环糊精和表面活性剂对有机污染物的增溶及在土壤修复中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂和环糊精对有机污染物有良好的增溶作用,将它们用于由弱极性有机物污染的土壤和地下水的修复具有修复周期短,污染物去除率高的优点。本论文以β-环糊精和羧甲基环糊精及表面活性剂为研究对象,深入研究了它们对弱极性有机污染物的增溶作用,探讨了影响增溶作用的因素,比较了环糊精和各种表面活性剂的增溶能力。研究了环糊精和表面活性剂对土壤中有机污染物的去除作用,并对常州染化厂原址的污染土壤进行了实验室和现场修复研究。提供了修复同类污染土壤的实用方法。最后还用环境科学常用的评价生物对环糊精的毒性进行了测定。
    本论文的主要研究成果概括如下:
    一.用简便方法合成了β-环糊精的衍生物羧甲基环糊精。系统研究了β-环糊精和羧甲基环糊精对多环芳烃和卤代芳烃类化合物的增溶作用,探讨了影响增溶作用的因素。
    (1)β-环糊精和羧甲基环糊精对弱极性有机污染物有良好的增溶作用。PAH和卤代芳烃在环糊精溶液中的表观溶解度随环糊精的浓度线性增加。增溶作用主要是由于弱极性有机物与环糊精形成包合物引起的。
    (2)由于环糊精空腔的大小是固定的,有机物分子的几何形状与空腔的匹配程度是决定增溶作用大小的关键因素。分子的大小与空腔的匹配程度越好,形成的包合物越稳定,增溶作用越强。
    (3)对于分子结构相似的卤代芳烃类化合物,增溶作用的大小与化合物的辛醇-水分配系数logKow呈线性关系。LogKow越大,增溶作用越强。
    (4)对同一化合物羧甲基环糊精的增溶能力小于β-环糊精,可能是由于羧甲基的体积和极性比羟基大,空腔外羧甲基的存在对弱极性有机物向空腔中的扩散和分配起阻碍和排斥作用所致。
    二.以十二烷基硫酸钠(SDS),十六烷基三甲基溴化铵(CTAB)和脂肪醇聚氧乙烯醚(LAE)作为阴离子、阳离子和非离子表面活性剂的代表,比较了不同类型表面活性剂对三氯苯的增溶作用。研究了三种类型表面活性剂和羧甲基环糊精对三氯苯增溶的联合作用。
    (1)非离子表面活性剂LAE对三氯苯的增溶能力高于阴离子表面活性剂SDS和阳离子表面活性剂CTAB。主要是由于表面活性剂的胶束结构和三氯苯在胶束中的增溶方式不同造成的。
Surfactants and cyclodextrins are good solubilizers to organic contaminants.Great advantages, which include high contaminant removal ratio and shortremediation period, have been observed when they are used in remediation oflow-polarity organic compounds contaminated soil and aquifer. In this paper, thesolubilization abilities of β-cyclodextrin, carboxymethyl-β-cyclodextrin, andsurfactants to low-polarity organic contaminants has been investigatedsystematically. Effects on the solubilization of these solubilizers are discussed indetail. The solubilization power of different cyclodextrins and surfactants hasbeen compared. Laboratory and in situ remediation study for the contaminatedsoil in the original site of Changzhou Dye Chemical Plant have been carried out.A useful method for the remediation of similar contaminated site has beenproposed. The acute toxicity of β-cyclodextrin and carboxymethyl-β-cyclodextrinto Daphnia magna and photobacteria is reported, in order to estimate thepotential environmental biological effects of cyclodextrins.
    The major achievements in the paper include the following aspects:
    1. A simple synthetic method for the synthesis of β-cyclodextrin derivativecarboxymethyl-β-cyclodextrin is reported. The solubilization ofβ-cyclodextrin and carboxymethyl-β-cyclodextrin to polycyclic aromatichydrocarbon and aromatic halides have been investigated systematically.Effects on the solubilization of these solubilizers are discussed in detail.
    (1) β-Cyclodextrin and carboxymethyl-β-cyclodextrin has great solubilizationpower to low polarity organic compounds. The apparent solubility of PAHand aromatic halides in cyclodextrin solution increased linearly with theincreasing of cyclodextrin concentration. The solubilization effect is causeby the formation of inclusion complexes between cyclodextrin and organiccompounds.
