Co(Salen)配合物及其固载化催化剂在氧化羰化反应中的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Co(Salen)配合物作为一类高效的催化剂,被广泛应用于催化许多有机合成反应,如烯烃不对称催化氧化、环氧化合物水解动力学拆分、烯烃聚合、以及Diels-Alder反应等等。
     随着人们环保意识的增强和环保法律的强制执行,环境友好和可循环回收利用的高效“绿色”清洁催化剂近年来成为催化领域的研究热点之一,而以无机材料作为载体,将均相催化剂进行负载化是其中一个重要的研究方向。
     本文首先合成了三种Co(Salen)配合物,并将其用于乙醇氧化羰化合成碳酸二乙酯的反应中,结果发现邻苯二胺桥连的Co(Salophen)较乙二胺和环己二胺桥连的Co(Salen)和Co(Salcyen)的活性要高,Co(Salen)类配合物的量子化学计算结果对此给予了解释,主要是因为Co(Salophen)中Co的电子密度高,有助于底物与钴的配位,进而增强Co(Salophen)的催化活性。同时考察了反应温度、压力、催化剂浓度和时间等反应条件对Co(Salophen)催化剂活性的影响,在优化的条件下,乙醇的转化率可达15.8%,DEC的选择性高于99%。
     尽管Co(Salen)均相催化体系具有很好的活性,和广泛使用的贵金属相比,也具有一定的经济优势,但在使用中,特别是在氧化羰化反应中易二聚而失活,而均相催化剂的多相化是解决这些问题的有效途径。
     采用“瓶中造船”的方法,将合成的四种Co(Salen)配合物成功地封装于Y型分子筛的孔道内。采用FT-IR、UV-Vis、BET比表面分析、X射线粉末衍射(XRD)、热分析(TG/DTA)等方法对负载催化剂进行结构表征,证实了钴配合物封装在Y型分子筛的孔道内。将均相和Y型分子筛负载的多相催化剂用于甲醇氧化羰化合成碳酸二甲酯反应,和均相催化剂相比,负载催化剂活性有所增加。原子吸收光谱法确定了负载催化剂中Co含量和反应前后Co的流失量,Co流失实验证实,催化剂中Co含量在循环使用过程中没有明显流失,活性也无明显降低,说明催化剂在反应条件下是稳定和可重复使用的。催化剂腐蚀实验表明Co(Salophen)及Co(Salophen)-Y对不锈钢材质无腐蚀,这对于甲醇氧化羰化反应器的选材是极为有利的。
     采用循环伏安的方法,研究了Co(Salophen)及Co(Salophen)-Y的电化学行为,提出了与CuCl催化甲醇氧化羰化不同的反应机理。Co(Salophen)与分子氧络合形成超氧物种,然后结合甲醇,CO分子插入,另一分子甲醇亲核进攻,形成碳酸二甲酯。
     进一步制备了九种Co(Salen)配合物,用于乙二胺氧化羰化反应合成2-咪唑啉酮,结果表明-OH取代的水杨醛与邻苯二胺桥连的Co(Salophen)(OH)_2配合物活性最高,-OH的推电子效应和邻苯二胺苯环的共轭效应共同增加了Co(Salophen)(OH)_2中Co的电子密度,有助于反应物与Co配位活化,提高催化剂的活性。同时考察了反应温度、催化剂用量和时间等反应条件对Co(Salophen)(OH)_2催化剂活性的影响,在优化的条件下,乙二胺的转化率达54.4%,2-咪唑啉酮的产率为49%,提出了Co(Salophen)(OH)_2催化乙二胺氧化羰化的反应机理。
     总之,Co(Salen)配合物以及分子筛负载的Co(Salen)配合物催化剂对于氧化羰化反应具有高效、环境友好、无腐蚀及能循环回收利用等特点,在有机合成领域将会具有广阔的潜在应用前景。
Co(Salen) complexes are widely used as a kind of efficient catalysts in the fields of many organic synthesis reactions, such as asymmetric oxidation of olefin, ring-opening hydrolysis of epoxides, polymerization and Diels-Alder reaction.
     With the public environment awareness and the compulsive implement of environment legislation, chemists have focused their interest on highly effective, environment friendly and recyclable "green" clean catalysis recently. Among those, homogeneous catalysts immobilized onto inorganic materials are the important research fields.
     In this work, three kinds of Co(Salen) complexes were synthesized and applied to the oxidative carbonylation of ethanol to diethyl carbonate(DEC). It was found that the activity of Co(Salophen) is higher than that of Co(Salen) and Co(Salcyen), which is rationally explained by the quantum chemistry calculation. The electron density of Co in Co(Salophen) is higher than the other Co complexes, which helps reactants combine with Co and increases the activity of Co(Salophen) catalyst. The reaction conditions, such as temperature, gas pressure, catalyst concentration and reaction time, are also investigated. The conversion of ethanol and the selectivity to DEC in the optimal condition are 15.8% and 99%, respectively.
     Co(Salen) complexes are active homogeneous catalysts and less expensive compared with noble metal catalysts. However, Co(Salen) complexes are easily prone to formμ-oxo dimmer to lead to lose their activity, especially in the oxidative carbonylation reaction. The heterogeneous catalysis of Co(Salen) complexes is an effective solution to this problem.
     Four Co(Salen) complexes were successfully encapsulated in the Y zeolite using "ship-in-a-bottle" method. The Co(Salen) complexes encapsulated in Y zeolite are characterized by FT-IR, UV-Vis, BET, XRD and thermal analysis (TG/DTA). The immobilized catalysts and their homogeneous analogues were evaluated in the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Compared with the homogeneous catalysts, the encapsulated Co(Salen) complexes are more active. The content and leaching of Co are determined by atomic absorption spectrometry (AAS). It was found that the Co content in the Co(Salen)-Y and the activity of the catalysts have no change during the reaction, which make sure that the immobilized Co(Salen) complexes were stable and recyclable. The corrosion tests of the catalysts show that Co(Salophen) and Co(Salophen)-Y are noncorrosive to the stainless steel, which is vital to the selection of reactor material in the oxidative carbonylation.
     The electrochemistry performance of Co(Salophen) and Co(Salophen)-Y was investigated by the cyclic voltammetry (CV). Based on the electrochemistry results, the reaction mechanism of oxidative carbonylation was provided, which was different from the mechanism catalyzed by CuCl system. The mechanism is involved in several steps: Co(Salophen) is first combined with oxygen to form -O-O- species, then combined with methanol, CO insert into the complex, finally another methanol molecule nucleophilic attack reaction to form dimethyl carbonate (DMC).
