正极薄膜材料LiNi_(0.5)Mn_(0.5)O_2的溶胶凝胶旋涂法制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状结构LiNi0.5Mn0.5O2作为一种锂离子电池正极材料,具有结构稳定、比容量高、热安全性好、原料成本低等优点,被认为是极有研究价值的材料体系,但关于LiNi0.5Mn0.5O2薄膜材料的研究文献报道较少。本论文选取LiNi0.5Mn0.5O2薄膜材料作为研究体系,采用溶胶凝胶旋涂法制备。该工艺过程简单,与射频磁控溅射、脉冲激光沉积(PLD)等物理方法相比不需要昂贵的设备,制备成本较低,而且化学组分容易控制,便于规模生产。
     本论文综合文献报道,选取价廉易得的醋酸锂、醋酸锰和乙酰丙酮镍为原料,通过大量实验摸索出稳定、均匀的前躯体溶胶的配制方法。采用旋转涂膜技术,在Si基片、Pt/Ti/SiO2/Si基片和Pt基片上分别制备了LiNi0.5Mn0.5O2薄膜材料。主要讨论了溶胶凝胶旋涂法制备薄膜工艺中影响成膜质量和性能的各种因素:(1)前驱体溶液的配制,包括原料配比、溶液中总金属离子浓度以及成膜助剂浓度对成膜质量的影响等;(2)旋涂工艺,包括甩胶速度及时间的控制,,湿膜干燥工艺的确定;(3)高温退火方式,退火温度和退火升温速率对LiNi0.5Mn0.5O2薄膜的结构、形貌及电化学性能的影响。利用各种测试手段XRD,SEM,TG/DSC, ICP-AES, CV测试和电化学性能测试等,系统研究了原料配比、PVP的用量、干燥处理温度、退火温度及升温速率等对LiNi0.5Mn0.5O2薄膜的结构、形貌及电化学性能的影响。通过优化工艺参数,我们制得了表面结晶均匀、致密、无裂痕的LiNi0.5Mn0.5O2薄膜材料,具有良好的电化学性能。
     研究表明最佳产物的制备条件为:醋酸锂+乙酰丙酮镍+醋酸锰+冰醋酸+异丙醇+水,以PVP为成膜助剂,其中Li/(Mn+Ni)=1.20,金属离子总浓度0.66mol/L为宜,PVP最佳浓度为0.5mol/L;旋涂工艺转速为3000rpm,时间30s,重复旋涂五次得到所需厚度薄膜;当干燥温度为450℃,并在700℃(控制一定的升温速率)退火30min得到的LiNi0.5Mn0.5O2薄膜材料结构形貌及电化学性能良好。XRD结果表明,最佳条件下制备的LiNi0.5Mn0.5O2薄膜材料具有纯相的层状结构,ICP分析薄膜的化学组成为Li1.01Ni0.5Mn0.5O2,在电压范围2.5V-4.5V以20μA/cm2的电流充放电时,首次放电容量为92.28μAh/cm2μm,循环50次后为73.68μAh/cm2μm,容量保持率约为80%。
LiNi0.5Mn0.5O2 as a layered structure of lithium-ion battery cathode materials with stable structure, high specific capacity, heat safety, low cost of raw materials, is considered the most research value of the material system, but on the LiNi0.5Mn0.5O2 thin film materials reported less. The paper selected as a research system LiNi0.5Mn0.5O2 thin films, sol-gel spin coating method. The process is simple, and RF magnetron sputtering, pulsed laser deposition (PLD) compared with other physical methods do not need expensive equipment, preparation costs are lower, and the chemical composition easy to control, easy to scale production.