    (2) Because cyclodextrins have fixed cavity size, the fitness of moleculestructure with the cyclodextrin cavity has predominant effect on thesolubilization efficiency. The better the fitness of the molecule, the more
    stable of inclusion complex formed, the greater the solubilization power.(3) The solubilization effect is also related to the octanol-water partitioncoefficient logKow. For the aromatic halides investigated, which have asimilar molecular size, the solubilization efficiency is linearly parallel tothe logKow of the compounds.(4) The solubilization power of carboxymethyl-β-cyclodextrin is lower thanthat of β-cyclodextrin for the same compound. This phenomenon isinterpreted by the difference in polarity and size of carboxymethyl groupand hydroxyl group. The bigger molecular size and higher polarity ofcarboxymethyl group may impede the partition of low polaritycompounds from water to the cyclodextrin cavity.2. The solubilization power of different types of surfactants to trichlorobenzenehas been compared with sodium laurylsulfate (SDS), cetyltrimethylaminiumbromide (CTAB), and alkyl polyethoxy ether (LAE) as representatives. Theco-effect of three types of surfactants and carboxymethyl-β-cyclodextrin wasinvestigated.(1) The solubilization power of non-ionic surfactant LAE to trichlorobenzeneis greater than ionic surfactants SDS and CTAB. The main reason for thisdifference is due to the difference in micellar structure and solubilizationbehavior of trichlorobenzene in the micelle.(2) The solubilization of surfactants to trichlorobenzene is not only observedabove micellar concentration (CMC) of surfactants, but also appearedbelow CMC. Present of surfactant multiplier in the solution at lowconcentration and the decrease of solution polarity in the presence ofsurfactant monomer may be contributed to the effect.(3) The presence of different surfactants in the carboxymethyl-β-cyclodextrin(CMCD) solution has different effect on the solubilization behavior oftrichlorobenzene in the system. The apparent solubility oftrichlorobenzene in CMCD solution in the presence of surfactants is notincreased linearly with the increase of CMCD concentration. Comparedwith the solubility in absence of surfactants, the solubility oftrichlorobenzene is decreased in some degree at the presence of surfactantsin CMCD solution. But, at low CMCD concentration, the addition of SDS
    could result in a significant increase of trichlorobenzene solubility. Thisphenomenon may be caused by formation of mixed micelle of surfactantswith CMCD, and the mixed micelle has better solubilization power ofsurfactant.(4) Cyclodextrins have great inclusion power to surfactants. Addition ofCMCD to surfactant solution could completely depress the solubilizationeffect of surfactants to trichlorobenzene.3. Removal of aromatic contaminants from polluted soil by flushing withsurfactant solution has been investigated. Laboratory and in situ remediationstudy for the contaminated soil in the original site of Changzhou DyeChemical Plant has been carried out. Aromatic contaminants in soil canremove effectively by Surfactant solution. The removal efficiency for phenol,and nitrobenzene are 93.97%, 78.74% respectively by flushing with 1.0g/Lsodium dodecylbenzosulfate solution. The elution ratio of major contaminantsfrom the in situ soil sample is also higher than 90%.4. Studies for the solubilization and removal of naphthalene from soil withCMCD and non-ionic surfactant indicates that the two solubilizers have goodsolubilization power to naphthalene in aqueous solution. Although hesolubilization power of non-ionic surfactant LAE to naphthalene is about 4 to5 times higher than that of CMCD, 10g/L LAE has little effect on removal ofnaphthalene from soil, compared to the high efficiency (53.9% removal) ofCMCD at the same concentration. Sorption of surfactant on soil has greatlydecreased the solubilization power of non-ionic surfactant to contaminant.5. The acute toxicity of β-cyclodextrin and carboxymethyl-β-cyclodextrin isdetermined with Daphnia magna and photobacteria. The EC50 value showsthat β-cyclodextrin has no toxicity to photobacteria, while toxic to Daphniamagna at high concentration (EC50=1.27g/L). Compare to β-cyclodextrin,carboxymethyl-β-cyclodextrin is quite toxic to photobacteria (EC50=0.28g/L),and has similar toxicity to Daphnia magna.