     In the further research work, nine Co(Salen) complexes were synthesized to the application of oxidative carbonylation of ethylenediamine to 2-imidazolidinone. It was found that the activity of Co(Salophen)(OH)2 is highest. The -OH substituted salicylaldehyde complexed with o-phenylene diamine help to enhance the electron density of the Co(Salophen)(OH)2. The reaction conditions, such as reaction temperature, catalyst concentration and reaction time, were also studied. The conversion of ethylenediamine and the yield of 2-imidazolidinone at the optimal condition are 54.4% and 49%, respectively. The reaction mechanism of oxidative carbonylation of ethylenediamine catalyzed by Co(Salophen)(OH)2 was provided.
     In a word, the immobilized Co(Salen) catalysts and their homogeneous analogues are efficient, environmental friendly, noncorrosive and recyclable catalytic systems to oxidative carbonylation reaction, and have wide applications in the fields of organic synthesis.
引文
[1]Schiff Hugo,Biuret reactions,Justus Liebigs Annalen der Chemie,1897,299:236-266.
    [2]Pfeiffer P,Breith E,Lubbe E,et al.,Tricyclic ortho-condensed partial valence rings,Annalen der Chemie Justus Liebigs,1933,503:84-130.
    [3]Tsuchida Ryutaro,Tsumaki Tokuichi,Absorption spectra of salicylaldehyde ethylenediimine and related compounds,Bulletin of the Chemical Society of Japan,1938,13:527-533.
    [4]Tsuchida Ryutaro,Absorption spectra of coovrddot ordination compounds,Bulletin of the Chemical Society of Japan,1938,59:731-743.
    [5]Calvin M,Bailes R H,Wilmarth W K,The oxygen-carrying synthetic chelate compounds,Journal of American Chemical Society,1946,68:2254-2259.
    [6]Toscano Paul J,Marzilli Luigi G,B12 and related organocobalt chemistry:formation and cleavage of cobalt carbon bonds,Progress in Inorganic Chemistry,1984,31:105-204.
    [7]Hoffman Brian Mark,Diemente Damon L,Basol Fred,Electron paramagnetic resonance studies of some cobalt(Ⅱ) schiff base compounds and their monomeric oxygen adducts,Journal of American Chemical Society,1970,92(1):61-65.
    [8]Jacobsen Eric N,Kakiuchi Fumitoshi,Konsler Reed G,et al.,Enantioselective catalytic ring opening of epoxides with carboxylic acids,Tetrahedron Letters,1997,38(5):773-776.
    [9]Musie Ghezai T,Wei Ming,Busch Daryle H,et al.,Autoxidation of substituted phenols catalyzed by cobalt schiff base complexes in supercritical carbon dioxide.Inorganic Chemistry,2001,40(14):3336-3341.
    [10]Takeuchi Toshihiko,Bottcher Arnd,Gray Harry B,et al.,Inhibition of thermolysin and human-thrombin by cobalt(Ⅲ) schiff base complexes,Bioorganic & Medicinal Chemistry,1999,7(5):815-819.
    [11]杜文,王桂霞,奚祖威,西佛碱钴络合物催化氧化苯酚,分子催化,1990,4(4):306-313.
    [12]Foerster Stefan,Rieker Anton,Maruyama Kazushige,et al.,Cobalt schiff base complex-catalyzed oxidation of anilines with tert-butyl hydroperoxide.Journal of Organic Chemistry,1996,61(10):3320-3325.
    [13]张萍,杨梅,吕效平,等,手性金属络合物催化不对称Baeyer-Villiger反应,化学 通报,2005,68(12):897-905.
    [14]Lu Xin-Huan,Xia Qing-Hua,Zhan Hong-Ju,et al.,Synthesis,characterization and catalytic property of tetradentate schiff-base complexes for the epoxidation of styrene,Journal of Molecular Catalysis A:Chemical,2006,250(1-2):62-69.
    [15]Uchida Tatsuya,Katsuki Tsutomu,Cationic Co(Ⅲ)(salen)-catalyzed enantioselective Baeyer-Villiger oxidation of 3-arylcyclobutanones using hydrogen peroxide as a terminal oxidant,Tetrahedron Letters,2001,42(39):6911-6914.
    [16]Tokunaga Makoto,Larrow Jay F,Jacobsen Eric N,et al.,Asymmetric catalysis with water:efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis,Science,1997,277(5328):936-938.
    [17]Kim Geon-Joong,Lee Hosung,Kim Seong-Jin,Catalytic activity and recyclability of new enantioselective chiral Co-salen complexes in the hydrolytic kinetic resolution of epichlorohydfin,Tetrahedron Letters,2003,44(27):5005-5008.
    [18]Cavazzini Marco,Quici Silvio,Pozzi Gianluca,Hydrolytic kinetic resolution of terminal epoxides catalyzed by fluorous chiral Co(salen) complexes,Tetrahedron,2002,58(20):3943-3949.
    [19]Kahlen W,Wagner H H,Holderich W F,Zeolite effect in the enantioselective transhydrogenation over a Co-salen "ship-in-the-bottle" complex.Catalysis Letters,1998,54(1-2):85-89.
    [20]孙伟,陈敏东,夏春谷,手性Salen-Co(Ⅱ)配合物催化芳香酮不对称还原反应研究,分子催化,2002,16(2):144-146.
    [21]Nakamura Akira,Konishi Akira,Otsuka Sei,et al.,A highly enantioselective synthesis of cyclopropane derivatives through chiral cobalt(Ⅱ) complex catalyzed Carbenoid reaction.General scope and factors determining the enantioselectivity,Journal of American Chemical Society,1978,100(11),3443-3448.
    [22]Wu Si-Zhong,Lu Shi-Wei,Novel nickel(Ⅱ) and cobalt(Ⅱ) catalysts based on poly-salen type ligands for the dimerization of propylene,Journal of Molecular Catalysis A:Chemical,2003,197(1-2):51-59
    [23]梁媛媛,杨文英,黄家贤,N,N′-双(2-羟基-3,5-二甲基苯甲叉基)邻苯二胺合钴(Ⅱ)催化的甲基丙烯酸甲酯均聚的研究,南开大学学报,2003,36(3):10-14.
    [24] Lu Xiao-Bing, Feng Xiou-Juan, He Ren, Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate schiff-base complexes as catalysts, Applied Catalysis, A: General 2002, 234(1-2): 25-33.
    
