叶酸对母猪繁殖性能、宫内发育迟缓仔猪肝脏基因表达和蛋白质组学影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宫内发育迟缓显著影响后代个体出生后的生长发育,本研究应用RT-PCR和蛋白质组学技术,考察了叶酸对母猪繁殖性能和宫内发育迟缓仔猪肝脏基因表达和蛋白质组的影响。
     试验采用单因子试验设计,选择36头纯种大约克初产母猪,分为3个处理,每个处理12个重复,每个重复1头母猪。将配种后的母猪随机分到基础日粮组(叶酸含量1.3mg/kg)、基础日粮+叶酸10mg/kg和基础日粮组+叶酸含量30mg/kg。试验从母猪配种后开始至仔猪断奶,母猪妊娠第46,60和74d采血,记录各处理组每头母猪的繁殖性能指标,21 d断奶时称量仔猪体重。分娩时在基础日粮组和添加叶酸30mg/kg组中分别选取8头正常体重(NBW,BW>1.4kg)和宫内发育迟缓(IUGR,0.8     试验结果表明:
     1、母猪饲粮中添加叶酸可显著提高新生仔猪和妊娠不同阶段(妊娠46d、60d和74d)母猪血清叶酸含量(P<0.05),但对仔猪初生重、产仔数、产活仔数、仔猪存活率以及断奶体重无显著影响(P>0.05)。
     2、母猪叶酸营养影响新生仔猪肝脏中与一碳单位代谢和氧化应激相关基因的mRNA表达量。IUGR+C组仔猪MAT1A、MAT2A和DNMT-1基因mRNA的相对表达量显著低于IUGR+F组、NBW+C组和NBW+F组,而PPARγ、GR、AOX基因表达量高于其他各组(P<0.05)。IUGR组和IUGR+F组CBS及ob-R表达量低于NBW+C组和NBW+F组(P<0.05)。各处理间MTHFR和PPARα基因表达量无显著差异(P>0.05)。
     3、母猪饲粮中添加叶酸可显著上调宫内发育迟缓仔猪肝脏热激蛋白90、脂水解酶、亚胺甲基转移酶环脱氨酶、顺乌头酸酶和琥珀酸脱氢酶表达量,下调不均一核糖核蛋白、遍在蛋白缀合酶、胰蛋白酶、肌动蛋白和输出蛋白表达量(P<0.05)。
     综上可见,本试验发现妊娠母猪日粮添加高剂量叶酸显著提高母猪和新生仔猪血清叶酸水平,但对母猪繁殖性能无显著影响。高剂量叶酸可缓解宫内发育迟缓对仔猪肝脏中与一碳单位代谢和能量代谢相关基因表达的负面影响,改变宫内发育迟缓仔猪肝脏中许多蛋白的表达量,进而一定程度上缓减宫内发育迟缓对新生仔猪生长发育的负面影响。
Intrauterine growth restriction (IUGR) significantly influenced the postnatal growth performance of the offspring. To gain insights into the changes of gilts reproductive performance, hepatic gene expression patterns and proteomics in IUGR piglets after maternal folic acid supplementation, RT-PCR and proteomics technology were used in this study.
     Single factorial experimental design was used in the present study. Thirty-six gilts were randomly allocated into three groups fed three dietary folate level immediately after mating until weaning, basal diet group (folic acid 1.3mg/kg), basal diet+folic acid 10 mg/kg and basal diet+folic acid 30 mg/kg with 12 replicates per group. The blood samples of the gilts were collected at gestation d 46, d 60 and d 70, weanling weight of the piglets at 21-day-old, and reproductive performance of the gilts were recorded. Eight normal body weight (NBW, BW> 1.4kg) and intrauterine growth restriction (IUGR,0.8     The results showed that:
     1. Folic acid supplementation could increase serum folic acid content in the newborn piglets and gilts at different phrase(d 46, d 60 and d 74 of gestation) during the gestation (P<0.05), but had no effects on birth weight, litter size, born alive number, survival rate and d 21 weaning weight(P>0.05).