引文
1. Gierke, John S.;Powers, Susan E. Water Environ. Res. 69, (2): 196 (1997)
    2. Ji, W. Dahmani, A.;Ahlfeld, D.P.;Lin, J.D.;Hill, E. Ground Water Monit. Rem. 13: 115 (1993)
    3. Mackay, D.M.;Cherry, J.A. Environ. Sci. Technol. 23, (6): 630(1989)
    4. Chevalier, L. R.;Masten, S.I.;Wallace, R.B.;Wiggert, D.C. Ground Water Monit. Rem. 17: 89 (1997)
    5. Chen, L.;Knox, R.C. Ground Water Monit. Rem. 17:161 (1997)
    6. Knox, R.C. Ground Water 35, (6): 948 (1997)
    7. Abdul, A. S.;Gibson, T. L.;Rai, D. N. Ground Water 28, (6): 920(1990)
    8. Pennell, K. D.;Abriola, L. M.;Weber Jr, W. J. Environ. Sci. Technol. 27, (12): 2332 (1993)
    9. Shiau,B. J.;Sabatini, D. A.;Harwell, J. H. Ground Water 32, (4): 561 (1994)
    10. Adeel, Z.;Luthy, R. G. Environ. Sci. Technol. 29, (4): 1032 (1995)
    11. Wood, A. L.;Bouchard, D. C.;Brusseau, M. L.;Rao, P. S. C. Chemoshere 21: 575 (1990)
    12. Brusseau, M. L.;Wood, L. A.;Rao, P. S. C. Wang, X. Environ. Sci. Technol. 25, (5): 903 (1991)
    13. Augustijn, D. C. M.;Jessup, R. E.;Rao, P. S.;Wood, A. L. J. Environ. Eng. 120, (1): 42 (1994)
    14. Imhoff, P. T.;Gleyzer, S.N.;Mcbride, J. F.;Vancho, L. A.;Okuda, I.;Miller, C. T. Environ. Sci. Technol. 29, (8): 1966 (1995)
    15. Rao, P. S. C.;Annable, M. D.;Sillan, R. K.;Dai, D.;Hatfield, K.;Graham, W. D.;Wood, A. L.;Enfield, C. G. Water Resour. Res. 33, (12): 2673 (1997)
    16. Magee, B. R.;Lion, L. W.;Lemly, A. T. Environ. Sci. Technol. 25, (2): 323 (1991)
    17. Johnson, W. P.;Amy, G. L.;Chapra, S. C. J. Environ. Eng. 121, (6): 438 (1995)
    18. Wang, X.;Brusseau, M. L. Environ. Sci. Technol. 27, (13): 2821 (1993)
    19. Brusseau, M. L.;Wang, X.;Hu, Q. Environ. Sci. Technol. 28, (5): 952 (1994)
    20. McCray, J. E.;Brusseau, M. L. Environ. Sci. Technol. 32, (9): 1285 (1998)
    21. Rosen, M. J.;Surfactant And Interfacial Phenomena 2nd ed, John Wiley & Sons, New York, 1989;pp170
    22. 赵国玺 表面活性剂物理化学 北京大学出版社,1994
    23. Gehlen, M. H.;DeSchrvver F. C. Chem. Rev. 93: 199 (1993)
    24. Hartley, G. S. Nature 163: 769 (1949)
    25. Philipoff, W. J. Colloid Sci. 5: 169 (1950)
    26. RiegeLman, S.;Allawala, N. A.;Hrenoff, M. K.;Srait, L. A. J. Colloid Sci. 13: 208 (1958)
    27. Eriksson, J. C.;Gilberg, G. Acta Chem. Scand. 20: 2019 (1996)
    28. Tokiwa, F. J. Phys. Chem. 72: 1214 (1968)
    29. Edwards, D. A.;Luthy, R. G.;Liu, Z. Environ. Sci. Technol. 25, (6): 127 (1991)
    30. Hurter, P. N.;Hatton, T. A. Langmuir 8:1291 (1992)
    31. Saito, H.;Shinoda, K. J. Colloid Interface Sci. 24: 10 (1967)
    32. Fountain, J, C.;Klimek, A.;Beikirch, M. G.;Middleton, T. M. J. Hazard. Mater. 28: 295 (1991)
    33. Diallo, M. S.;Abriola, L. M.;Weber, W. J. Jr. Environ. Sci. Technol. 28: 1829 (1994)
    34. Pennell, K. D.;Adinolfi, A.M.;Abriola, L.M.;Diallo, M. S. Environ. Sci. Technol. 31: 1382 (1997)