    [25] Lu Xiao-Bing, He Ren, Bai Chen-Xi, Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst, Journal of Molecular Catalysis A: Chemical, 2002, 186(1-2): 1-11.
    
    [26] Shen Yu-Mei, Duan Wei-Liang, Shi Min, Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes, Journal of Organic Chemistry, 2003, 68(4): 1559-1562.
    
    [27] Lu Xiao-Bing, Liang Bin, Zhang Yin-Ju, et al., Asymmetric catalysis with CO_2: direct synthesis of optically active propylene carbonate from racemic epoxides, Journal of American Chemical Society, 2004, 126(12): 3732-3733.
    
    [28] Bassoli Angela, Rindone Bruno, Tollari Stefano, et al., Acyclic and cyclic urea formation via the cobalt-catalysed oxidative carbonylation of aromatic primary amines, Journal of Molecular Catalysis A: Chemical, 1990, 60(1): 41-48.
    
    [29] Bolzacchini Ezio, Meinardi Simone, Rindone Bruno, et al., Substituent effects in the cobalt-catalyzed oxidative carbonylation of aromatic amine, Journal of Molecular Catalysis A: Chemical, 1996, 111(3): 281-287.
    
    [30] Chen Li-Juan, Mei Fu-Ming, Li Guang-Xing, et al., Oxidative carbonylation of aniline to N, N'-diphenyl urea catalyzed by cobalt(II)-schiff base complexes/ pyridine catalytic system, Catalysis Communications, 2008, 9(5): 658-663.
    
    [31] Li Guang-Xing, Chen Li-Juan, Mei Fu-Ming, et al., A recoverable catalyst Co(salen) in zeolite Y for the synthesis of methyl N-phenylcarbamate by oxidative carbonylation of aniline, Applied Catalysis A: General, 2008, 346(1-2): 134-139.
    
    [32] Chen Li-Juan, Mei Fu-Ming, Li Guang-Xing, Co(II) schiff base complexes on silica by sol-gel method as heterogeneous catalysts for oxidative carbonylation of aniline, Catalysis Communications, 2009, 10(6): 981-985.
    
    [33] Delledonne Daniele, Rivetti Franco, Romano Ugo, Oxidative carbonylation of methanol to dimethyl carbonate(DMC): a new catalytic system, Journal of Organometallic Chemistry, 1995,488(1-2): C15-C19.
    
    [34] Liu Jian-Ming, Sun Wei, Xia Chun-Gu, et al., Synthesis of 2-oxazolidinones by salen Co-complexes catalyzed oxidative carbonylation of β-amino alcohols,Tetrahedron Letters,2007,48(6):929-932.
    [35]Johnson Chad,Long Brandon,Guzman Javier,et al.,Correlation between active center structure and enhanced dioxygen binding in Co(salen) nanoparticles:characterization by in situ Infrared,Raman,and X-ray absorption spectroscopies,Journal of Physical Chemistry C,2008,112(32):12272-12281.
    [36]Niederhoffer Eric C,Timmons James H,Martell Arthur E,Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes,Chemical Reviews,1984,84(2):137-203.
    [37]Sharghi Hashem,Aberi Mahdi,Doroodmanda Mohammad Mahdi,Reusable cobalt(Ⅲ)-salen complex supported on activated carbon as an efficient heterogeneous catalyst for synthesis of 2-arylbenzimidazole derivatives,Advanced Synthesis & Catalysis,2008,350(14-15):2380-2390.
    [38]Orejon Aranzazu,Masdeu-Bulto Anna M,Salagre Pilar,et al.,Strategies for the immobilization of homogeneous catalysts and their use in the synthesis of carbamates,Industrial & Engineering Chemistry Research,2008,47(21):8032-8036.
    [39]马会宣,胡道道,房喻,负载型壳聚糖双水杨叉乙二胺合钴配合物的制各及其对乙硫醇的催化氧化,应用化学,2001,18(4):290-294.
    [40]Goyal Poorva,Zheng Xiao-Lai,Weck Marcus,Enhanced cooperativity in hydrolytic kinetic resolution of epoxides using poly(styrene) resin-supported dendronized Co-(salen)catalysts,Advanced Synthesis & Catalysis,2008,350(11-12):1816-1822.
    [41]Annis D Allen,Jacobsen Eric N,Polymer-supported chiral Co(salen)complexes:synthetic applications and mechanistic investigations in the hydrolytic kinetic resolution of terminal epoxides,Journal of the American Chemical Society,1999,121(17):4147-4154.
    [42]任通,闫亮,索继栓,MCM-41固载Co席夫碱配合物的制备及其催化烯烃环氧化的研究,分子催化,2003,17(4):310-312.
    [43]Fu Zai-Hui,Liao Hui-Ying,Xiong Dong-Lu,et al.,A highly-efficient and environment-tal-friendly method for the preparation of Mn(Ⅲ)-salen complexes encapsulated HMS by using microwave irradiation,Microporous and Mesoporous Materials,2007,106(1-3):298-303.
    [44] Gill Christopher S, Long Wei, Jones Christopher W, Magnetic nanoparticle polymer brush catalysts: alternative hybrid organic/inorganic structures to obtain high, local catalyst loadings for use in organic transformations, Catalysis Letters, 2009, 131(3-4): 425-431.
    
    [45] Joseph Trissa, Halligudi S B, Satyanarayan C, et al., Oxidation by molecular oxygen using zeolite encapsulated Co(II)saloph complexes, Journal of Molecular Catalysis A: Chemical, 2001, 168(1-2): 87-97.
    
    [46] Joseph Trissa, Sawant Dhanashree P, Gopinath C S, et al., Zeolite encapsulated ruthenium and cobalt schiff base complexes catalyzed allylic oxidation of α-pinene, Journal of Molecular Catalysis A: Chemical, 2002, 184(1-2): 289-299.
    