     The comprehensive study reported in the literature, select the cheap and easily obtained lithium acetate, manganese acetate and nickel acetylacetone raw material by a large number of experiments to explore the stability of a uniform method for the preparation of precursor sol. By spin coating techniques, in Si substrate, Pt/Ti/SiO2/Si substrate and the Pt substrate LiNi0.5Mn0.5O2 films were prepared. Mainly discussed the preparation of sol-gel films by spin-coating of film quality and performance in a variety of factors:(1) precursor solution preparation, including raw material ratio, the total metal ion concentration in solution and the concentration of film-forming additives on the film quality; (2) spin-coating process, including the rejection of plastic speed and time control, the determination of wet film drying process; (3) high temperature annealing method, annealing temperature on the structure of the films LiNi0.5Mn0.5O2, shape and the morphology and electrochemical properties. Using a variety of testing methods XRD, SEM, TG/DSC, ICP, CV and electrochemical performance testing, test, system of raw material ratio, PVP amount, annealing temperature and film preparation parameters on the structure of LiNi0.5Mn0.5O2, morphology and electrochemical properties. By optimizing the process parameters, we got the surface crystallization of the system uniform and compact film material LiNi0.5Mn0.5O2 no cracks, with good electrochemical performance.
     Studies show that the best system for the precursor solution:lithium acetate+nickel acetylacetone+manganese acetate+water+acetic acid to PVP as a film-forming additives, including Li/(Mn+Ni)=1.20, metal ions total concentration of 0.66 mol/L is appropriate, PVP optimal concentration of 0.5 mol/L; spin-coating process speed in 3000rpm, time 30s, five are required to repeat the spin-coated film thickness; when the drying temperature was 450℃, and 700℃(heating rate control certain) 30min annealing structure of thin films obtained LiNi0.5Mn0.5O2 morphology and electrochemical performance is good. XRD results show that under the best conditions LiNi0.5Mn0.5O2 thin films prepared with pure phase of layered structure, ICP analysis of the chemical composition of thin films Li1.01Ni0.5Mn0.5O2, in the voltage range of 2.5V-4.5V to 20μA/cm2 of the current charge and discharge, the initial discharge capacity of 92.28/μAh/cm2μm, after 50 cycles 73.68μAh/cm2μm, the capacity retention rate of about 80%.
引文
[1]Kanehori K, Matsumoto K, Miyauchi K, et al. Thin film solid electrolyte and its application to secondary lithium cell [J]. Solid State Ionics,1983,9(10):1445-1448.
    [2]Jang Y, Dudney N J, Blom D A.High-voltage cycling behavior of thin-film LiCoO2 cathodes [J].J Electrochem Soc,2002,149 (11):A1442-1447.
    [3]Park Y S, Lee S H, Lee B, et al. All-solid-state lithium thin-film rechargeable battery with lithium manganese oxide [J]. Electrochem Solid State Lett,1999,2 (2):58-59.
    [4]Lee S H, Liu P, Tracy C E, et al. All-solid-state rocking chair lithium battery on a flexible Al substrate [J].Electrochem Solid-State Lett,1999,2:425-427.
    [5]Baba M, Kumagai N, Fujita N, et al. Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn2O4 positive and V2O5 negative electrodes [J]. J Power Sources,2001,97-98:798-800.
    [6]Atsushi S, Akitoshi H, Masahiro T. Interfacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy [J]. Chem Mater,2010,22,949-956.
    [7]赵胜利,文九巴,祝要民等.全固态薄膜锂电池0.3Ag-V205/LiPON/Li的制备及电化学性能[J].功能材料,2008年第1期(39)卷.
    [8]Birke P, Chu W F, Weppner W. Materials for lithium thin-film batteries for application in silicon technology[J].Solid State Ionics,1997,93:1-15.
    [9]Xia H, Lu L, Ceder G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition [J].Journal of Power Sources,2006,159:1422-1427.
    [10]Zhu X J, Guo Z P, Du G D, et al, LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion micro-batteries[J]. Surface&Coatings Technology,2010,204:1710-1714.
    [11]Takahashi M, Hayashi M, Shodai T. Characterization of all-solid-state secondary batteries with LiCoO2 thin films prepared by ECR sputtering as positive electrodes[J]. Journal of Power Sources,2009,189:191-196.
    [12]Choi WG, Yoon S G. Structural and electrical properties of LiCoO2 thin-film cathodes deposited on planar and trench structures by liquid-delivery metal organic chemical vapour deposition [J]. J Power Sources,2004,125 (2):236.
    [13]Ni C T, Fung K Z. Effect of chitosan on deposition of LiCoO2 thin film for Li-ion batteries [J].Solid State Ionics,2009,180:900-903.