    35. Jafvert, C. T.;Van Hooof, P. L.;Heath, J.C. Water Res. 28: 1009 (1994)
    36. Schwuger, M. J. Kolloid-Z. Z. Polymere 240:872 (1970)
    37. Guha, S.;Jaffe, P. R.;Peters, C. A. Environ. Sci. Technol. 32: 903 (1998)
    38. Liu, Z.;Laha, S.;Luthy, R. G. Wat. Sci. Technol. 23: 475 (1991)
    39. Vigon, B. W.;Rubin, A. J. J. Wat. Pollut. Control Fed. 61: 1233 (1989)
    40. Edwards, D. A.;Adeel, Z.;Luthy, R.G. Environ. Sci. Technol. 28: 1550 (1994)
    41. Ko, Seok-oh;Schlautman, M. A.;Carraway, E. R. Environ. Sci. Technol. 32: 2769 (1998)
    42. Wu, J.;Harwell, J. H.;O'Rear, E. A. Langmuir 3,(4): 531 (1987)
    43. Nayyar, S. P.;Sabatini, D. A.;Harwell, J. H. Environ. Sci. Technol. 28: 1874 (1994)
    44. Sun, S.;Inskeep, W. P.;Boyd, S. A. Environ. Sci. Technol. 29: 903 (1995)
    45. Yeom, I. T.;Ghosh, M. M.;Cox, C. D. Environ. Sci. Technol. 30: 1589 (1996)
    46. Hayworth, J. S.;Burris, D. R. Ground Water 34, (2): 274 (1996)
    47. Sun, S.;Boyd, S. A. Environ. Sci. Technol. 27: 1340 (1993)
    48. Bai, G. Y.;Brusseau, M. L.;Miller, R. M. J. Contam. Hydrol. 25: 157 (1997)
    49. Abriola, L. M.;Dkker, T. J.;Pennell, K. D. Environ. Sci. Technol. 27: 2341 (1993)
    50. Abdul, A. S.;Gibson, T. L. Environ. Sci. Technol. 25: 665 (1991)
    51. Sahoo, D.;Smith, J. A.;Imbrigiotta, T. E.;McLellan,H. M. Environ. Sci. Technol. 32: 1686 (1998)
    52. Pennell, K. D.;Jin, D. M.;Abriola, L. M.;Pope, L.M. J. Contam. Hydrol. 16: 35 (1994)
    53. Grimberg, S. J.;Miller, C. T.;Aitken, M. D. Environ. Sci. Technol. 30: 2967 (1996)
    54. Mason, A. R.;Kueper, B. H. Environ. Sci. Technol. 30: 3205 (1996)
    55. Arytyunyan, R. S.;Beileryan, N. M. Colloid J. USSR, Engl.Trans. 45: 353 (1983)
    56. Carrell, B. J. J. Colloid Interface Sci. 79: 126 (1981)
    57. Ko, Seok-oh;Schlautman, M. A. Environ. Sci. Technol. 32: 2776 (1998)
    58. Adeel, Z.;Luthy, R. G.;Edward, D. A. Wat. Resour. Res. 31 (8): 2035 (1995)
    59. Deitsch, J. J.;Smith,J. A. Environ. Sci. Technol. 29: 1069 (1995)
    60. Okuda, I.;McBride, J. F.;Gleyzer, S. N.;Miller, C. T. Environ. Sci. Technol. 30: 1852 (1996)
    61. Sahoo, D.;Smith, J. A. Environ. Sci. Technol. 31: 1910 (1997)
    62. Desai, J. D.;Desai, A. J. Biosurfactants, Edited by Kosaric , N. Marcel Dekker, New York (1993)
    63. Roy, D.;Kommalapati, R. R.;Mandava, S. S.;Valsaraj, K. T.;Constant, W. D. Environ. Sci. Technol. 31: 670 (1997)
    64. Kommalapati, R. R.;Valsaraj, K. T.;Constant, W. D.;Roy, D. Water Res. 31, (9): 2161 (1997)
    65. Villier, A. C. R. Acad. Sci. 112: 536 (1891)
    66. Gramera, R. E.;Caimi, R. J. U. S. Patant 3,459,731 (August 1969)
    67. Parmerter, S. M.;Allen, E. E.;LeRoy, D. H. U. S. Patent 3,453,259 (July 1969)
    68. Pitha, J.;Pitha, J. J. Pharm. Sci. 74: 987 (1985)
    69. Pitha, J.;Milecki, J.;Fales, H.;Pannel, L.;Uekama, K. Inter. J. Pharm. 29: 73 (1986)
    70. Szejtli, J. Starch 34: 379 (1982)