    [47] Bessel Carol A, Rolison Debra R, Topological redox isomers: surface chemistry of zeolite-encapsulated Co(salen) and [Fe(bpy)_3]~(2+) complexes, Journal of Physical Chemistry B, 1997, 101(7): 1148-1157.
    
    [48] Xavier K O, Chacko J, Mohammed Yusuff K, Zeolite-encapsulated Co(II), Ni(II) and Cu(II) complexes as catalysts for partial oxidation of benzyl alcohol and ethylbenzene, Applied Catalysis A: General, 2004, 258(2): 251-259.
    
    [49] Schuster Carmen, Mollmann Eugen, Tompos Andras, et al., Highly stereoselective epoxidation of (-)-α-pinene over chiral transition metal (salen) complexes occluded in zeolitic hosts, Catalysis Letters, 2001, 74(1-2): 69-75.
    
    [50] W(o|¨)ltinger Jens, B(a|¨)ckvall Jan-E, Zsigmond Agnes, Zeolite-encapsulated cobalt salophen complexes as efficient oxygen-activating catalysts in palladium-catalyzed aerobic 1,4-oxidation of 1,3-dienes, Chemistry-A European Journal, 1999, 5(5): 1460-1467.
    
    [51] Salavati-Niasari Masoud, Synthesis characterization of cobalt(II) complex nanoparticles encapsulated within nanoreactors of zeolite-Y and their catalytic activities, Journal of Molecular Catalysis A: Chemical, 2009, 310(1-2): 51-58.
    
    [52] Mollmann Eugen, Tomlinson Petra, H(o|¨)lderich W F, Demonstration of a zeolite effect on an encapsulated Co-salen-complex, Journal of Molecular Catalysis A: Chemical, 2003, 206(1-2): 253-259.
    
    [53] Kahlen W, Wagner H H, Holderich W F, Zeolite effect in the enantioselective transhydrogenation over a Co-salen "ship-in-the-bottle" complex, Catalysis Letters, 1998, 54(1-2): 85-89.
    