     2. Maternal folic acid supplementation altered mRNA expressions of hepatic gene associated with one-carbon metabolism and energy metabolism in newborn piglets. Real-Time PCR indicated that gene expression pattern of MAT1A, MAT2A and DNMT1 were the lowest in IUGR group (P<0.05). Transcriptional expression level of PPARy, GR and AOX were the highest in IUGR group (P<0.05). The expression abundance of CBS and ob-R were lower in IUGR and IUGR+F groups than in NBW and NBW+F groups (P<0.05). There were no significantly difference in gene expression levels of MTHFR and PPARa among groups (P>0.05).
     3. Proteomic analysis indicated that folic acid supplementation increased the content of heat shock protein 90kD, aconitase 1, succinate dehydrogenase, formiminotransferase cyclodeaminase and abhydrolase, but down-regulated the expression of heterogeneous nuclear ribonucleoprotein, exportin cselp, ubiquitin-conjugating enzyme, trypsin and actin-related protein in the liver of the piglets (P<0.05).
     The results indicated that maternal high dose folic acid addition increased serum folic acid levels of gilts and newborn piglets, but had no effects on gilts reproductive performance. Maternal folic acid supplementation reduced the negative effects of IUGR on hepatic expression levels of genes involving in one-carbon metabolism and energy metabolism and altered several proteins expression profiles. The changes of the proteins expression profiles may alleviate the negative effects of IUGR on piglet growth performance.
引文
[1]Matte JJ, Girard CL, Brisson GJ. Folic acid and reproductive performances of sows[J]. J Anim Sci.1984;59:1020-1025.
    [2]Tremblay GF, Matte JJ, Dufour JJ, et.al. Survival rate and development of fetuses during the first 30 days of gestation after folic acid addition to a swine diet[J]. J Anim Sci. 1989;67:724-732.
    [3]Matte JJ, Girard CL. Effects of Intramuscular injections of folic acid during lactation on folates in serum and milk and performance of sows and piglets[J]. J Anim Sci.1989;67:426-431.
    [4]Mcmillen IC, Robinson JS. Developmental origins of the metabolic syndrome:prediction, plasticity, and programming[J]. Physiol Rev.2005;85:571-633.
    [5]Wu G, Bazer FW, Wallace JM, et.al. Board-invited review:intrauterine growth retardation: implications for the animal sciences[J]. J Anim Sci.2006;84:2316-2337.
    [6]Wang J, Chen L, Li D, et.al. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs[J]. J Nutr.2008; 138:60-66.
    [7]Wu G, Bazer FW, Cudd TA, et.al. Maternal nutrition and fetal development[J]. J Nutr. 2004;134:2169-2172.
    [8]Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions[J]. Experimental Biology and Medicine.2004;229:988-995.
    [9]Baserga M, Hale MA, McKnight RA, et.al. Uteroplacental insufficiency alters hepatic expression, phosphorylation, and activity of the glucocorticoid receptor in fetal IUGR rats[J]. Am J Physiol Regulatory Integrative Comp Physiol.2005;289:R1348-1353.
    [10]Lillycrop KA, Phillips ES, Jackson AA, et.al. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring[J]. J Nutr.2005;135:1382-1386.
    [11]Pham TD, MacLennan NK, Chiu CT, et.al. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney[J]. Am J Physiol Regulatory Integrative Comp Physiol.2003;285:R962-970.
    [12]Wallace JM, Milne JS, Aitken RP. The effect of overnourishing singleton-bearing adult ewes on nutrient partitioning to the gravid uterus[J]. Br J Nutr.2005;94:533-539.
    [13]Baker DH, Becker DE, Norton HW, et.al. Reproductive performance and progeny development in swine as influenced by feed intake during pregnancy [J]. J Nutr. 1969;97:489-495.
    [14]Milligan BN, Dewey CE, de Grau AF. Neonatal-piglet weight variation and its relation to pre-weaning mortality and weight gain on commercial farms[J]. Prev Vet Med.2002;56:119-127.
    [15]Quiniou N, Dagorn J, Gaudr D. Variation of piglets'birth weight and consequences on subsequent performance[J]. Livestock Production Science.2002;78:63-70.
    [16]Cundiff LV, MacNeil MD, Gregory KE, et.al. Between-and within-breed genetic analysis of calving traits and survival to weaning in beef cattle[J]. J Anim Sci.1986;63:27-33.
    [17]Wu G. Intestinal mucosal amino acid catabolism[J]. J Nutr.]998;128:1249-1252.