    71. Puglisi, G.;Santagati, N.A.;Pignatello R. Drug Dev. Ind. Pharm. 16(3): 395 (1990)
    72. Kata , M.;Haragh, L.;Hodi, K. P. Acta Pharm.Hung. 60(1): 40 (1990)
    73. 陈星灿,陈济民,姚学舜等 中草药 21(8):347 (1990)
    74. Endo, Noboru;Maruyama, Kazuo JP90,195,846 1990
    75. Hisashi, Okemoto Gekkan Fudo Kemikaru 9(10): 51 (1993)
    76. 古俊,常雁,潘景浩 应用化学 13(4):5 (1996)
    77. Remi, E.;Fenivesi, Eva;Runak, I. J. Incl. Phenom. Mol. Recognit. Chem. 25: 203 (1996)
    78. Nagase, Shinobu;Kataoka, Masamitsu;Naganawa, Ryuichi Anal.Chem. 62: 1252(1990)
    79. Bicchi, C.;Manzin, V.;D'Amato, A. Flavour Fragrance J. 10(3): 127 (1995)
    80. Sepaniak, M. J.;Copper, C. L.;Whitaker, K. W. Anal. Chem. 67(13): 2037 (1995)
    81. Crini, G.;Morcellet, M.;Torri, G. J. Chromatogr. Sci. 34(11): 477 (1996)
    82. Guyot, M.;Fawaz, F.;Bonini, F. Bull. Soc. Pharm. Bordeaux 133: 191 (1994)
    83. Kaneto, Uekama;Fumitoshi, Hirayama;Tetsumi, Irie High Perform. Biomater. 789 (1991)
    84. Keda, T. I.;Moon, H.-t.;Morigaki, T. Minute Int. Symp. Cyclodextrins 6th pp669 (1992)
    85. 高士祥,王连生 环境科学进展 6(4):80 (1998)
    86. Wang, Xiaojiang;Brusseau, Mark L. Environ. Sci. Technol. 27(13): 2821 (1993)
    87. Schuette, Jodi M.;Nodou, T. T. J. Am. Chem. Soc. 115: 292 (1993)
    88. Wang, Xiaojiang;Brusseau, M. L. Environ. Sci. Technol. 29(9): 2346 (1995)
    89. Brusseau, M. L.;Wang, X.;Hu, Q. Environ. Sci. Technol. 28(5): 952 (1994)
    90. Wang, Xiaojiang, Brusseau, M. L. Environ. Sci. Technol. 29(10): 2632 (1995)
    91. Brusseau, M. L.;Wang, X.;Wang, W. Environ. Sci. Technol. 31(4): 1087 (1997)
    92. Park, J. W.;Song, H. J. J. Phys. Chem. 93: 6454 (1989)
    93. Hashimoto, S.;Thomas, J. K. J. Am. Chem. Soc. 107: 4655 (1985)
    94. Singer, Y.;Shity, H.;Bar, R. Appl. Microbiol. Biotechnol. 35: 731 (1991)
    95. Gruiz, K.;Fenyvesi, E.;Kriston, E.;Molner, M. J. Inclusion Phenom. Mol. Recognit. Chem. 25: 233 (1996)
    96. McCray, J. E.;Bruseau, M. L. Environ. Sci. Technol. 32: 1285 (1998)
    97. Szejtli, Joszef;Fenyves, Eva JP 95,00,946 1995
    98. Fetzer, John C. US Patent 5,190,663 1993
    99. Murai, S.;Imajo, S.;Maki, Y. J. Colloid Interface Sci. 183(1):118 (1996)
    100. Murai, S.;Imajo, S.;Takasu, Y.;Takahashi, K.;Hattori, K. Environ. Sci. Technol. 32: 782 (1998)
    101. Butterfield, T.;Agbaria, R. A.;Warner, I. M. Anal.Chem. 68(7): 1187 (1996)
    102. Kamiya, Nakamura, M.;K.;Sasaki, C. Chemosphere 30(4): 653 (1995)
    103. Beyrich, Th.;Gruenert, R.;Kottke, K. Pharmazie 51(4): 248 (1996)
    104. Huang, Xixian;Arai, Hidihiko;Matsuhasi, Shinpei Chem. Lett. (2): 159 (1996)
    105. Bizzigotti, G. O.;Reynolds, D. A.;Kueper, B. H. Environ. Sci. Technol. 31: 472 (1997)
    106. 宋文吕 南京大学硕士学位论文 1997,6
    107. Olah, Jezsef;Cserhati, T.;Szejtli, J. Water Res. 22(11): 1345 (1988)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700