    [54] Bessel Carol A, Rolison Debra R, Electrocatalytic reactivity. of zeolite-encapsulated Co(salen) with benzyl chloride,Journal of the American Chemical Society,1997,119(51):12673-12674.
    [55]Yang Heng-Quan,Yang Qi-Hua,Li Can,et al.,Asymmetric ring-opening of epoxides on chiral Co(salen) catalyst synthesized in SBA-16 through the "ship in a bottle" strategy,Journal of Catalysis,2007,248(2):204-212.
    [56]Yang Heng-Quan,Yang Qi-Hua,Li Can,et al.,Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on[Co(salen)]catalysts confined in nanocages,Angewandte Chemie,International Edition,2007,46(36):6861-6865.
    [57]Sun Ke-Ju,Li Wei-Xue,Li Can,et al.,Cooperative activation in ring-opening hydrolysis of epoxides by Co-salen complexes:a first principle study,Chemical Physics Letters,2009,470(4-6):259-263.
    [58]章凯基,有机硅材料,北京:中国物资出版社,1999,339-351.
    [59]周宁琳,有机硅聚合物导论,北京:科学出版社,2000,169-178.
    [60]徐国财,张立德,纳米复合材料,北京:化学工业出版社,2003,3-8.
    [61]Sanchez,C,Ribot F,Lebeau B,Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry,Journal of Materials Chemistry,1999,9(1):35-44.
    [62]Murphy Eamonn F,Schmid Leo,Buergi Thomas,et al.,Nondestructive Sol-Gel immobilization of metal(salen) catalysts in silica aerogels and xerogels,Chemistry of Materials,2001,13(4):1296-1304.
    [63]Pacheco Michacl A,Marshall Christopher L,Review of dimethyl carbonate(DMC)manufacture and its characteristics as a fuel additive,Energy & Fuels,1997,11(1):2-29.
    [64]李光兴,许汉昌,朱治良,等,“绿色”化工产品—碳酸二甲酯,湖北化工,1995,1:6-10.
    [65]Shaikh Abbas-Alli G,Sivaram Swaminathan,Organic carbonates,Chemical Reviews,1996,96(3):951-976.
    [66]Kim Won Bae,Joshi Upendra A,Lee Jae Sung,Making polycarbonates without employing phosgene:an overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate,Industrial & Engineering Chemistry Research,2004,43(9):1897-1914.
    [67]Ono Yoshio,Catalysis in the production and reactions of dimethyl carbonate,an environmentally benign building block,Applied Catalysis A:General,1997,155(2):133-166.
    [68]Gong Jin-Long,Ma Xin-Bin,Wang Sheng-Ping,Phosgene-free approaches to catalytic synthesis ofdiphenyl carbonate and its intermediates,Applied Catalysis A:General,2007,316(1):1-21.
    [69]Delledonne Daniele,Rivetti Franco,Romano Ugo,Developments in the production and application of dimethylcarbonate,Applied Catalysis A:General,2001,221(1-2):241-251.
    [70]任军,李忠,谢克昌,甲醇液相氧化羰基化合成碳酸二甲酯催化剂的研究进展,化工进展,2007,26(11):1569-1573.
    [71]赵强,孟双明,李忠,甲醇氧化羰基化合成碳酸二甲酯的研究进展,工业催化,2008,16(4):1-5.
    [72]Romano Ugo,Tesei Renato,Mauri Marcello Massi,et al.,Synthesis of dimethyl carbonate from methanol,carbon monoxide,and oxygen catalyzed by copper compounds,Industrial & Engineering Chemistry Product Research and Development,1980,19(3):396-403.
    [73]Hallgren John E,Catalytic alophatic carbonate process,U.S.Patent 4361519,1982,541-550.
    [74]Knifton J F,Process for synthesis of ethylene glycol and dimethyl carbonate,U.S.Patent 4661609,1987,781-790.
    [75]Mo Wan-Ling,Liu Hai-Tao,Li Guang-Xing,et al.,Preparation of CuCl/1,10-phenan -throline immobilized on polystyrene and catalytic performance in oxidative carbonylation of methanol,Applied Catalysis A:General,2007,333(2):172-176.
    [76]Mo Wan-Ling,Xiong Hui,Li Guang-Xing,et al.,The catalytic performance and corrosion inhibition of CuCl/Schiff base system in homogeneous oxidative carbonylation of methanol,Journal of Molecular Catalysis A:Chemical,2006,247(1-2):227-232.
    [77]刘海涛,莫婉玲,李光兴,等,甲醇氧化羰化反应中含氮配体助催化剂的空间及电子效应,应用化学,2005,22(9):997-1001.
    [78]莫婉玲,黄荣生,李光兴,等,CuCl/菲咯啉/甲基咪唑催化甲醇/乙醇氧化羰化一 步合成碳酸甲乙酯,催化学报,2004,25(3):243-246.
