基于离子自组装和环糊精包结作用的超分子聚集体的构建和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学的研究对象是各种非共价相互作用的性质,以及通过这些非共价作用设计构建所得超分子材料的结构和功能。利用各种非共价键(如静电吸引、氢键、和主客体包结等)的作用规律对超分子体系进行适当调控,可以实现化学领域的分子信息学,包括在分子水平和超分子水平上的复制、传递、构建等过程中的信息存储。对超分子体系的研究有助于了解不同非共价键的作用规律,并进一步利用这些规律构建高度有序的功能超分子材料。本论文选取静电作用和主客体包结为主要驱动力,对以下超分子体系的结构和性质进行了详细的研究。
     1、利用简便的离子自组装(ionic self-assembly, ISA)方法,通过复合对氨基偶氮苯盐酸盐(4-aminoazobenzene hydrochloride, AzoHCl)和脱氧胆酸钠(1-Adamantanamine hydro-chloride, NaDC),制备得到性质稳定的有机纳米棒。并利用1H NMR、POM、TEM、SEM、LCSM、DSC/TGA、XRD、UV-vis等表征手段对产物的结构和性质进行研究。复合物中AzoHCl和NaDC的化学计量比确认为1:2,构筑单元由一分子的AzoHCl和两分子的NaDC分别以静电力和氢键相互作用,说明在ISA中除静电作用外,其它非共价键也起重要作用。该有序聚集结构具有良好的结晶性,可以激发出荧光,在荧光共聚焦显微镜下可以观察到清晰的荧光图像。在激光光源激发下,获得了稳定的荧光光谱。通过简便的ISA方法引入带有一定功能基团的构筑单元,从而得到具有所需结构和性质的功能材料,这类设计对于功能性纳米材料的构建和应用具有一定的借鉴意义。
     2、采用简便的ISA方法复合脱氧胆酸钠(sodium deoxycholate, NaDC)和1-金刚烷铵盐酸盐(1-Adamantanamine hydro-chloride, AdCl),制备得到有机单晶,通过单晶解析方法得到了ISA产物精确的分子排列信息。另外,利用环糊精包结的方法得到了三元热敏超分子体系。环糊精和金刚烷及其衍生物可以形成稳定的包结物,包结常数可达104-10’M-1。这种对温度敏感的焓驱动包结平衡为构建热敏超分子体系提供了可能,此处的实验结果证明了这种可能性。三元超分子体系可以在5℃下为澄清透明溶液,并稳定三个月以上;对该热敏体系加热至25℃或者更高温度,可通过破坏包结平衡进而破坏超分子的两亲性,析出不含环糊精的二元单晶。本研究利用ISA和环糊精包结两种非共价作用为主要驱动力,协同其他非共价作用,设计组装得到热敏超分子体系,对于构建外界刺激响应性超分子体系具有一定借鉴意义。另外,将盐效应引入ISA体系的单晶培养中的尝试,对单晶培养也有一定参考价值。
Supramolecular chemistry is the study on various non-covalent interactions (such as electrostatic attraction, hydrogen bonding arrays, host-guest inclusion, etc.) and the structures or functions of supramolecular materials fabricated by these non-covalent interactions. The chemistry of molecular information, including replication, transfer, and fabrication on molecular and supramolecular level, could be achieved through appropriate manipulation of the non-covalent interactions. The research of supramolecular systems is helpful to learn about their mechanism and further to construct highly ordered functional materials. The present thesis is related to the design and assembly of supramolecular aggregates using ionic attraction and cyclodextrins inclusion as main driving forces, and the following assembly systems were studied in detail.
     1. Through a facile ionic self-assembly (ISA), the organic nanosticks by complexing of 4-aminoazobenzene hydrochloride (AzoHCl) and 1-Adamantanamine hydro-chloride (NaDC) have been synthesized. The properties and structures of the nanosticks are characterized respectively by various techniques including 1H NMR, POM, TEM, SEM, LCSM, DSC/TGA, XRD, and UV-visible spectroscopy. The stoichiometry between AzoHCl and NaDC in the complexes is determined as a 1:2 molar ratio. The basic building block is composed of one AzoHCl combined with two NaDC by electrostatic interaction and hydrogen bond respectively, which proves that electrostatic interaction is not the only main driving force in ISA, and other interactions such as H-bonding may also be important driving force cooperated with electrostatic interaction. The nanosticks with well crystalline and fluorescent feature could be observed via a laser con-focal scanning microscopy (LCSM). Various functional supramolecular materials could be produced via such a facial ISA strategy using small organic molecules with functional groups.
     2. The ionic self-assembled organic single-crystals are obtained through complexing two functional molecules, sodium deoxycholate (NaDC) and 1-Adamantanamine hydro-chloride (AdCl), and the exact molecular arrangement of ISA product is obtained from single-crystal analysis. Meanwhile, the amphiphilicity of the complex could be changed by a supramolecular approach using cyclodextin (CD) inclusion, and a thermo-sensitive system is therefore obtained. The high association constants between Ad derivatives andβ-CD (β-cyclodextin) have been reported on the order of 104-105 M"1. The enthalpy-driven and temperature dependent association equilibrium makes it possible for CD inclusions to be thermo-sensitive. The obtained results here have confirmed the expectation thatβ-CD could include Ad blocks and form thermo-sensitive supramolecular inclusions. This three-component superamolecular solution is stable and keeps transparency for more than three months at 5℃. When the temperature was increased from 5 to 25℃or higher, the molecular amphiphilicity is changed via inclusion equilibrium shifting, and another two-component microrods were observed appearing from this three-component solution. Thermo-sensitive supermolecular system is obtained via the cooperation of ISA, cyclodextrin inclusion and other non-covalent interactions, which indicates that various external-stimuli responsive materials could be fabricated based on these non-covalent interactions. In addition, the observed salt effect could be considered in the process of single crystal growth for other ISA systems.