    [18]Thornbury JC, Sibbons PD, van Velzen D, et.al. Histological investigations into the relationship between low birth weight and spontaneous bowel damage in the neonatal piglet[J]. Pediatr Pathol.1993;13:59-69.
    [19]Wang T, Huo YJ, Shi F, et.al. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs[J]. Biol Neonate.2005;88:66-72.
    [20]Greenwood PL, Hunt AS, Hermanson JW, et.al. Effects of birth weight and postnatal nutrition on neonatal sheep: Ⅱ. Skeletal muscle growth and development[J]. J Anim Sci. 2000;78:50-61.
    [21]Hegarty PVJ, Allen CE. Effect of prenatal runting on the postnatal development of skeletal muscles in swine and rats[J]. J Anim Sci.1978;46:1634-1640.
    [22]Widdowson EM. Intra-uterine growth retardation in the pig. Ⅰ. Organ size and cellular development at birth and after growth to maturity[J]. Biol Neonate.1971;19:329-340.
    [23]Powell SE, Aberle ED. Effects of birth weight on growth and carcass composition of swine[J]. J Anim Sci.1980;50:860-868.
    [24]Matsuzaki M, Milne JS, Aitken RP, et.al. Overnourishing pregnant adolescent ewes preserves perirenal fat deposition in their growth-restricted fetuses[J]. Reproduction, Fertility and Development.2006; 18:357-364.
    [25]Wallace JM, Luther JS, Milne JS, et.al. Nutritional modulation of adolescent pregnancy Outcome-A Review[J]. Placenta.2006;27:61-68.
    [26]Karunaratne JF, Ashton CJ, Stickland NC. Fetal programming of fat and collagen in porcine skeletal muscles[J]. Journal of Anatomy.2005;207:763-768.
    [27]Bee G. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter[J]. J Anim Sci.2004;82:826-836.
    [28]Gondret F, Lefaucheur L, Juin H, et.al. Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs[J]. J Anim Sci. 2006;84:93-103.
    [29]Southam ER, Hulet CV, Botkin MP. Factors influencing reproduction in ewe lambs[J]. J Anim Sci.1971;33:1282-1287.
    [30]Da Silva P, Aitken R, Rhind S, et.al. Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses[J]. Reproduction.2002; 123:769-777.
    [31]Da Silva P, Aitken RP, Rhind SM, et.al. Effect of maternal overnutrition during pregnancy on pituitary gonadotrophin gene expression and gonadal morphology in female and male fetal sheep at day 103 of gestation[J]. Placenta.2003;24:248-257.
    [32]Da Silva-Buttkus P, van den Hurk R, te Velde E, et.al. Ovarian development in intrauterine growth-retarded and normally developed piglets originating from the same litter[J]. Reproduction.2003; 126:249-258.
    [33]Jobgen WS, Fried SK, Fu WJ, et.al. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates[J]. J Nutr Biochem.2006;17:571-588.
    [34]Gootwine E. Placental hormones and fetal-placental development[J]. Animal Reproduction Science.2004;83:551-566.
    [35]Reynolds LP, Borowicz PP, Vonnahme KA, et.al. Placental angiogenesis in sheep models of compromised pregnancy[J]. The Journal of Physiology.2005;565:43-58.
    [36]Schoknecht PA, Newton GR, Weise DE, et.al. Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine[J]. Theriogenology. 1994;42:217-226.
    [37]Wallace JM, Aitken RP, Cheyne MA. Nutrient partitioning and fetal growth in rapidly growing adolescent ewes[J]. J Reprod Fertil.1996; 107:183-190.
    [38]Vonnahme KA, Ford SP. Placental vascular endothelial growth factor receptor system mRNA expression in pigs selected for placental efficiency[J]. The Journal of Physiology. 2004;554:194-201.
    [39]Redmer DA, Aitken RP, Milne JS, et.al. Influence of maternal nutrition on messenger RNA expression of placental angiogenic factors and their receptors at midgestation in adolescent sheep[J]. Biology of Reproduction.2005;72:1004-1009.
    [40]Redmer DA, Wallace JM, Reynolds LP. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development[J]. Domestic Animal Endocrinology. 2004;27:199-217.
