利用RZWQM模拟猪场废水灌溉对土壤—作物系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来畜禽养殖业迅速兴起,产生大量废水,与直接排放到地表或地下水体相比,应用废水进行农田灌溉被认为是最有效的资源再利用方式。猪场废水回灌农田不仅能满足作物对水分的需求,同时还是很好的肥源。依据田间试验寻求不同的灌水量和灌水时期对冬小麦-夏玉米轮作体系中作物产量的影响,传统方法费时且不经济,本文选用Root Zone Water Quality Model(RZWQM,根区水质模型)综合评价灌水量和灌水时期对土壤-作物系统的影响。
     根据2007年9月-2008年9月在天津市西青区杨柳青镇益利来养殖场内开展的田间试验,用厌氧水与地下水1:1混水灌溉处理(灌水定额830 m3 ha~(-1))的土壤剖面体积含水量、硝态氮含量以及作物产量等数值对模型进行了率定,用中量厌氧水灌溉处理(灌水定额500 m3 ha~(-1))和厌氧水与地下水1:5混水灌溉处理(灌水定额830 m3 ha~(-1))的数据对模型进行了验证。在模型率定和验证的基础上,针对平水年降雨数据,用RZWQM对猪场废水灌水量和灌水时期进行了优化,得到模拟年份的较优灌溉模式。
     通过模拟和预测过程发现,水分模拟值整体反映了实测值的变化趋势,0-60 cm土层模拟结果较好;土壤剖面各土层硝态氮含量模拟值基本反映了实测值的变化,处理二的模拟结果较好,各处理不同生育期100 cm土层硝态氮累积量的模拟结果比较理想;小麦和玉米产量模拟情况良好,RE基本都控制在±16%以内,玉米生物量模拟情况良好,小麦生物量模拟值普遍比实测值偏低;针对不同的灌溉组合,也得到了几种较优的灌溉模式:(1)厌氧水与地下水1:5混水灌溉时,在冬小麦越冬期和拔节期灌溉两次水就能获得较高产量,灌水量为830 m3 ha~(-1),小麦产量为5625 kg ha~(-1),玉米产量为8403 kg ha~(-1),玉米收获后0-100cm土层硝态氮含量为85.18 kg ha~(-1); (2)厌氧水与地下水1:1混水灌溉时,在冬小麦-夏玉米整个生育期灌溉一次带有养分的水源就能保证作物的正常生长,在拔节期灌溉700 m3 ha~(-1)的1:1厌氧水,越冬和抽穗期灌溉830 m3 ha~(-1)的地下水为推荐的灌溉模式,可获得小麦产量5625 kg ha~(-1),玉米产量8403 kg ha~(-1),玉米收获后0-100cm土层硝态氮含量为97.20 kg ha~(-1);(3)为省去稀释灌溉操作过程中的繁琐,也可推荐厌氧水直接灌溉,在小麦越冬期灌溉300 m3 ha~(-1)的厌氧水、在拔节和抽穗期分别灌溉830 m3 ha~(-1)的地下水或在小麦越冬和拔节期分别灌溉830 m3 ha~(-1)的地下水、抽穗期灌溉400 m3 ha~(-1)的厌氧水也可获得较高的产量,玉米收获后0-100cm土层硝态氮含量也在环境安全允许的范围内。总体来说,RZWQM可用于模拟猪场废水灌溉对土壤剖面体积含水量、硝态氮含量以及作物产量的影响,同时能较准确预测灌水量和灌水时期对作物产量和土壤中硝态氮含量的影响。
In recent years, livestock and poultry breeding industry has developed rapidly but generate a great amount of wastewater. Compared with directly discharging into earth’s surface or groundwater body, using the wastewater for farm irrigation is the most effective way of resources recycling. Swine wastewater, irrigated back to the farmland, not only provides water for the crop, but also is a good fertilizer source. On the basis of field tests, seeking for the effect of different irrigating amount and period on crop yield in winter-wheat and summer-maize rotation system, conventional methods are expensive and time consuming. In this study, the Root Zone Water Quality Model (RZWQM) was used to overall evaluate the effects of irrigating amount and period on soil-plant system.
     Field experiments were carried out from September, 2007 to September, 2008, in Yililai breeding farm of Yang Liuqing Town, Xiqing District, Tianjin. First, the model was calibrated using the data of volumetric water contents in the soil profile, nitrate-N contents, crop production of the Tanae:gw1:1 treatment(quota=830 m3 ha~(-1)), then the model was validated with the data of the TManae(quota=500 m3 ha~(-1))and Tanae:gw1:5 treatment (quota=830 m3 ha~(-1)). Finally, based on the calibration and validation, optimizing wastewater amounts and periods with RZWQM, relatively better irrigation modes of the simulated year were got.