     Thanks for the supports from the National Natural Science Foundation of China (No.20773080 and 20973104).
引文
[I]Lehn, J. M., Cryptates:inclusion complexes of macropolycyclic receptor molecules. Pure Appl. Chem.1978,50 (9-10),871-892.
    [2]Lehn, J.-M., Supramolecular Chemistry-Concepts and Perspectives. VCH Publishers: Weinheim,1995.
    [3]Lehn, J.-M., Toward complex matter:Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences 2002,99 (8),4763-4768.
    [4]Faul, C. F. J.; Antonietti, M., Ionic Self-Assembly:Facile Synthesis of Supramolecular Materials. Advanced Materials 2003,15 (9),673-683.
    [5]Lehn, J.-M., Supramolecular Chemistry. Science 1993,260 (5115),1762-1763.
    [6]Tiddy, G. J. T.; Mateer, D. L.; Ormerod, A. P.; Harrison, W. J.; Edwards, D. J., HIGHLY ORDERED AGGREGATES IN DILUTE DYE WATER-SYSTEMS. Langmuir 1995,11 (2), 390-393.
    [7]Hahn, C.; Spring, I.; Thunig, C.; Platz, G.; Wokaun, A., Investigation of the photoinduced optical anisotropy of azo dye mesophases. Langmuir 1998,14 (24),6871-6878.
    [8]Imae, T.; Gagel, L.; Tunich, C.; Platz, G.; Iwamoto, T.; Funayama, K., Formation of supramolecular fibril by water-soluble azo dye. Langmuir 1998,14 (8),2197-2200.
    [9]von Berlepsch, H.; Bottcher, C.; Ouart, A.; Burger, C.; Dahne, S.; Kirstein, S., Supramolecular structures of J-aggregates of carbocyanine dyes in solution. Journal of Physical Chemistry B 2000,104 (22),5255-5262.
    [10]von Berlepsch, H.; Bottcher, C.; Ouart, A.; Regenbrecht, M.; Akari, S.; Keiderling, U.; Schnablegger, H.; Dahne, S.; Kirstein, S., Surfactant-induced changes of morphology of J-aggregates:Superhelix-to-tubule transformation. Langmuir 2000,16 (14),5908-5916.
    [11]Guan, Y.; Antonietti, M.; Faul, C. F. J., Ionic self-assembly of dye-surfactant complexes: Influence of tail lengths and dye architecture on the phase morphology. Langmuir 2002,18 (15),5939-5945.
    [12]Faul, C. F. J.; Antionietti, M., Facile synthesis of optically functional, highly organized nanostructures:Dye-surfactant complexes. Chem.-Eur. J.2002,8 (12),2764-2768.
    [13]Zakrevskyy, Y.; Stumpe, J.; Faul, C. F. J., A supramolecular approach to optically anisotropic materials:Photosensitive ionic self-assembly complexes. Advanced Materials 2006,18(16), 2133-+.
    [14]Zakrevskyy, Y.; Faul, C. F. J.; Guan, Y.; Stumpe, J., Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases. Advanced Functional Materials 2004,14 (9),835-841.
    [15]Franke, D.; Vos, M.; Antonietti, M.; Sommerdijk, N.; Faul, C. F. J., Induced supramolecular chirality in nanostructured materials:Ionic self-assembly of perylene-chiral surfactant complexes. Chem. Mat.2006,18 (7),1839-1847.
    [16]Huang, Y. W.; Yan, Y.; Smarsly, B. M.; Wei, Z. X.; Faul, C. F. J., Helical supramolecular aggregates, mesoscopic organisation and nanofibers of a perylenebisimide-chiral surfactant complex via ionic self-assembly. Journal of Materials Chemistry 2009,19(16),2356-2362.
    [17]Wei, Z. X.; Laitinen, T.; Smarsly, B.; Ikkala, O.; Faul, C. F. J., Self-assembly and electrical conductivity transitions in conjugated oligoaniline-Surfactant complexes. Angew. Chem.-Int. Edit.2005,44 (5),751-756.
    [18]Nakashima, T.; Kimizuka, N., Light-Harvesting Supramolecular Hydrogels Assembled from Short-Legged Cationic L-Glutamate Derivatives and Anionic Fluorophores. Advanced Materials 2002,14 (16),1113-1116.
    [19]Camerel, F.; Ulrich, G.; Barbera, J.; Ziessel, R., Ionic self-assembly of ammonium-based amphiphiles and negatively charged bodipy and porphyrin luminophores. Chem.-Eur. J.2007, 13 (8),2189-2200.
    [20]Wu, D. Q.; Pisula, W.; Enkelmann, V.; Feng, X. L.; Mullen, K., Controllable Columnar Organization of Positively Charged Polycyclic Aromatic Hydrocarbons by Choice of Counterions. J. Am. Chem. Soc.2009,131 (28),9620-9621.
    [21]Antonietti, M.; Conrad, J., Synthesis of Very Highly Ordered Liquid Crystalline Phases by Complex Formation of Polyacrylic Acid with Cationic Surfactants. Angewandte Chemie International Edition in English 1994,33 (18),1869-1870.