    [41]Wootton R, McFadyen IR, Cooper JE. Measurement of placental blood flow in the pig and its relation to placental and fetal weight[J]. Biol Neonate.1977;31:333-339.
    [42]Pere MC, Etienne M. Uterine blood flow in sows:effects of pregnancy stage and litter size[J]. Reprod Nutr Dev.2000;40:369-382.
    [43]Finch AM, Yang LG, Nwagwu MO, et.al. Placental transport of leucine in a porcine model of low birth weight[J]. Reproduction.2004;128:229-235.
    [44]Bell AW, Ehrhardt RA. Regulation of placental nutrient transport and implications for fetal growth[J]. Nutr Res Rev.2002;15:211-230.
    [45]Giussani DA, Forhead AJ, Gardner DS, et.al. Postnatal cardiovascular function after manipulation of fetal growth by embryo transfer in the horse[J]. The Journal of Physiology. 2003;547:67-76.
    [46]Fowden AL, Giussani DA, Forhead AJ. Endocrine and metabolic programming during intrauterine development[J]. Early Human Development.2005;81:723-734.
    [47]Da Silva P, Aitken R, Rhind S, et.al. Influence of placentally mediated fetal growth restriction on the onset of puberty in male and female lambs[J]. Reproduction. 2001;122:375-383.
    [48]Ozanne SE, Nicholas Hales C. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death[J]. Mechanisms of Ageing and Development. 2005;126:852-854.
    [49]Barker DJ, Hales CN, Fall CH, et.al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X):relation to reduced fetal growth[J]. Diabetologia.1993;36:62-67.
    [50]MacLennan NK, James SJ, Melnyk S, et.al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats[J]. Physiol Genomics. 2004;18:43-50.
    [51]Waterland RA, Jirtle RL. Transposable Elements:Targets for early nutritional effects on epigenetic gene regulation[J]. Mol Cell Biol.2003;23:5293-5300.
    [52]Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring[J]. J Nutr.2002;132:2393S-2400S.
    [53]Wallace JM, Bourke DA, Aitken RP, et.al. Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep[J]. The Journal of Physiology. 2003;547:85-94.
    [54]Finch AM, Yang LG, Nwagwu MO, et.al. Placental transport of leucine in a porcine model of low birth weight[J]. Reproduction.2004;128:229-235.
    [55]Suzuki MM, Bird A. DNA methylation landscapes:provocative insights from epigenomics[J]. Nat Rev Genet.2008;9:465-476.
    [56]Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nat Genet.2003;33 Supp1:245-254.
    [57]Friso S, Choi S-W. Gene-nutrient interactions and DNA methylation. J Nutr[J].2002; 132 Suppl:2382-2387.
    [58]Jones PA, Laird PW. Cancer epigenetics comes of age[J]. Nat Genet.1999;21:163-167.
    [59]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet. 2002;3:415-428.
    [60]Rottach A, Leonhardt H, Spada F. DNA methylation-mediated epigenetic control[J]. J Cell Biochem.2009;7:325-337.
    [61]Fatemi M, Hermann A, Gowher H, et.al. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA[J]. European Journal of Biochemistry.2002;269:4981-4984.
    [62]Cheng X, Blumenthal RM. Mammalian DNA methyltransferases:a structural perspective[J]. Structure.2008; 16:341-350.
    [63]Kaneda M, Okano M, Hata K, et.al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting[J]. Nature.2004;429:900-903.
    [64]Liang G, Salem CE, Yu MC, et.al. DNA methylation differences associated with tumor tissues identified by genome scanning analysis[J]. Genomics.1998;53:260-268.
    [65]Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality[J]. Cell.1992;69:915-926.
    [66]Felsenfeld G, Groudine M. Controlling the double helix[J]. Nature.2003;421:448-453.
    [67]Esteve PO, Chin HG, Smallwood A, et.al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication[J]. Genes Dev.2006;20:3089-3103.
    [68]Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes[J]. Am J Clin Nutr.2009;89:1488S-1493.
    [69]Clouaire T, Stancheva I. Methyl-CpG binding proteins:specialized transcriptional repressors or structural components of chromatin? [J]. Cell Mol Life Sci.2008;65:1509-1522.
    [70]Mutskov VJ, Farrell CM, Wade PA, et.al. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation[J]. Genes Dev.2002; 16:1540-1554.