     Through the course of simulation and prediction, the results were shown that simulated values of soil water reflected the variation tendency of measured values on the whole, 0-60 cm soil layer was better. And simulated values of nitrate-N contents in each layer of soil profile basically reflected the variation of measured values. The simulated result of the TManae treatment was better in the three treatments. The simulated results of nitrate-N cumulants in the 0-100cm soil layer in different growth periods of each treatment were relatively better. The simulated yields of winter-wheat and summer-maize were in good consistence with the measured ones, with RE basically controlled into±16% interval. The simulated values of maize aboveground biomass were unanimous with the measured ones, but the simulated values of wheat aboveground biomass were less than the measured ones. Towards different irrigation combinations, several better irrigation modes were got as follows: (1) Irrigate with the anae:gw1:5 water, two irrigations with irrigation quota of 830 m3 ha~(-1) for the winter wheat at wintering stage and jointing stage respectively could obtain 5625 kg ha~(-1) for winter wheat and 8403 kg ha~(-1) for summer maize, the content of nitrate-N in 0-100 cm soil layer was 85.18 kg ha~(-1) after corn harvest; (2) Irrigate with anae:gw1:1 water, groundwater irrigation quota of 830 m3 ha~(-1) for the winter wheat at wintering stage and heading stage respectively, 700 m3 ha~(-1) anae:gw1:1 water only at jointing stage also could obtain 5625 kg ha~(-1) for winter wheat and 8403 kg ha~(-1) for summer maize, the content of nitrate nitrogen in 0-100 cm soil layer was 97.20 kg ha~(-1) after corn harvest; (3) for omitting the trouble during the course of dilute anaerobic water, groundwater irrigation quota of 830 m3 ha~(-1) for the winter wheat at jointing stage and heading stage respectively, and 300 m3 ha~(-1) anaerobic water only at wintering stage; or groundwater irrigation quota of 830 m3 ha~(-1) for the winter wheat at wintering stage and jointing stage respectively, and 400 m3 ha~(-1) anaerobic water for irrigation only at heading stage, both of the above two schemes could obtain more yields. After corn harvest, nitrate-N contents in 0-100 cm soil layer were also in permitted extent of environmental safety. Overall, RZWQM was applicable of simulating the effect on crop production, water contents and nitrate-N contents in soil profiles under swine wastewater irrigation. Meanwhile, the model was also used to exactly predict the influence of irrigating amount and period on crop yields and nitrate-N contents in the soil.
引文
1.鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000: 14-40.
    2.丛振涛,雷志栋,胡和平,杨诗秀.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究模型I:模型[J].水利学报, 2005, 36(5): 575-580.
    3.崔延松.中国水市场管理学[M].郑州:黄河水利出版社, 2003.
    4.崔振岭,陈新平,张福锁,徐久飞,石立委,李俊良.华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量.应用生态学报, 2007, 18(10): 2227-2232.
    5.房全孝,于强,王建林.利用RZWQM-CERES模拟华北平原农田土壤水分动态及其对作物产量的影响[J].作物学报, 2009, 35(6): 1122-1130.
    6.高亮之,金之庆,黄耀,张立中.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育动态的计算机模型[J].中国农业气象, 1989, 10(3): 3-10.
    7.国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002: 250-285.
    8.胡克林,李保国,陈研,郭永强.作物生长与土壤水氮运移联合模拟的研究I-模型[J].水利学报, 2007, 38(7): 779-785.
    9.黄志珍.农田土壤氮素平衡动态模拟模型研制与SISNDB信息系统开发[D].杭州:浙江大学, 2005.
    10.金梁,胡克林,李保国,龚元石.作物生长与土壤水氮运移联合模拟的研究II-模型验证与应用[J].水利学报, 2007, 38(8): 972-980.
    11.金千瑜,阳由男,盛苗.中国农业可持续发展中的水危机及其对策[J].农业现代化研究, 2003, 24(1): 21-23.
    12.孔箐锌,张海林,宋振伟,陈阜.不同灌溉水平对冬小麦耗水构成及利用效率的影响[J].干旱地区农业研究, 2009, 27(4): 37-41.
    13.李保国,龚元石,左强.农田土壤水的动态模型及应用[M].北京:科学出版社, 2000.
    14.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    15.刘晓英,林而达.气候变化对华北地区主要作物需水量的影响[J].水利学报, 2004, 2: 77-87.