    [22]Antonietti, M.; Conrad, J.; Thunemann, A., POLYELECTROLYTE-SURFACTANT COMPLEXES-A NEW-TYPE OF SOLID, MESOMORPHOUS MATERIAL. Macromolecules 1994,27 (21),6007-6011.
    [23]Antonietti, M.; Burger, C.; Effing, J., Mesomorphous polyelectrolyte-surfactant complexes. Advanced Materials 1995,7 (8),751-753.
    [24]Zhou, S. Q.; Yeh, F. J.; Burger, C.; Chu, B., Formation and transition of highly ordered structures of polyelectrolyte-surfactant complexes. Journal of Physical Chemistry B 1999, 103 (12),2107-2112.
    [25]Zhou, S. Q.; Burger, C.; Yeh, F. J.; Chu, B., Charge density effect of polyelectrolyte chains on the nanostructures of polyelectrolyte-surfactant complexes. Macromolecules 1998,31 (23), 8157-8163.
    [26]Yeh, F. J.; Sokolov, E. L.; Walter, T.; Chu, B., Structure studies of poly(diallyldimethylammonium chloride-co-acrylamide) gels/sodium dodecyl sulfate complex. Langmuir 1998,14 (16),4350-4358.
    [27]Antonietti, M.; Maskos, M., Fine-Tuning of Phase Structures and Thermoplasticity of Polyelectrolyte-Surfactant Complexes:Copolymers of Ionic Monomers with N-Alkylacrylamides. Macromolecules 1996,29 (12),4199-4205.
    [28]Antonietti, M.; Wenzel, A.; Thunemann, A., The "egg-carton" phase:A new morphology of complexes of poly electrolytes with natural lipid mixtures. Langmuir 1996,12 (8),2111-2114.
    [29]Antonietti, M.; Kaul, A.; Thuenemann, A., Complexation of lecithin with cationic polyelectrolytes:"Plastic membranes" as models for the structure of the cell membrane? Langmuir 1995,11 (7),2633-2638.
    [30]Polarz, S.; Smarsly, B.; Antonietti, M., Colloidal organization and clusters:Self-assembly of polyoxometalate-surfactant complexes towards three-dimensional organized structures. ChemPhysChem 2001,2 (7),457-461.
    [31]Thunemann, A. F., Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects). Prog. Polym. Sci.2002,27,1473-1572.
    [32]Antonietti, M.; Neese, M., Dielectric and Mechanic Relaxation in Polyelectrolyte-Supported Bilayer Stacks:A Model for the Dynamics of Membranes? Langmuir 1996,12,4436-4441.
    [33]Hartikainen, J.; Lahtinen, M.; Torkkeli, M.; Serimaa, R.; Valkonen, J.; Rissanen, K.; Ikkala, O., Comb-Shaped Supramolecules Based on Protonated Polyaniline and Their Self-Organization into Nanoscale Structures:Polyaniline Sulfonates/Zinc Sulfonates. Macromolecules 2001,34,7789-7795.
    [34]Tiitu, M.; Hiekkataipale, P.; Hartikainen, J.; Makela, T.; Ikkala, O., Viscoelastic and Electrical Transitions in Gelation of Electrically Conducting Polyaniline. Macromolecules 2002,35,5212-5217.
    [35]Kosonen, H.; Ruokolainen, J.; Knaapila, M.; Torkkeli, M.; Jokela, K.; Serimaa, R.; Brinke, G.; Bras, W.; Monkman, A.; Ikkala, O., Nanoscale Conducting Cylinders Based on Self-Organization of Hydrogen-Bonded Polyaniline Supramolecules. Macromolecules 2000, 33,8671-8675.
    [36]Kosonen, H.; Ruokolainen, J.; Knaapila, M.; Torkkeli, M.; Serimaa, R.; Bras, W.; Monkman, A. P.; Brinke, G. t.; Ikkala, O., Self-organized supermolecules based on conducting polyaniline and hydrogen bonded amphiphiles. Synth. Met.2001,121,1277-1278.
    [37]Maki-Ontto, R.; Moel, K.; Polushkin, E.; Ekenstein, G.; Brinke, G.; Ikkala, O., Tridirectional Protonic Conductivity in Soft Materials. Adv. Mater.2002,14 (5),357-361.
    [38]Linhardt, J. G.; Tirrell, D. A., pH-Induced Fusion and Lysis of Phosphatidylcholine Vesicles by the Hydrophobic Polyelectrolyte Poly(2-ethylacrylic Acid). Langmuir 2000,16,122-127.
    [39]Torchilin, V. P., Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release 2001,73 (2-3),137-172.
    [40]MacLachlan, M. J.; Coombs, N.; Bedard, R. L.; White, S.; Thompson, L. K.; Ozin, G. A., Mesostructured metal germanium sulfides. J. Am. Chem. Soc.1999,121 (51),12005-12017.
    [41]Wei, Z. X.; Faul, C. F. J., Aniline oligomers-Architecture, function and new opportunities for nanostructured materials. Macromolecular Rapid Communications 2008,29 (4),280-292.
    [42]MacLachlan, M. J.; Coombs, N.; Ozin, G. A., Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)(4-) clusters. Nature 1999,397 (6721),681-684.
    [43]Bonhomme, F.; Kanatzidis, M. G, Structurally characterized mesostructured hybrid surfactant-inorganic lamellar phases containing the adamantane Ge4S10 (4-) anion:Synthesis and properties. Chem. Mat.1998,10 (4),1153-1159.