    [71]Chong JA, Tapia-Ramirez J, Kim S, et.al. REST:a mammalian silencer protein that restricts sodium channel gene expression to neurons[J]. Cell.1995;80:949-957.
    [72]Ballas N, Grunseich C, Lu DD, et.al. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis[J]. Cell.2005;121:645-657.
    [73]Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes[J]. Current Opinion in Neurobiology.2005; 15:500-506.
    [74]Antony A. The biological chemistry of folate receptors[J]. Blood.1992;79:2807-2820.
    [75]Matte JJ, Girard CL, Brisson GJ. Serum folates during the reproductive cycle of sows[J]. J Anim Sci.1984;59:158-163.
    [76]Tremblay GF, Matte JJ, Lemieux L, et.al. Serum folates in gestating swine after folic acid addition to diet[J]. J Anim Sci.1986;63:1173-1178.
    [77]Matte JJ, Girard CL, Tremblay GF. Effect of long-term addition of folic acid on folate status, growth performance, puberty attainment, and reproductive capacity of gilts[J]. J Anim Sci. 1993;71:151-157.
    [78]Lindemann MD, Kornegay ET. Folic acid supplementation to diets of gestating-lactating swine over multiple parities[J]. J Anim Sci.1989;67:459-464.
    [79]Guay F, Matte JJ, Girard CL, et.al. Effect of folic acid and glycine supplementation on embryo development and folate metabolism during early pregnancy in pigs[J]. J Anim Sci. 2002;80:2134-2143.
    [80]Mason JB. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism[J]. J Nutr.2003;133:941S-947.
    [81]Lu SC, Alvarez L, Huang ZZ, et.al. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation[J]. Proc Natl Acad Sci U S A.2001;98:5560-5565.
    [82]Hoffman D, Marion D, Cornatzer W, et.al. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine[J]. J Biol Chem.1980;255:10822-10827.
    [83]Ingrosso D, Cimmino A, Perna AF, et.al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia[J]. The Lancet.2003;361:1693-1699.
    [84]Yi P, Melnyk S, Pogribna M, et.al. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation[J]. J Biol Chem.2000;275:29318-29323.
    [85]James SJ, Melnyk S, Pogribna M, et.al. Elevation in S-adenosylhomocysteine and DNA hypomethylation:potential epigenetic mechanism for homocysteine-related pathology[J]. J Nutr. 2002;132:2361S-2366.
    [86]Baric I, Fumic K, Glenn B, et.al. S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism[J]. Proc Natl Acad Sci U S A.2004;101:4234-4239.
    [87]Davis CD, Uthus EO. Dietary Folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats[J]. J Nutr. 2003;133:2907-2914.
    [88]Sohn K-J, Stempak JM, Reid S, et.al. The effect of dietary folate on genomic and p53-specific DNA methylation in rat colon[J]. Carcinogenesis.2003;24:81-90.
    [89]Choi S-W, Friso S, Dolnikowski GG, et.al. Biochemical and molecular aberrations in the rat colon due to folate depletion are age-specific[J]. J Nutr.2003;133:1206-1212.
    [90]Chen Z, Karaplis AC, Ackerman SL, et.al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition[J]. Hum Mol Genet.2001; 10:433-443.
    [91]Devlin AM, Arning E, Bottiglieri T, et.al. Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice[J]. Blood.2004; 103:2624-2629.
    [92]Pogribny IP, James SJ, Jernigan S, et.al. Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis.2004;548:53-59.
    [93]Brunaud L, Alberto JM, Ayav A, et.al. Vitamin B12 is a strong determinant of low methionine synthase activity and DNA hypomethylation in gastrectomized rats[J]. Digestion. 2003;68:133-140.
    [94]Choi S-W, Friso S, Ghandour H, et.al. Vitamin B-12 Deficiency Induces Anomalies of Base Substitution and Methylation in the DNA of Rat Colonic Epithelium[J]. J Nutr. 2004; 134:750-755.
    [95]Schwahn BC, Laryea MD, Chen Z, et.al. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency [J]. Biochem J.2004;382:831-840.
    [96]Cox LA, Nijland MJ, Gilbert JS, et.al. Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression[J]. The Journal of Physiology. 2006;572:67-85.