    [14]吴济今,孙乾,傅正文.脉冲激光沉积掺杂二氧化硅的钴酸锂正极薄膜材料[J].无机化学学报,2009,7:1262-05.
    [15]Ramana C V, Zaghib K, Julien C M. J Power Sources,2006,159 (2):1310.
    [16]Xia H, Lu L. Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in micro-batteries. Appl Phys Lett.2008,92:011912.
    [17]Lai S J, Hu C, LiY X, et al. Preparation and properties of LiNi0.5Mn0.5O2 thin films by spin-coating for lithium micro-batteries [J]. Solid State Ionics,2008,179:1754-1757.
    [18]Baskaran R, Kuwata N, et al. Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery [J]. Solid State Ionics,2009,180:636-643.
    [19]Ramana C V, Zaghib K, Julien C M. Synthesis, structural and electrochemical properties of pulsed laser deposited Li(Ni,Co)O2 films[J]. J Power Sources,2006,159 (2):1310-115.
    [20]Tang SB(Singapore). Characterization of LiMn2O4 thin films grown on Si substrates by pulsed laser deposition [J]. Materials Chemistry and Physics,2008,111:149-153.
    [21]Karthicka S N, et al.Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery [J]. Journal of Alloys and Compounds, 2010,489:674-677.
    [22]Chew S Y. Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method [J].Journal of Power Sources,2009,189:449-453.
    [23]杨利贞,黄可龙等.退火温度对LiMn2O4薄膜性能的影响[J].电源技术,2008,6:386-388.
    [24]Shin D W, et al. XPS/EXAFS study of cycle ability improved LiMn2O4 thin film cathodes prepared by solution deposition [J]. Electrochemistry Communications,2009,11: 695-698.
    [25]Ramana C V, Hussain O M, et al. Physical investigations on electron-beam evaporated vanadium pentoxide films [J]. Materials Science and Engineering,1998, B52:32-39.
    [26]Beke S, Giorgio S, et al. Structural and optical properties of pulsed laser deposited V2O5 thin films [J]. Marine Thin Solid Films,2008,516:4659-4664.
    [27]Oukassi S, Salot R, Pereira-Ramos J P. Elaboration and characterization of crystalline RF-deposited V2O5 positive electrode for thin film batteries [J]. Applied Surface Science, 2009,256:149-155.
    [28]Navone C, Pereira-Ramos J P, et al. Electrochemical and structural properties of V2O5 thin films prepared by DC sputtering [J]. Journal of Power Sources,2005,146:327-330.
    [29]K. Le Van, Groult H, Mantoux A, Perrigaud L, Lantelme F, Amorphous vanadium oxide films synthesised by ALCVD for lithium rechargeable batteries [J].Journal of Power Sources, 2006,160:592-601.
    [30]Li Y Z, Kunitake T, et al. Synthesis and Li+Intercalation/Extraction in Ultrathin V2O5 Layer and Freestanding V2O5/Pt/PVA Multilayer Films [J]. Chem. Mater,2007,19: 575-580.
    [31]Kim Y S, Ahn H J, Shim H S, Seong T Y, Electrochemical and structural properties of MOO3-V2O5 nanocomposite thin film electrodes for lithium rechargeable batteries [J]. Solid State Ionics,2006,177:1323-1326.
    [32]Wu Q H, et al. Photoelectron spectroscopic study of Na intercalation into V2O5 thin films [J].Solid State Ionics,2004,167:155-163.
    [33]薛明器,傅正文.脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能[J].物理化学学报,2005,21(7):707-710.
    [34]Sauvage F, Baudrin E, Laffont L, Tarascon J M. Origin of electrochemical reactivity enhancement of post-annealed LiFePO4 thin films:Preparation of heterosite-type FePO4 [J]. Solid State Ionics,2007,178:145-152.
    [35]Sun J P, Tang, K et al. Needle-like LiFePO4 thin films prepared by an off-axis pulsed laser deposition technique [J]. Thin Solid Films,2009,517:2618-2622.