    [44]Sayettat, J.; Bull, L. M.; Jobic, S.; Gabriel, J. C. P.; Fourmigue, M.; Batail, P.; Brec, R.; Inglebert, R. L.; Sourisseau, C, Behaviour of the one-dimensional, inorganic polymer (1)(infinity) MPS4 (-) anions (M=Ni, Pd) in organic solutions. Journal of Materials Chemistry 1999,9(1),143-153.
    [45]Sayettat, J.; Bull, L. M.; Gabriel, J.-C. P.; Jobic, S.; Camerel, F.; Marie, A.-M.; Fourmigue, M.; Batail, P.; Brec, R.; Inglebert, R.-L., Complex Fluids Based on the Flexible One-Dimensional Mineral Polymers [K(MPS4)] ∞ (M=Ni, Pd):Autofragmentation to Concave, Cyclic (PPh4)3[(NiPS4)3]. Angewandte Chemie International Edition 1998,37 (12),1711-1714.
    [46]Camerel, F.; Antonietti, M.; Faul, C. F. J., Organized Nanostructured Complexes of Inorganic Clusters and Surfactants That Exhibit Thermal Solid-State Transformations. Chemistry-A European Journal 2003,9 (10),2160-2166.
    [47]Camerel, F.; Strauch, P.; Antonietti, M.; Faul, C. F. J., Copper-metallomesogen structures obtained by ionic self-assembly (ISA):Molecular electromechanical switching driven by cooperativity. Chem.-Eur. J.2003,9 (16),3764-3771.
    [48]Muller, A.; Krickemeyer, E.; Bogge, H.; Schmidtmann, M.; Beugholt, C.; Kogerler, P.; Lu, C., Formation of a Ring-Shaped Reduced "Metal Oxide" with the Simple Composition [(MoO3)176(H2O)80H32]. Angewandte Chemie International Edition 1998,37 (9), 1220-1223.
    [49]MUller, A.; Shah, S. Q. N.; Bogge, H.; Schmidtmann, M.; Kogerler, P.; Hauptfleisch, B.; Leiding, S.; Wittler, K., Thirty Electrons "Trapped" in a Spherical Matrix:A Molybdenum Oxide-Based Nanostructured Keplerate Reduced by 36 Electrons. Angewandte Chemie International Edition 2000,39 (9),1614-1616.
    [50]Muller, A.; Kogerler, P.; Dress, A. W. M., Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems. Coordination Chemistry Reviews 2001,222 (1),193-218.
    [51]Zhang, T. R.; Spitz, C.; Antonietti, M.; Faul, C. F. J., Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic self-assembly. Chem.-Eur. J.2005,11 (3),1001-1009.
    [52]Nyman, M.; Ingersoll, D.; Singh, S.; Bonhomme, F.; Alam, T. M.; Brinker, C. J.; Rodriguez, M. A., Comparative Study of Inorganic Cluster-Surfactant Arrays. Chem. Mat.2005,17 (11), 2885-2895.
    [53]Xu, L.; Zhang, H. Y.; Wang, E.; Kurth, D. G.; Li, Z., Photoluminescent multilayer films based on polyoxometalates. Journal of Materials Chemistry 2002,12 (3),654-657.
    [54]Liu, S. Q.; Kurth, D. G.; Volkmer, D., Polyoxometalates as pH-sensitive probes in self-assembled multilayers. Chem. Commun.2002, (9),976-977.
    [55]Liu, S.; Kurth, D. G.; Mohwald, H.; Volkmer, D., A Thin-Film Electrochromic Device Based on a Polyoxometalate Cluster. Advanced Materials 2002,14 (3),225-228.
    [56]Yan, Y.; Wu, L., Polyoxometalate-Incorporated Supramolecular Self-Assemblies:Structures and Functional Properties. Israel Journal of Chemistry 2011,51 (2),181-190.
    [57]Dolbecq, A.; Dumas, E.; Mayer, C. d. R.; Mialane, P., Hybrid Organic-Inorganic Polyoxometalate Compounds:From Structural Diversity to Applications. Chemical Reviews 2010,110(10),6009-6048.
    [58]Li, H. L.; Sun, H.; Qi, W.; Xu, M.; Wu, L. X., Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew. Chem.-Int. Edit.2007,46 (8),1300-1303.
    [59]Sun, H.; Li, H. L.; Bu, W. F.; Xu, M.; Wu, L. X., Self-organized microporous structures based on surfactant-encapsulated polyoxometalate complexes. Journal of Physical Chemistry B 2006,110 (49),24847-24854.
    [60]Bu, W. F.; Li, H. L.; Sun, H.; Yin, S. Y.; Wu, L. X., Polyxometalate-based vesicle and its honeycomb architectures on solid surfaces. J. Am. Chem. Soc.2005,127 (22),8016-8017.
    [61]Yan, Y.; Li, B.; Li, W.; Li, H. L.; Wu, L. X., Controllable vesicular structure and reversal of a surfactant-encapsulated polyoxometalate complex. Soft Matter 2009,5 (20),4047-4053.
    [62]Nisar, A.; Lu, Y.; Wang, X., Assembling Polyoxometalate Clusters into Advanced Nanoarchitectures. Chem. Mat.2010,22 (11),3511-3518.
    [63]Nisar, A.; Xu, X. X.; Shen, S. L.; Hu, S.; Wang, X., Noble Metal Nanocrystal-Incorporated Fullerene-Like Polyoxometalate Based Microspheres. Advanced Functional Materials 2009, 19(6),860-865.