    16.南京农业大学主编.土壤农化分析(第二版)[M].北京:农业出版社, 1986: 27-28, 40-64.
    17.彭致功,杨培岭,任树梅,王勇.再生水灌溉对草坪草生长速率、叶绿素及类胡萝卜素的影响特征[J].农业工程学报, 2006, 22(10): 105-108.
    18.齐学斌,李平,亢连强,樊向阳,乔冬梅,赵志娟等.变饱和带条件下污水灌溉对土壤氮素运移和冬小麦生长的影响[J].生态学报, 2008, 28(4): 1635-1645.
    19.田媛,杨昕,花伟军,刘传.城市周边生活污水排放对绿地土壤环境质量的影响[J].生态学报, 2008, 28(2): 742-748.
    20.王风,张克强,黄治平,李军幸,于丹,李晓光. RZWQM模型介绍及其应用进展[J].农业系统科学与综合研究, 2008, 24(4): 501-504.
    21.王相平.再生水灌溉条件下农田水氮迁移转化的RZWQM模拟[D].北京:中国农业大学, 2007.
    22.王仰仁,孙书洪,叶澜涛,韩娜娜.农田土壤水分二区模型的研究[J].水利学报, 2009, 40(8): 904-918.
    23.温季,宰松梅,郭树龙,王全九,罗纨.利用DRAINMOD模型模拟不同排水管间距下的作物产量[J].农业工程学报, 2008, 24(8): 20-24.
    24.严美春,曹卫星,罗卫红,江海冬.小麦发育过程及生育期机理模型的研究I:建模的基本设想与模型的描述[J].应用生态学报, 2000, 11(3): 355-359.
    25.张建平,王春乙,杨晓光,赵艳霞,王靖.温度导致的我国东北三省玉米产量波动模拟[J].生态学报, 2009, 29(10): 5516-5522.
    26.张胜全,方保停,张英华,周顺利,王志敏.冬小麦节水栽培三种灌溉模式的水氮利用与产量形成.作物学报, 2009, 35(11): 2045-2054.
    27.张彦,张惠文,苏振成,张成刚.污水灌溉对土壤重金属含量、酶活性和微生物类群分布的影响[J].安全与环境学报, 2006, 6(6): 44-50.
    28.赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学, 1998, 2: 37-42.
    29. NY/T206-92.华北地区冬小麦公顷产量4500至5250kg(亩产300至350kg)栽培技术规程[S].北京, 1992.
    30. NY/T205-92.华北地区冬小麦公顷产量6000kg(亩产400 kg)栽培技术规程[S].北京, 1992.
    31. C. Hu, J. A. Delgado, X. Zhang, & L. Ma. Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian Region and potential implications for water conservation in the Northwestern North China Plain[J]. Journal of soil water and conservation, 2005, 60(2): 80-88.
    32. Munir J. Mohammad Rusan, Sami Hinnawi, & Laith Rousan. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters[J]. Desalination, 2007, 215(1-3), 143-152.
    33. O. Vazquezmontiel, N. J. Horan, & D. D. Mara. Management of domestic wastewater for reuse in irrigation[J]. Water Science and Technology, 1996, 33(10-11): 355-362.
    34. I. Papadopoulos. Wastewater management for agriculture protection in the Near East Region, Technical Bulletin, FAO, Regional Office for the Near East, Cairo, Egypt, 1995.
    35. A. Lopez, A. Pollice, A. Lonigro, S. Masi, A. M. Palese, G. L. Cirelli, et al. Agricultural wastewater reuse in southern Italy[J]. Desalination, 2006, 187(1-3): 323-334.
    36. F. Mapanda, E. N. Mangwayana, J. Nyamangara, & K. E. Giller. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe[J]. Agriculture, Ecosystems and Environment, 2005, 107: 151-165.
    37. V. Smil. Nitrogen in crop production: an account of global flows[J]. Global Biogeochemical Cycles, 1999, 13(2): 647-662.
    38. J. A. Delgado, R. F. Follett, M. J. Shaffer. Simulation of NO3-N dynamics for cropping systems with different rooting depths[J]. Soil Science Society of America Journal, 2000, 64(3): 1050-1054.
    39. C. Chang, T. Entz. Nitrate leaching losses under repeated cattle feedlot manure applications in Southern Alberta[J]. Journal of Environment Quality, 1996, 25: 145-153.
    40. Simunek J, Sejna M, van Genuchten M Th. The HYDRUS-1D software package for simulating theone-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 2.0[M]. U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California: Colorado School of Mines Pub-lishers, 1998.