    [97]Zhu MJ, Ford SP, Means WJ, et.al. Maternal nutrient restriction affects properties of skeletal muscle in offspring[J]. The Journal of Physiology.2006;575:241-250.
    [98]Sinclair KD, Allegrucci C, Singh R, et.al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status[J]. Proceedings of the National Academy of Sciences.2007;104:19351-19356.
    [99]Fuchs D, Winkelmann I, Johnson IT, et.al. Proteomics in nutrition research:principles, technologies and applications[J]. Br J Nutr.2005;94:302-314.
    [100]Kim H, Page GP, Barnes S. Proteomics and mass spectrometry in nutrition research[J]. Nutrition.2004;20:155-165.
    [101]Gianazza E, Veber D, Eberini I, et.al. Cobalamin (vitamin B12)-deficiency-induced changes in the proteome of rat cerebrospinal fluid[J]. Biochem J.2003;374:239-246.
    [102]Gianazza E, Eberini I, Arnoldi A, et.al. A proteomic investigation of isolated soy proteins with variable effects in experimental and clinical studies[J]. J Nutr.2003; 133:9-14.
    [103]Tosco A, Siciliano RA, Cacace G, et.al. Dietary effects of copper and iron deficiency on rat intestine:a differential display proteome analysis[J]. Journal of Proteome Research. 2005;4:1781-1788.
    [104]Marvin-Guy L, Lopes LV, Affolter M, et.al. Proteomics of the rat gut:Analysis of the myenteric plexus-longitudinal muscle preparation[J]. Proteomics.2005;5:2561-2569.
    [105]Yan L, Ge H, Li H, et.al. Gender-specific proteomic alterations in glycolytic and mitochondrial pathways in aging monkey hearts[J]. Journal of Molecular and Cellular Cardiology.2004;37:921-929.
    [106]Edvardsson U, von Lowenhielm HB, Panfilov O, et.al. Hepatic protein expression of lean mice and obese diabetic mice treated with peroxisome proliferator-activated receptor activators[J]. Proteomics.2003;3:468-478.
    [107]Lenaerts K, Mariman E, Bouwman F, et.al. Glutamine regulates the expression of proteins with a potential health-promoting effect in human intestinal Caco-2 cells[J]. Proteomics. 2006;6:2454-2464.
    [108]Li D, Sun F, Wang K. Protein profile of aging and its retardation by caloric restriction in neural retina[J]. Biochemical and Biophysical Research Communications.2004;318:253-258.
    [109]Aldred S, Sozzi T, Mudway I, et.al. Alpha tocopherol supplementation elevates plasma apolipoprotein A1 isoforms in normal healthy subjects[J]. Proteomics.2006;6:1695-1703.
    [110]Haywood S, Simpson DM, Ross G, Beynon RJ. The greater susceptibility of North Ronaldsay sheep compared with Cambridge sheep to copper-induced oxidative stress, mitochondrial damage and hepatic stellate cell activation[J]. J Comp Pathol.2005;133:114-127.
    [111]Davis CD, Milner J. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2004;551:51-64.
    [112]Forde CE, McCutchen-Maloney SL. Characterization of transcription factors by mass spectrometry and the role of SELDI-MS[J]. Mass Spectrometry Reviews.2002;21:419-439.
    [113]Henzel WJ, Watanabe C, Stults JT. Protein identification:the origins of peptide mass fingerprinting[J]. Journal of the American Society for Mass Spectrometry.2003; 14:931-942.
    [114]Hoffmann Ed. Tandem mass spectrometry:A primer[J]. Journal of Mass Spectrometry. 1996;31:129-137.
    [115]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods.2001;25:402-408.
    [116]Bailey LB, Gregory JF, Ⅲ. Folate metabolism and requirements[J]. J Nutr. 1999;129:779-782.
    [117]Kotb M, Mudd SH, Mato JM, et.al. Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products[J]. Trends Genet.1997;13:51-52.
    [118]Storch KJ, Wagner DA, Burke JF, Young VR. Quantitative study in vivo of methionine cycle in humans using [methyl-2H3]-and [1-13C]methionine[J]. Am J Physiol. 1988;255:322-331.
    [119]Jacobs RL, House JD, Brosnan ME, et.al. Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat[J]. Diabetes.1998;47:1967-1970.