    [64]Nisar, A.; Zhuang, J.; Wang, X., Cluster-Based Self-Assembly:Reversible Formation of Polyoxometalate Nanocones and Nanotubes (vol 21, pg 3745,2009). Journal of Physical Chemistry B 2009,113(41).
    [65]Nisar, A.; Zhuang, J.; Wang, X., Cluster-Based Self-Assembly:Reversible Formation of Polyoxometalate Nanocones and Nanotubes. Chem. Mat.2009,21 (16),3745-3751.
    [66]Nisar, A.; Zhuang, J.; Wang, X., Construction of Amphiphilic Polyoxometalate Mesostructures as a Highly Efficient Desulfurization Catalyst. Advanced Materials 2011,23 (9),1130-1135.
    [67]Yan, Y.; Wang, H. B.; Li, B.; Hou, G. F.; Yin, Z. D.; Wu, L. X.; Yam, V. W. W., Smart Self-Assemblies Based on a Surfactant-Encapsulated Photoresponsive Polyoxometalate Complex. Angew. Chem.-Int. Edit.2010,49 (48),9233-9236.
    [68]Zhang, H.; Lin, X. K.; Yan, Y.; Wu, L. X., Luminescent logic function of a surfactant-encapsulated polyoxometalate complex. Chem. Commun.2006, (44), 4575-4577.
    [69]Jain, V. K.; Mandalia, H. C.; Gupte, H. S.; Vyas, D. J., Azocalix 4 pyrrole Amberlite XAD-2: New polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) in natural water samples. Talanta 2009,79 (5),1331-1340.
    [70]Lee, C. H.; Miyaji, H.; Yoon, D. W.; Sessler, J. L., Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. Chem. Commun.2008, (1), 24-34.
    [71]Lindsey, J. S.; Wagner, R. W., INVESTIGATION OF THE SYNTHESIS OF ORTHO-SUBSTITUTED TETRAPHENYLPORPHYRINS. J. Org. Chem.1989,54 (4), 828-836.
    [72]Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W., Supramolecular chemistry in water. Angew. Chem.-Int. Edit.2007,46 (14),2366-2393.
    [73]Garg, B.; Bisht, T.; Chauhan, S. M. S., Electrostatic interaction between cationic calix 4 pyrroles and anionic porphyrins in water. J. Incl. Phenom. Macrocycl. Chem.2010,67 (1-2), 241-246.
    [74]De Luca, G.; Romeo, A.; Villari, V.; Micali, N.; Foltran, I.; Foresti, E.; Lesci, I. G.; Roveri, N.; Zuccheri, T.; Scolaro, L. M., Self-Organizing Functional Materials via Ionic Self Assembly: Porphyrins H- and J-Aggregates on Synthetic Chrysotile Nanotubes. J. Am. Chem. Soc.2009, 131 (20),6920-6921.
    [75]Martin, K. E.; Wang, Z. C.; Busani, T.; Garcia, R. M.; Chen, Z.; Jiang, Y. B.; Song, Y. J.; Jacobsen, J. L.; Vu, T. T.; Schore, N. E.; Swartzentruber, B. S.; Medforth, C. J.; Shelnutt, J. A., Donor-Acceptor Biomorphs from the Ionic Self-Assembly of Porphyrins. J. Am. Chem. Soc.2010,132(23),8194-8201.
    [76]Guan, Y; Yu, S. H.; Antonietti, M.; Bottcher, C.; Faul, C. F. J., Synthesis of supramolecular polymers by ionic self-assembly of oppositely charged dyes. Chem.-Eur. J.2005,11 (4), 1305-1311.
    [77]Saenger, W., CYCLODEXTRIN INCLUSION-COMPOUNDS IN RESEARCH AND INDUSTRY. Angew. Chem.-Int. Edit. Engl.1980,19 (5),344-362.
    [78]Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T., Methods for Selective Modifications of Cyclodextrins. Chemical Reviews 1998,98 (5),1977-1996.
    [79]Breslow, R.; Zhang, B. L., Cholesterol recognition and binding by cyclodextrin dimers. J. Am. Chem. Soc.1996,118 (35),8495-8496.
    [80]Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A., A chemical-responsive supramolecular hydrogel from modified cycloclextrins. Angew. Chem.-Int. Edit.2007,46 (27),5144-5147.
    [81]Jiang, L. X.; Peng, Y.; Yan, Y.; Huang, J. B., Aqueous self-assembly of SDS@2 beta-CD complexes:lamellae and vesicles. Soft Matter 2011,7 (5),1726-1731.
    [82]Liu, Y; Ke, C. F.; Zhang, H. Y.; Cui, J.; Ding, F., Complexation-induced transition of nanorod to network aggregates:Alternate porphyrin and cyclodextrin arrays. J. Am. Chem. Soc.2008,130 (2),600-605.
    [83]Fathalla, M.; Neuberger, A.; Li, S.-C.; Schmehl, R.; Diebold, U.; Jayawickramarajah, J., Straightforward Self-Assembly of Porphyrin Nanowires in Water:Harnessing Adamantane/β-Cyclodextrin Interactions. J. Am. Chem. Soc.2010,132 (29),9966-9967.
    [84]Wang, Y.; Ma, N.; Wang, Z.; Zhang, X., Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with a-Cyclodextrin. Angewandte Chemie International Edition 2007,46 (16),2823-2826.
    [85]Park, C.; Lee, I. H.; Lee, S.; Song, Y.; Rhue, M.; Kim, C., Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proceedings of the National Academy of Sciences of the United States of America 2006,103 (5),1199-1203.