    41. Driessen P M, Konijn N T. Land-use System Analysis[M]. Wageningen Agricultural University. Wageningen, the Netherlands, 1992.
    42. Rithie J T, Hanks J. Modeling Plants and Soil Systems[M]. ASA-CSSA-SSSA, 1991.
    43. Hutson, J. L. and R. J. Wagenet. 1992. LEACHM(Leaching Estimation and Chemistry Model): a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0. Department of Soil, Crop and Atmospheric Sciences. Research Series No.92-3. New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, New York.
    44. S. Asseng, B. A. Keating, I. R. P. Fillery, P. J. Gregory, J. W. Bowden, N. C. Turner, et al. Performance of the APSIM-wheat model in Western Australia[J]. Field Crops Research, 1998, 57: 163-179.
    45. S. Asseng, H. van Keulen, W. Stol. Performance and application of the APSIM N wheat model in the Netherlands[J]. European Journal of Agronomy, 2000, 12: 37-54.
    46. Ajay Kumar, R. S. Kanwar, P. Singh, & L. R. Ahuja. Evaluation of the root zone water quality model for predicting water and NO3-N movement in an Iowa soil[J]. Soil and Tillage Research, 1999, 50: 223-236.
    47. L. Ma, D. C. Nielsen, L. R. Ahuja, R. W. Malone, S. A. Saseendran, K. W. Rojas, et al. Evaluation of RZWQM under varying irrigation levels in Eastern Colorado[J]. Transactions of the ASAE, 2003, 46(1): 39-49.
    48. M. R. Cameira, P. L. Sousa, H. J. Farahani, L. R. Ahuja, & L. S. Pereira. Evaluation of the RZWQM for the simulation of water and nitrate movement in level-basin, fertigated maize[J]. Journal of Agricultural Engineering Research, 1998, 69: 331-341.
    49. L. Ma, R. W. Malone, P. Heilman, D. B. Jaynes, L. R. Ahuja, S. A. Saseendran, et al. RZWQM simulated effects of crop rotation, tillage, and controlled drainage on crop yield and nitrate-N loss in drain flow[J]. Geoderma, 2007, 140: 260-271.
    50. P. J. Starks, G. C. Heathman, L. R. Ahuja, & L. Ma. Use of limited soil property data and modeling to estimate root zone soil water content[J]. Journal of Hydrology, 2003, 272: 131-147.
    51. G. Stulina, M. R. Cameira, & L. S. Pereira. Using RZWQM to search improved practices for irrigated maize in Fergana, Uzbekistan[J]. Agricultural Water Management, 2005, 77: 263-281.
    52. M. R. Cameira, R. M. Fernando, L. R. Ahuja, & L. Ma. Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region[J]. Agricultural Water Management, 2007, 90: 121-136.
    53. Q. Yu, S. A. Saseendran, L. Ma, G. N. Flerchinger, T. R. Green, & L. R. Ahuja. Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM[J]. Agricultural Systems, 2006, 89: 457-477.
    54. Q. Fang, L. Ma, Q. Yu, L. R. Ahuja, R. W. Malone, & G. Hoogenboom. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain[J]. Agricultural Water Management, in press, corrected proof, available online 2 April 2009.
    55. C. Hu, S. A. Saseendran, T. R. Green, L. Ma, X. Li, & L. R. Ahuja. Evaluating nitrogen and water management in a double-cropping system using RZWQM[J]. Vadose Zone Journal, 2006, 5: 493-505.
    56. Q. Fang, L. Ma, Q. Yu, R. W. Malone, S. A. Saseendran, L. R. Ahuja. Modeling nitrogen and water management effects in a wheat-maize double-cropping system[J]. Journal of Environment Quality, 2008, 37: 2232-2242.
    57. Xiangping Wang, Guanhua Huang. Evaluation on the irrigation and fertilization management practices under the application of treated sewage water in Beijing, China[J]. Agricultural Water Management, 2008, 95: 1011-1027.
    58. M. J. Shaffer, & W. E. Larson. (Eds.) NTRM: A soil crop simulation model for nitrogen, tillage, and crop residue management[M]. USDA-ARS Conservation Res. Rep, 1987, 34(1): 03.
    59. W. G. Knisel. (Ed.) CREAMS: A field-scale model for chemicals, runoff and erosion from agricultural management systems[M]. USDA-SEA Conservation Res. Rept, 1980, 26: 643.
    60. R. A. Leonard, W. G. Knisel, D. A. Still. GLEAMS: Groundwater loading effects of agricultural management systems[J]. Transactions of the ASAE, 1987, 30: 1403-1418.