    [79]莫婉玲,李光兴,朱永强,咪唑类化合物-CuCl络合催化剂在甲醇氧化羰基化反应中的催化性能,燃料化学学报,2003,31(2):124-127.
    [80]莫婉玲,熊辉,李光兴,等,Schiff碱在甲醇液相氧化羰化反应中的双功能作用,石油化工,2003,32(2):89-92.
    [81]莫婉玲,熊辉,李光兴,等,Schiff碱助剂对CuCl催化反应性能的影响,华中科技大学学报,2002,30(7):101-103.
    [82]莫婉玲,熊辉,李光兴,甲醇羰基化催化剂的合成、表征及溶解性研究,燃料化学学报,2001,29(2):165-168.
    [83]李光兴,王克洪,向兴源,等,液相氧化羰化合成碳酸二甲酯中试研究,华中理工大学学报,1999,27(3):37-39.
    [84]Cao Yong,Hu Jun-Cheng,Fan Kang-Nian,et al.,CuC1 catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethyl carbonate,Chemical Communications,2003,7:908-909.
    [85]任军,李忠,周媛,甲醇液相氧化羰基化合成碳酸二甲酯反应工艺条件研究,现代化工,2007,27(1):228-230.
    [86]Sato Yasushi,Kagotani Masahiro,Yamamoto Takakazu,Novel effective poly(2,2'-bipyridine-5,5'-diyl)-CuCl_2 catalyst for synthesis of dimethyl carbonate(DMC) by oxidative carbonylation of methanol,Applied Catalysis A:General,1999,185(2):219-226.
    [87]Sato Yasushi,Yamamoto Takakazu,Souma Yoshie,Poly(pyridine-2,5-diyl)-CuCl_2catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol:catalytic activity and corrosion influence,Catalysis Letters,2000,65(1-3):123-126.
    [88]Sato Yasushi,Kagotani Masahiro,Souma Yoshie,A new type support "bipyridine containing aromatic polyamide" to CuCl_2 for synthesis of dimethyl carbonate(DMC) by oxidative carbonylation of methanol,Journal of Molecular Catalysis A:Chemical,2000,151(1-2):79-85.
    [89]Sato Yasushi,Souma Yoshie,Novel type of heterogenized CuCl_2 catalytic systems for oxidative carbonylation of methanol,Catalysis Survey from Japan,2000,4(1):65-74.
    [90]Hu Jun-Cheng,Cao Yong,Fan Kang-Nian,et al.,A novel homogeneous catalyst made of poly(N-vinyl-2-pyrrolidone)-CuCl_2 complex for the oxidative carbonylation of methanol to dimethyl carbonate,Journal of Molecular Catalysis A:Chemical,2002,185(1):1-9.
    [91]Raab V,Merz M,Sundermeyer J,Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate(DMC),Journal of Molecular Catalysis A:Chemical,2001,175(1-2):51-63.
    [92]张震,王胜平,马新宾,等,碱式氯化铜对氧化羰基合成碳酸二乙酯催化活性的影响,化工学报,2006,57(4):805-809.
    [93]李光兴,莫婉玲,梅付名,等,乙醇在CuCl/Schiff碱上催化氧化羰化合成碳酸二乙酯,应用化学,2003,20(2):163-166.
    [94]Rivetti F,Dimethylcarbonate:an answer to the need for safe chemicals,Green Chemistry:challenging perspectives(Editors.Tundo P,Anastas P),London:Oxford University Press,2000:201-219.
    [95]Punnoose A,Dunn Brian C,Eyring Edward M,et al.,Characterization of CuCl_2/PdCl_2/activated carbon catalysts for the synthesis of diethyl carbonate,Energy & Fuels,2002,16(1):182-188.
    [96]Zhang Zhen,Ma Xin-Bin,Wang Sheng-Ping,et al.,Effect of treatment temperature on the crystal structure of activated carbon supported CuCl_2-PdCl_2 catalysts in the oxidative carbonylation of ethanol to diethyl carbonate,Journal of Molecular Catalysis A:Chemical,2007,266(1-2):202-206.
    [97]李光兴,王俊义,梅付名,吡啶-2-羧酸钴催化羰化合成碳酸二甲酯,石油化工,1999,28(7):440-443.
    [98]李亚玲,赵继全,郑严,溶胶-凝胶包埋吡啶羧酸钴及其对甲醇氧化羰基化反应的催化性能,催化学报,2002,23(5):395-399.
    [99]Kajimoto Nobuyuki,Nagata Teruyuki,Wada Masaru,A process for the preparation of 2-imidazolidinone,EP 244870,1987,1118-1121.
    [100]Kajimoto Nobuyuki,Nagata.Teruyuki,Wada Masaru,A process for the preparation.of 2-imidazolidinone derivative as intermediates for drugs and agrochemicals,JP 62265269,1987,109-113.
    [101]Rezende Marcos Caroli,Marques Carlos Alberto,Dall'Oglio,et al.,The reaction of hexachloroacetone with diamines,Liebigs Annalen/Recueil,1997,5,925-929.
    [102]Harnden Robert M,Calvin Donald W,Cyclic two-step production of diethylenetriamine,U.S.Patent 4387249,1983,201-203.