    [86]Li, Q. H.; Chen, X. A.; Wang, X. D.; Zhao, Y R.; Ma, F. M., Ionic Self-Assembled Wormlike Nanowires and Their Cyclodextrin Inclusion-Tuned Transition. Journal of Physical Chemistry B 2010,114 (32),10384-10390.
    [87]Liao, X. J.; Chen, G. S.; Liu, X. X.; Chen, W. X.; Chen, F.; Jiang, M., Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competition of Host-Guest Interactions. Angew. Chem.-Int. Edit.2010,49 (26),4409-4413.
    [88]Ooya, T.; Eguchi, M.; Yui, N., Supramolecular Design for Multivalent Interaction:Maltose Mobility along Polyrotaxane Enhanced Binding with Concanavalin A. J. Am. Chem. Soc. 2003,125(43),13016-13017.
    [89]Ooya, T.; Choi, H. S.; Yamashita, A.; Yui, N.; Sugaya, Y.; Kano, A.; Maruyama, A.; Akita, H.; Ito, R.; Kogure, K.; Harashima, H., Biocleavable Polyrotaxane-Plasmid DNA Polyplex for Enhanced Gene Delivery. J. Am. Chem. Soc.2006,128 (12),3852-3853.
    [90]Liu, G. Y.; Jin, Q. A.; Liu, X. S.; Lv, L. P.; Chen, C. J.; Ji, J. A., Biocompatible vesicles based on PEO-b-PMPC/alpha-cyclodextrin inclusion complexes for drug delivery. Soft Matter 2011, 7 (2),662-669.
    [91]Wang, Y.; Xu, H.; Zhang, X., Tuning the Amphiphilicity of Building Blocks:Controlled Self-Assembly and Disassembly for Functional Supramolecular Materials. Advanced Materials 2009,21 (28),2849-2864.
    [92]Jiang, Y.; Wang, Y.; Ma, N.; Wang, Z.; Smet, M.; Zhang, X., Reversible Self-Organization of a UV-Responsive PEG-Terminated Malachite Green Derivative:Vesicle Formation and Photoinduced Disassembly. Langmuir 2007,23 (7),4029-4034.
    [93]Chen, S.; Jiang, Y.; Wang, Z.; Zhang, X.; Dai, L.; Smet, M., Light-Controlled Single-Walled Carbon Nanotube Dispersions in Aqueous Solution. Langmuir 2008,24 (17),9233-9236.
    [94]Wang, Y.; Han, P.; Xu, H.; Wang, Z.; Zhang, X.; Kabanov, A. V, Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles:A Facile Approach toward Supramolecular Polymer Nanocontainers. Langmuir 2009,26 (2),709-715.
    [95]Lee, H.-i.; Wu, W.; Oh, J. K.; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.; Matyjaszewski, K., Light-Induced Reversible Formation of Polymeric Micelles. Angewandte Chemie International Edition 2007,46 (14),2453-2457.
    [96]Vlassiouk, I.; Park, C.-D.; Vail, S. A.; Gust, D.; Smirnov, S., Control of Nanopore Wetting by a Photochromic Spiropyran:A Light-Controlled Valve and Electrical Switch. Nano Letters 2006,6(5),1013-1017.
    [97]Kimizuka, N.; Kawasaki, T.; Hirata, K.; Kunitake, T., Supramolecular membranes. Spontaneous assembly of aqueous bilayer membrane via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives. J. Am. Chem. Soc.1998,120 (17),4094-4104.
    [98]Kimizuka, N.; Kawasaki, T.; Kunitake, T., SPECTRAL CHARACTERISTICS AND MOLECULAR-ORIENTATION OF AZOBENZENE-CONTAINING HYDROGEN-BOND-MEDIATED BILAYER-MEMBRANES. Chemistry Letters 1994, (8),1399-1402.
    [99]Kimizuka, N.; Kawasaki, T.; Kunitake, T., THERMAL-STABILITY AND SPECIFIC DYE BINDING OF A HYDROGEN-BOND-MEDIATED BILAYER-MEMBRANE. Chemistry Letters 1994, (1),33-36.
    [100]Saji, T.; Hoshino, K.; Aoyagui, S., Reversible formation and disruption of micelles by control of the redox state of the head group. J. Am. Chem. Soc.1985,107 (24),6865-6868.
    [101]Shi, W.; Giannotti, M. I.; Zhang, X.; Hempenius, M. A.; Schonherr, H.; Vancso, G. J., Closed Mechanoelectrochemical Cycles of Individual Single-Chain Macromolecular Motors by AFM. Angewandte Chemie International Edition 2007,46 (44),8400-8404.
    [102]Anton, P.; Laschewsky, A.; Ward, M. D., SOLUBILIZATION CONTROL BY REDOX-SWITCHING OF POLYSOAPS. Polymer Bulletin 1995,34 (3),331-335.
    [103]Takuma, K.; Sakamoto, T.; Nagamura, T.; Matsuo, T., NOVEL PROPERTIES OF THE SELF-ASSEMBLING AMPHIPATHIC VIOLOGEN SYSTEM.1. A STUDY OF ELECTRON-EXCHANGE REACTIONS IN MICELLAR SYSTEMS. Journal of Physical Chemistry 1981,85 (6),619-621.
    [104]Katz, E.; Lioubashevsky, O.; Willner, I., Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc.2004,126 (47),15520-15532.