    61. Robert F. Carsel, Lee A. Mulkey, Matthew N. Lorber, & Leland B. Baskin. PRZM: A procedure for evaluating pesticide leaching threats to groundwater[J]. Ecological Modeling, 1985, 30(1-2): 49-69.
    62. R. E. Smith. Opus: An integrated simulation model for transport of nonpoint source pollutants at field scale[J]. Documentation, USDA-ARS Rept. 98, 1990, 1: 120.
    63. Tim R McVicar, Zhang Guanglu, Andrew S Bradford. Developing a spatial information system to monitor regional agricultural water use efficiency for Hebei Province on the North China Plain[R]. CSIRO Land and Water, Canberra ACT. Technical Report, 2000.
    64. L. R. Ahuja, K. W. Rojas, J. D. Hanson, M. J. Shaffer, & L. Ma. Root Zone Water Quality Model, modeling management effects on water quality and crop production[M]. Water Resources Publication, Highlands Ranch, CO, 2000.
    65. RZWQM Development Team: J. D. Hanson, L. R. Ahuja, M. D. Shaffer, K. W. Rojas, D. G. DeCoursey, H. Farahani, et al. RZWQM: Simulating the effects of management on water quality and crop production[J]. Agricultural Systems, 1998, 57(2): 161-195.
    66. Xuejun Liu, Xiaotang Ju , Ying Zhang, Chune He, Jenny Kopsch, Zhang Fusuo. Nitrogen deposition in agroecosystems in the Beijing area[J]. Agriculture, Ecosystems and Environment, 2006, 113: 370-377.
    67. Jonathan D. Hanson, K. W. Rojas, and Marvin J. Shaffer. Calibrating the Root Zone Water Quality Model[J]. Agronomy Journal, 1999, 91: 171-177.
    68. Legates D R, McCabe G J. Evaluating the use of“goodness-of-fit”measures in hydrologic and hydro-climate model validation[J]. Water Resour Res, 1999, 35: 233-241.
    69. Rosa Aiello, Giuseppe Luigi Cirelli, Simona Consoli. Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)[J]. Agricultural water management, 2007, 93: 65-72.
    70. E. Gallegos, A. Warren, E. Robles, E. Campoy, A. Calderon, Ma. G. Sainz, et al. The effects of wastewater irrigation on groundwater quality in Mexico[J]. Water Science and Technology, 1999, 40(2): 45-52.
    71. Rafael Marques Pereira Leal, Uwe Herpin, Adriel Ferreira da Fonseca, Lilian Pittol Firme, Célia Regina Montes, Adolpho JoséMelfi. Sodicity and salinity in a Brazilian Oxisol cultivated with sugarcane irrigated with wastewater[J]. Agricultural water management, 2009, 96: 307-316.
    72. Munir J. Mohammad Rusan, Sami Hinnawi, Laith Rousan. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters[J]. Desalination, 2007, 215: 143-152.
    73. Li Yong, White Robert, Chen Deli, Zhang Jiabao, Li Baoguo, Zhang Yuming, et al. A spatially referenced water and nitrogen management model(WNMM) for(Irrigated)Intensive Cropping Systems in the North China Plain[J]. Ecological Modelling, 2007, 203(3/4): 395-423.
    74. Donna L. Giltrap, Changsheng Li, Surinder Saggar. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils[J]. Agriculture, Ecosystems and Environment, 2010, 136: 292-300.
    75. Torsten Müller, Kristian Thorup-Kristensen, Jakob Magid, Lars Stoumann Jensen, S?ren Hansen. Catch crops affect nitrogen dynamics in organic farming systems without livestock husbandry-Simulations with the DAISY model[J]. Ecological Modelling, 2006, 191: 538-544.
    76. X. Wang, C. T. Mosley, J. R. Frankenberger, E. J. Kladivko. Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD[J]. Agricultural Water Management, 2006, 79: 113-136.
    77. Flerchinger G N, Saxton K E. Simultaneous heat and water model of freezing snow-residue-soil system I. Theory and Development[J]. Trans ASAE, 1989, 32: 565-571.
    78. Flerchinger G N, Saxton K E. Simultaneous heat and water model of freezing snow-residue-soil system II. field verification[J]. Trans ASAE, 1989, 32: 573-578.
    79. Georges Hofman, 1999. Nutrient management legislation in European countries. Numalec report, Fair 6-CT-98-4215.
    80. Dev T. Britto, Herbert J. Kronzucker. NH4+ toxicity in higher plants: a critical review. Journal of plant physlology, 2002, 159: 567-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700