    [103]Hackl Kurt A,Roessler Markus,Muellner Martin,et al.,Preparation of substituted ureas as organic reaction solvents,DE 4302860,1994,960-965.
    [104]杨瑛,陆世维,硒催化的乙二胺、乙醇胺和环胺的氧化羰基化反应,催化学报,2000,21(4):355-358.
    [105]Yang Ying,Lu Shi-Wei,Selenium-catalyzed reductive carbonylation of nitrobenzene with amines as coreagents to give unsymmetric phenylureas,Tetrahedron Letters,1999,40(26):4845-4846.
    [106]Mizuno Takumi,Takahashib Junko,Ogawa Akiya,Synthesis of 2-oxazolidones by sulfur-assisted thiocarboxylation with carbon monoxide and oxidative cyclization with molecular oxygen under mild conditions,Tetrahedron,2002,58(39):7805-7808.
    [107]McCusker Jennifer E,Grasso Cara A,McElwee-White Lisa,et al.,Catalytic oxidative carbonylation of primary and secondary α,ω-diamines to cyclic ureas,Orgnic Letters,1999,1(7):961-964.
    [108]Dunn Brian C,Guenneau Catherine,Eyring Edward M,et al.,Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst,Energy &Fuels,2002,16(1):177-181.
    [109]Zaid Gene H,Wolf Beth Ann,Process and catalysts for the manufacture of dialkyl carbonates,U.S.Patent 6452036,2002,137-142.
    [110]Plichta E J,Behl W K,A low-temperature electrolyte for lithium and lithium-ion batteries,Journal of Power Sources,2000,88(2):192-196.
    [111]Muskat Irving E,Strain Franklin,Carbonic acid esters,U.S.Patent 2379250,1945,221-226.
    [112]Fan Ming-Ming,Zhang Ping-Bo,Ma Xin-Bin,Study on Wacker-type catalysts for catalytic synthesis of diethyl carbonate from ethyl nitrite route,Fuel,2007,86:902-905.
    [113]Jiang Xuan-Zhen,Su Yue-Hua,Chen Shu-Hua,Novel synthesis of diethyl carbonate over palladium/MCM-41 catalysts,Catalysis Letters,2000,69(3-4):153-156.
    [114]Gasc Fabien,Thiebaud-Roux Sophie,Mouloungui Zephirin,Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate,Journal of Supercritical Fluid,2009,50(1):46-53.
    [115]Wang Dong-Peng,Yang Bo-Lun,Zhai Xiao-Wei,et al.,Synthesis of diethyl carbonate by catalytic alcoholysis of urea,Fuel Process Technology,2007,88(8):807-812.
    [116]Mei Fu-Ming,Chen E-Xiang,Li Guang-Xing,et al.,Mg-Al-O-t-Bu Hydrotalcite as an efficient catalyst for the transesterification of dimethyl carbonate with ethanol,React Kinetic Catalysis Letters,2008,93(1):101-108.
    [117]Zielinska-Nadolska Iwona,Warmuzinski Krzysztof,Richter Joachim,Zeolite and other heterogeneous catalysts for the transesterification reaction of dimethyl carbonate with ethanol,Catalysis Today,2006,114(2-3):226-230.
    [118]Liu Tuan-Chi,Chang Chung-Shin,Vapor-phase oxidative carbonylation of ethanol over CuCl-PdCl_2/C catalyst,Applied Catalysis A:General,2006,304:72-77.
    [119]莫婉玲,梅付名,李光兴,等,液相氧化羰化合成碳酸二乙酯及动力学研究,天然气化工,2003,28(4):1-6.
    [120]Baleizao Carlos,Garcia Hermenegildo,Chiral salen complexes:an overview to recoverable and reusable homogeneous and heterogeneous catalysts,Chemical Review,2006,106(9):3987-4043.
    [121]Johansson Mikael,Purse Byron W,Terasaki Osamu,et al.,Aerobic oxidations catalyzed by zeolite-encapsulated Cobalt Salophen,Advanced Synthesis & Catalysis,2008,350(11-12):1807-1815.
    [122]吕存琴,过渡金属席夫碱配合物的催化性能的量子化学研究,太原理工大学硕士论文,保存地点:太原理工大学图书馆,2007,42-47.
    [123]L(u|¨) Xing-Cai,Yang Jian-Guang,Zhang Wu-Gao,et al.,Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver,Energy & Fuels,2005,19(5):1879-1888.
    [124]Crandall John W,Deitzler James E,Kapicak Louis A,et al.,Process for the hydrolysis of dialkyl carbonates,U.S.Patent 4663477,1987,281-291.
    [125]Paolo De Filippis,Marco Scarsella,Carlo Borgianni,et al.,Production of dimethyl carbonate via alkylene carbonate transesterification catalyzed by basic salts, Energy & Fuels, 2006, 20(1): 17-20.
    