    [105]Monserrat, K.; Gratzel, M.; Tundo, P., LIGHT-INDUCED CHARGE INJECTION IN FUNCTIONAL CROWN ETHER VESICLES. J. Am. Chem. Soc.1980,102 (17), 5527-5529.
    [106]Wan, P. B.; Jiang, Y. G.; Wang, Y. P.; Wang, Z. Q.; Zhang, X., Tuning surface wettability through photocontrolled reversible molecular shuttle. Chem. Commun.2008, (44), 5710-5712.
    [107]Jeon, Y. J.; Bharadwaj, P. K.; Choi, S.; Lee, J. W.; Kim, K., Supramolecular Amphiphiles: Spontaneous Formation of Vesicles Triggered by Formation of a Charge-Transfer Complex in a Host. Angewandte Chemie International Edition 2002,41 (23),4474-4476.
    [1]Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. [J] Science 2002,295, 2481-2421.
    [2]Ishii, D.; Kinbara, K.; Ishida, N.; Okochi, M.; Yohda, M.; Aida, T., Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. [J] Nature 2003,423, 628-632.
    [3]Park, C.; Lee, H. I.; Lee, S.; Song, Y.; Rhue, M.; Kim, C., Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. [J] Proc. Natl. Acad. Sci. U. S. A.2006,103,1199-1203.
    [4]Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J., Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. [J] Angew. Chem. Int. Ed.2007,46,2431-2434.
    [5]Faul, C. F. J.; Antonietti, M., Ionic self-assembly:facile synthesis of supramolecular materials. [J] Adv. Mater.2003,15,673-683.
    [6]Faul, C. F. J.; Krattiger, P.; Smarsly, B. M.; Wennemers, H., Ionic self-assembled molecular receptor-based liquid crystals with tripeptide recognition capabilities. [J] J. Mater. Chem.2008, 18,2962-2967.
    [7]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Cai, J.; Qiu, H., Ionic Self-Assembled Organic Nanobelts from the Hexagonal Phase Complexes and Their Cyclodextrin Inclusions. [J] J. Phys. chem. B 2008,112,7191-7195.
    [8]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Ma, F.; Yue, X., Ionic self-assembled solid-like vesicles and their temperature-induced transformation. [J] J. Mater. Chem.2009,19 (14), 2037-2042.
    [9]Camerel, F.; Strauch, P.; Antonietti, M.; Faul, C. F. J., Copper-metallomesogen structures obtained by ionic self-assembly (ISA):Molecular electromechanical switching driven by cooperativity. [J] Chem. Eur. J.2003,9,3764-3771.
    [10]Faul, C. F. J.; Antonietti, M., Facile Synthesis of Optically Functional, Highly Organized Nanostructures:Dye-Surfactant Complexes. [J] Chem. Eur. J.2002,8 (12),2764-2768.
    [11]Guan, Y.; Antonietti, M.; Faul, C. F. J., Ionic Self-Assembly of Dye-Surfactant Complexes: Influence of Tail Lengths and Dye Architecture on the Phase Morphology. [J] Langmuir 2002, 18,5939-5945.
    [12]Yoshino, J.; Kano, N.; Kawashima, T., Synthesis of the most intensely fluorescent azobenzene by utilizing the B-N interaction. [J] Chem. Commun.2007,559.
    [13]Baskin, R.; Frost, L. D., Bile salt-phospholipid aggregation at submicellar concentrations. [J] Colloids Surf., B 2008,62,238-242.
    [14]Huang, X.; Weiss, R. G, Rodlike silica and titania objects templated on extremely dilute aqueous dispersions of self-assembled sodium lithocholate nanotubes [J] J. Colloid and Interface Sci.2007,313,711-716.
    [15]Terech, P.; de Geyer, A.; Struth, B.; Talmon, Y., Self-Assembled Monodisperse Steroid Nanotubes in Water. [J] Advanced Materials 2002,14 (7),495-498.
    [16]Smitha, P.; Asha, S. K., Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers. [J] J. Phys. chem. B 2007,111,6364-6373.
    [17]Fujino, T.; Arzhantsev, S. Y; Tahara, T., Femtosecond Time-Resolved Fluorescence Study of Photoisomerization of trans-Azobenzene. [J] The Journal of Physical Chemistry A 2001,105 (35),8123-8129.
    [18]Rau, H., Spectroscopic Properties of Organic Azo Compounds. [J] Angew. Chem., Int. Ed. Engl.1973,12,224.
    [19]Kuiper, J. M.; Engberts, J. B. F. N., H-Aggregation of Azobenzene-Substituted Amphiphiles in Vesicular Membranes. [J] Langmuir 2004,20 (4),1152-1160.
    [20]Fu, H.; Xiao, D.; Yao, J.; Yang, G., Nanofibers of 1,3-Diphenyl-2-pyrazoline Induced by Cetyltrimethylammonium Bromide Micelles. [J] Angew. Chem. Int. Ed.2003,42,2883-2886.
    [21]Belletete, M.; Bouchard, J.; Leclerc, M.; Durocher, G., Photophysics and Solvent-Induced Aggregation of 2,7-Carbazole-Based Conjugated Polymers. [J] Macromolecules 2005,38 (3), 880-887.
    [22]Matanovic, I.; Doslic, N., Theoretical modeling of the formic acid dimer infrared spectrum: Shaping the O-H stretch band. [J] Chem. Phys.2007,338,121-126.
    [23]Oakenfull, D. G.; Fisher, L. R., The role of hydrogen bonding in the formation of bile salt micelles. [J] The Journal of Physical Chemistry 1977,81 (19),1838-1841.
