology,144: 223-227.
    R.Malbasˇa,E.Loncˇar,et al.2008.Comparison of the products of Kombucha fermentation on sucrose and molasses[J].Food Chemistry 106,1039–1045.
    R.Malbasˇa,E.Loncˇar,et al.2008.Effect of sucrose concentration on the products of Kombucha fermentation on molasses[J].Food Chemistry108,926–932.
    Roberfroid, M.2007.Prebiotics:the concept revisited.Effects of probiotics and prebiotics[J].TheJournal of Nutrition.(137),830S–837S.
    R.W.Jack,J.R.Tagg B.Ray.1995.Bacteriocins of Gram-positive bacteria[J].Microbiol.Rev. 59,171–200.
    Simone de Fa′tima Viana,Vale′ria Monteze Guimara-es,et al.2005.Hydrolysis of Oligosaccharides in soybean flour by soybean a-galactosidase [J]. Food Chemistry93,665–670.
    Soichi Arai,Hideki Suzuki.1966.Studies on flavour components in soybean.Part2.Phenolic Acids in Defatted Soybean Flavour [J].Agr.Biol.Chem.30(4):364-369.
    Tomomatsu H.1994.Health effects of oligosaccharides [J].FoodTech.10:61-65.
    Wang-Yu Tong,Xiang-Yang Fu,Sang-Mok Lee,et al.2004.Purification of L (+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92 [J]. Biochemical Engineering Journal,18:89-96.
    Yu-Peng Liu,Pu Zheng,Zhi-Hao Sun,et al.2008.Economical succinic acid production from cane molasses by Actinobacillus succinogenes [J].Bioresource Technology 99,1736–1742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700