    [126] Chong Shik Chin, Dongchan Shin, Gyongshik Won, et al., The effects of catalyst composition on the catalytic production of dimethyl carbonate, Journal of Molecular Catalysis A: Chemical, 2000, 160: 315-321.
    
    [127] Zhang Yi-Hua, Daniel N Briggs, Alexis T Bell, Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y ZSM-5 and Mordenite, Journal of Catalysis, 2007, 251: 443-452.
    
    [128] Sakthivel Ayyamperumal, Sun Wei, Raudaschl-Sieber Gabriele, et al., Grafting of a tetrahydro-salen copper(II) complex on surface modified mesoporous materials and its catalytic behaviour, Catalysis Communications, 2006, 7(5): 302-307.
    
    [129] Sing K S W, Everett D H, Haul R A W, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, 1985, 57(4): 603-621.
    
    [130] Kenneth J Balkus Jr, Mona Eissa, Rosario Levado, Oxidation of alkanes catalyzed by zeolite-encapsulated perfluorinated ruthenium phthalocyanines, Journal of American Chemical Society, 1995, 117: 10753-10754.
    
    [131]曹楚南,腐蚀电化学原理,北京:化学工业出版社,2008,15-16.
    
    [132] Khalid Mesfar, Bernard Carre, Fethi Bedioui, et al., Electrochemistry of zeolite-encapsulated complexes, Journal of Material Chemistry, 1993, 3(8): 873-876.
    
    [133] Fethi Bedioui, Elisabeth De Boysson, Jacques Devynck, et al., Electrochemistry of zeolite-encapsulated cobalt salen complexes in acetonitrile and dimethyl sulphoxide solutions, J. Chem. Soc. Faraday Trans., 1991, 87(24): 3831-3834.
    
    [134] Yoshida Tohru, Kambe Nobuaki, Murai Shinji, et al., A new synthesis of cyclic ureas from aromatic diamines by selenium-assisted carbonylation with carbon monoxide, Tetrahedron Letters, 1986, 27(26): 3037-3040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700