    [36]Tang K, Sun J P, et al. Electrochemical performance of LiFePO4thin films with different morphology and crystallinity [J].Electrochimica Acta,2009,54:6565-6569.
    [37]Legrand C, Dupont L, Tang K, Li H, Huang X J, Baudrin E, Structural and textural characterization of LiFePO4 thin films prepared by pulsed laser deposition on Si substrates[J].Thin Solid Films,2010,518:5447-5451.
    [38]杨聪娇.化学溶液沉积法制备LiMn2O4薄膜电极的研究[D].国防科学技术大学硕士论文.2005-11-01.
    [39]Zhu X J, Cheng L B, Wang C G, et al. Preparation and Characteristics of LiFePO4 Thin Film by Radio Frequency Magnetron Sputtering for Lithium Microbatteries [J]. J. Phys. Chem. C 2009,113,14518-14522.
    [40]Bates J B, Dudney N J,Lubben D C. Thin-film rechargeable lithium batteries [J]. J Power Sources,1995,54(1):58-62.
    [41]Kim D, Kim M K, Son J T, et al. Effect of target propertieson deposition of lithium nickel cobalt oxide thin-films using RF agnetron sputtering [J]. J Power Sources,2002,108: 230-244.
    [42]Matsumura T, Imanishi N, Hirano A, et al. Electrochemical performances for preferred oriented PLD thin-film electrodes of LiNi0.8Co0.2O2, LiFePO4 and LiMn2O4 [J]. Solid State Ionics.2008,179:2011-2015.
    [43]Xia H, Lu L, et al. Li diffusion in LiNi0.5Mn0.5O2 thin film electrodes prepared by pulsed laser deposition. Electrochimica Acta,2009,54:5986-5991.
    [44]Yoon W S, Ban S H, Lee K K, et al. Electrochemical characterization of layered LiCoO2films prepared by electrostatic spray deposition [J]. J Power Sources,2001, (97-98): 282-286.
    [45]Uchida I, Mohamedi M, Dokko K, et al. Recent investigations on thin films and single particles of transition metal oxides fox lithium batteries [J]. J Power Sources,2001, 97-98:518-524.
    [46]Shin-Wook Jeon, Jung-Kyu Lim, Sung-Hwan Lim, et al. As-deposited LiCoO2 thin film cathodes prepared by RF magnetron sputtering [J]. Electrochimica Acta,2005,51: 268-273.
    [47]Vaishali Patil, Arun Patil, Ji-Won Choi, et al. LiCo02 thin film cathodes grown by sol-gel method [J]. J Electroceram,2009,23:214-218.
    [48]Young Ho Rho, Kaoru Dokko, Kiyoshi Kanamura, Li+ion diffusion in LiMn2O4 thin film prepared by PVP sol-gel method[J]. Journal of Power Sources,2006,157:471-476.
    [49]崔英德,易国斌,廖列文编著,聚乙烯吡咯烷酮的合成与应用[M].北京科学出版社,2001,P7-41.
    [50]甘国友等,溶胶凝胶法薄膜制备工艺及其应用[J].材料导报,1996,22(1):142.
    [51]Maoping Zheng, Mingyuan Gu, Yanping Jin,et al. Preparation, structure and properties of TiO2-PVP hybrid films[J].Materials Science and Engineering,2000,77:55-59.
    [52]Derouin T A, Lakemam C D E, Wu X H, et al. J Matter Res,1997,12(5):1391.
    [53]ParkY J, Kim J G, Kim M K,et al. Electrochemical properties of LiMn2O4hin films [J]. Power Sources,2000,87(1-2):69-77.
    [54]Park Y J, Kim JG, Kim M K, et al. Preparation of LiMn2O4 thin films by a sol-gel method [J]. Solid State Ionics,2002,130 (3-4):203-214.
    [55]Kozuka H, Takenaka S, Tokita H, e t al. PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness [J]. Journal of the European Ceramic Society,2004,24:1585-1588.
    [56]Yoon W S, Balasubramanian. Soft X-ray absorption spectroscopic study of a LiNi1/2Mn1/202 cathode during charge [J]. J. Electrochem. Soc.2004,2(151):A246-A251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700