    [120]Jacobs RL, Stead LM, Brosnan ME, et.al. Hyperglucagonemia in rats results in decreased plasma homocysteine and increased flux through the transsulfuration pathway in liver[J]. J Biol Chem.2001;276:43740-43747.
    [121]Jacques PF, Bostom AG, Williams RR, et.al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations[J]. Circulation.1996;93:7-9.
    [122]Bestor TH, Hellewell SB, Ingram VM. Differentiation of two mouse cell lines is associated with hypomethylation of their genomes[J]. Mol Cell Biol.1984;4:1800-1806.
    [123]Fatemi M, Hermann A, Gowher H, et.al. Dnmt3a and Dnmtl functionally cooperate during de novo methylation of DNA[J]. Eur J Biochem.2002;269:4981-4984.
    [124]Okano M, Bell DW, Haber DA, et.al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell.1999;99:247-257.
    [125]Yoder JA, Soman NS, Verdine GL, et.al. DNA (cytosine-5)-methyltransferases in mouse cells and tissues, studies with a mechanism-based probe[J]. J Mol Biol.1997;270:385-395.
    [126]Slack A, Cervoni N, Pinard M, et.al. DNA methyltransferase is a downstream effector of cellular transformation triggered by simian virus 40 large T antigen[J]. J Biol Chem. 1999;274:10105-10112.
    [127]Takagi H, Tajima S, Asano A. Overexpression of DNA methyltransferase in myoblast cells accelerates myotube formation[J]. Eur J Biochem.1995;231:282-291.
    [128]Anguera MC, Field MS, Perry C, et.al. Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase[J]. J Biol Chem. 2006;281:18335-18342.
    [129]Kasperzyk JL, Fall K, Mucci LA, et.al. One-carbon metabolism-related nutrients and prostate cancer survival[J]. Am J Clin Nutr.2009;90:1562-1569.
    [130]Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms[J]. Mol Cell Endocrinol.2001; 185:61-71.
    [131]Bertram CE, Hanson MA. Animal models and programming of the metabolic syndrome[J]. Br Me Bull.2001;60:103-121.
    [132]Burdge G, Phillips E, Dunn R, et.al. Effect of reduced maternal protein consumption during pregnancy in the rat on plasma lipid concentrations and expression of peroxisomal proliferators activated receptors in the liver and adipose tissue of the offspring[J]. Nutrition Research. 2004;24:639-646.
    [133]Gressens P, Muaku SM, Besse L, et.al. Maternal protein restriction early in rat pregnancy alters brain development in the progeny[J]. Developmental Brain Research.1997;103:21-35.
    [134]Tugwood JD, Issemann I, Anderson RG, et.al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5'flanking sequence of the rat acyl CoA oxidase gene[J]. EMBO J.1992;11:433-439.
    [135]郑爱荣,吴德,徐盛玉等.营养水平对妊娠早期母猪胚胎存活和瘦素、孕酮分泌及基因表达影响[J].动物营养学报2008;2(4):388-396.
    [136]Lanneau D, Brunet M, Frisan E, et.al. Heat shock proteins:essential proteins for apoptosis regulation[J]. J Cell Mol Med.2008;12:743-761.
    [137]Bell DR, Poland A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90[J]. J Biol Chem.2000;275:36407-36414.
    [138]Goasduff T, Cederbaum AI. CYP2E1 degradation by in vitro reconstituted systems:role of the molecular chaperone hsp90[J]. Arch Biochem Biophys.2000;379:321-330.
    [139]Wegele H, Muller L, Buchner J. Hsp70 and Hsp90--a relay team for protein folding[J]. Rev Physiol Biochem Pharmacol.2004;151:1-44.
    [140]Chanson A, Sayd T, Rock E, et.al. Proteomic analysis reveals changes in the liver protein pattern of rats exposed to dietary folate deficiency[J]. J Nutr.2005;135:2524-2529.
    [141]Sun W, Xing B, Sun Y, et.al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis:novel protein markers in hepatocellular carcinoma tissues[J]. Mol Cell Proteomics.2007;6:1798-1808.