    [24]Small, D. M.; Penkett, S. A.; Chapman, D., Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy [J] Biochim. Biophys. Acta 1969,176,178-189.
    [25]Proffen, T.; Neder, R. B., DISCUS, a program for diffuse scattering and defect structure simulations-update. [J] Journal of Applied Crystallography 1999,32 (4),838-839.
    [26]Werner, P. E.; Eriksson, L.; Westdahl, M., TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. [J] Journal of Applied Crystallography 1985,18 (5), 367-370.
    [1]Lehn, J. M., Toward Self-Organization and Complex Matter [J] Science 2002,29,2400-2403.
    [2]Wang, Y.; Xu, H.; Zhang, X., Tuning the Amphiphilicity of Building Blocks:Controlled Self-Assembly and Disassembly for Functional Supramolecular Materials. [J] Adv. Mater. 2009,21,2849-2864.
    [3]Murthy, N.; Thng, Y. X.; Schuck, S.; Xu, M. C.; Frechet, J. M. J., A Novel Strategy for Encapsulation and Release of Proteins:Hydrogels and Microgels with Acid-Labile Acetal Cross-Linkers. [J] J. Am. Chem. Soc.2002,124,12398-12399.
    [4]Liang, D.; Zhou, S.; Song, L.; Zaitsev, V. S.; Chu, B., Copolymers of Poly(N-isopropylacrylamide) Densely Grafted with Poly(ethylene oxide) as High-Performance Separation Matrix of DNA. [J] Macromolecules 1999,32,6326-6332.
    [5]Hu, Z. B.; Chen, Y. Y.; Wang, C. J.; Zheng, Y. D.; Li, Y., Polymer gels with engineered environmentally responsive surface patterns. [J] Nature 1998,393,149-152.
    [6]Faul, C. F. J.; Antonietti, M., Ionic self-assembly:facile synthesis of supramolecular materials. [J] Adv. Mater.2003,15,673-683.
    [7]Liu, H.; Wang, C.; Gao, Q.; Chen, J.; Liu, X.; Zhen, T., One-pot fabrication of magnetic nanocomposite microcapsules. [J] Materials Letters 2009,63,884-886.
    [8]Qiao, Y.; Lin, Y.; Wang.Y.; Yang, Z.; Liu, J.; Zhou, J.; Yan, Y.; Huang, J., Metal-Driver Hierarchical Self-Assembled One-Dimensional Nanohelices. [J] Nano Letters 2009,9, 4500-4504.
    [9]Baskin, R.; Frost, L. D., Bile salt-phospholipid aggregation at submicellar concentrations. [J] Colloids Surf., B 2008,62,238-242.
    [10]Huang, X.; Weiss, R. G., Rodlike silica and titania objects templated on extremely dilute aqueous dispersions of self-assembled sodium lithocholate nanotubes. [J] J. Colloid and Interface Sci.2007,313,711-716.
    [11]Terech, P.; Geyer, A.; Struth, B.; Talmon, Y., Self-Assembled Monodisperse Steroid Nanotubes in Water. [J] Adv. Mater.2002,14 (7),495-498.
    [12]Jasys, V. J.; Lombardo, F.; Appleton, T. A.; Bordner, J.; Ziliox, M.; Volkmann, R. A., Preparation of Fluoroadamantane Acids and Amines:Impact of Bridgehead Fluorine Substitution on the Solution- and Solid-State Properties of Functionalized Adamantanes. [J] J. Am. Chem. Soc.2000,122,466-473.
    [13]Akira, H., Cyclodextrin-Based Molecular Machines. [J] Acc. Chem. Res.2001,34,456-464.
    [14]Kaneto, U.; Fumitoshi, H.; Tetsumi, I., Cyclodextrin Drug Carrier Systems. [J] Chem. Rev. 1998,98,2045-2076.
    [15]Cromwell, W. C.; Bystrom, K.; Eftink, M. R., Cyclodextrin-adamantanecarboxylate inclusion complexes:studies of the variation in cavity size. [J] J. Phys. Chem.1985,89,326-332.
    [16]Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R., SIR97:a new tool for crystal structure determination and refinement. [J] J. Appl. Cryst.1999,32,115-119.
    [17]Sheldrick, G. M., SHELXL97. Program for the refinement of crystal structures 1997.
    [18]C. F. J. Faul and M. Antonietti, Ionic Self-Assembly:Facile Synthesis of Supramolecular Materials. [J] Adv. Mater.2003,15,673.
    [19]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Ma, F.; Yue, X., Ionic self-assembled solid-like vesicles and their temperature-induced transformation. [J] J. Mater. Chem.2009,19, 2037-2041.
    [20]Cacace, F.; Petris, G.; Giglio, E.; Punzo, F.; Troiani, A., Bile salt aggregates in the gas phase: An electrospray ionization mass spectrometric study. [J] Chem. Eur. J.2002,8 (8),1925-1933.
    [21]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Cai, J.; Qiu, H., Ionic Self-Assembled Organic Nanobelts from The Hexagonal Phase Complexes and Their Cyclodextrin Inclusions. [J] J. Phys. Chem. B 2008,112,7191-7195.
    [22]Jing, B.; Chen, X.; Wang, X.; Yang, C.; Xie, Y.; Qiu, H., Self-Assembly Vesicles Made from a Cyclodextrin Supramolecular Complex. [J] Chem. Eur. J.2007,13,9137-9142.
    [23]Connors, K. A., The Stability of Cyclodextrin Complexes in Solution. [J] Chem. Rev.1997, 97,1325-1357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700