    [142]Hamilton BJ, Nichols RC, Tsukamoto H, et.al. hnRNP A2 and hnRNP L bind the 3'UTR of glucose transporter 1 mRNA and exist as a complex in vivo[J]. Biochem Biophys Res Commun. 1999;261:646-651.
    [143]Kwon S, Barbarese E, Carson JH. The cis-acting RNA trafficking signal from myelin basic protein mRNA and its cognate trans-acting ligand hnRNP A2 enhance cap-dependent translation[J]. J Cell Biol.1999; 147:247-256.
    [144]Huttelmaier S, Zenklusen D, Lederer M, et.al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1[J]. Nature.2005;438:512-515.
    [145]Pillai MR, Chacko P, Kesari LA, et.al. Expression of folate receptors and heterogeneous nuclear ribonucleoprotein E1 in women with human papillomavirus mediated transformation of cervical tissue to cancer[J]. J Clin Pathol.2003;56:569-574.
    [146]Xiao S, Hansen DK, Horsley ET, et.al. Maternal folate deficiency results in selective upregulation of folate receptors and heterogeneous nuclear ribonucleoprotein-E1 associated with multiple subtle aberrations in fetal tissues[J]. Birth Defects Res A Clin Mol Teratol. 2005;73:6-28.
    [147]Tabor H, Wyngarden L. The enzymatic formation of formiminotetrahydrofolic acid, 5,10-methenyltetrahydrofolic acid, and 10-formyltetrahydrofolic acid in the metabolism of formiminoglutamic acid[J]. J Biol Chem.1959;234:1830-1846.
    [148]Rabinowitz JC, Pricer WE. Formimino-tetrahydrofolic acid and methenyltetrahydrofolic acid as intermediates in the formation of N10-formyltetrahydrofolic acid[J]. Journal of the American Chemical Society.2002;78:5702.
    [149]Tabor H, Rabinowitz JC. Intermediate steps in the formylation of tetrahydrofolic acid by formiminoglutamic acid in rabbit liver[J]. Journal of the American Chemical Society. 2002;78:5705.
    [150]Powell CS, Jackson RM. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation:modulation of enzyme activities by MnSOD[J]. Am J Physiol Lung Cell Mol Physiol.2003;285:189-198.
    [151]Huang RF, Hsu YC, Lin HL, et.al. Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers[J]. J Nutr.2001;131:33-38.
    [152]Chen ZJ, Niles EG, Pickart CM. Isolation of a cDNA encoding a mammalian multiubiquitinating enzyme (E225K) and overexpression of the functional enzyme in Escherichia coli[J]. J Biol Chem.1991;266:15698-15704.
    [153]Neutzner A, Benard G, Youle RJ, et.al. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis[J]. Ann N Y Acad Sci.2008; 1147:242-253.
    [154]Deshaies RJ. Make it or break it:the role of ubiquitin-dependent proteolysis in cellular regulation[J]. Trends Cell Biol.1995;5:428-434.
    [155]Kalchman MA, Graham RK, Xia G, et.al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme[J]. J Biol Chem.1996;271:19385-19394.
    [156]Pitkin RM. Folate and neural tube defects[J]. Am J Clinical Nutrition.2007;85:285S-288.
    [157]Lecker SH, Jagoe RT, Gilbert A, et.al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression[J]. FASEB J.2004; 18:39-51.
    [158]Caviglia JM, Sparks JD, Toraskar N, et.al. ABHD5/CGI-58 facilitates the assembly and secretion of apolipoprotein B lipoproteins by McA RH7777 rat hepatoma cells[J]. Biochim Biophys Acta.2009;1791:198-205.
    [159]Burdge GC, Lillycrop KA, Phillips ES, et.al. Folic Acid Supplementation during the Juvenile-Pubertal Period in Rats Modifies the Phenotype and Epigenotype Induced by Prenatal Nutrition[J]. J Nutr.2009; 139:1054-1060.
    [160]Blow DM. Structure and mechanism of chymotrypsin[J]. Accounts of Chemical Research. 2002;9:145.
    [161]Small JV, Stradal T, Vignal E, et.al. The lamellipodium:where motility begins[J]. Trends Cell Biol.2002;12:112-120.
    [162]Fornerod M, Ohno M, Yoshida M, et.al. CRM1 is an export receptor for leucine-rich nuclear export signals[J]. Cell.1997;90:1051-1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700