超亲水多孔TiO_2薄膜的制备及超亲水机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,超亲水性能的薄膜,因其具有高性能而引起了各国学者的极大关注。尽管目前超亲水薄膜的制备方法多种多样,但由于制备工艺复杂的限制,使该薄膜尚未得到普遍应用。本文依据超亲水性能的形成原理,基于具有光催化性能的TiO2薄膜,通过用模板剂法和双络合剂法制备了表面具有孔状结构的超亲水膜。本文以钛酸四丁酯为钛前体,聚乙二醇(PEG)为模板剂,采用溶胶凝胶法制备具有微米和纳米级孔状结构的TiO2薄膜。随着PEG添加量的增加,薄膜孔径逐渐增大,孔穴逐渐加深,比表面积也逐渐增大。当PEG含量少于临界值(0.002 0.0025 M)时,小裂缝在热处理过程会因在锻烧过程中颗粒的聚合使裂缝消失。而当PEG含量高于0.02 M时,PEG会跟TiO2颗粒交联起来逐步形成三维网络结构而抑制TiO2聚合的产生,同时薄膜出现开裂现象。实验结果表明,TiO2多孔薄膜表面粗糙不平,在自然光的条件下跟水接触角小于5°。
     本文利用乙酰丙酮(acac)和二乙醇胺(DEA)作为络合剂,采用溶胶凝胶技术,以钛酸丁酯为前驱体,在玻璃基片上制备了二氧化钛多孔薄膜。
     单独以乙酰丙酮(acac)或二乙醇胺(DEA)作为络合剂,制备的涂膜十分致密和平坦,水接触角分别为20°和23°。但以两者复合使用,由于低缩聚物迅速形成,使溶液体系产生二相分离,随着二乙醇胺加入量的增加,两相完全分离所需的时间逐渐减少,在煅烧过程中,溶剂挥发时,放出二氧化碳气体形成了孔状结构,从而使表面具有更大的平均粗糙度。多孔TiO2的涂膜在避光的条件下与水接触角达6.5°。
     利用Wenzel和Cassie理论对多孔表面超亲水现象进行解释,讨论了两种理论在亲水区域中的相互转换的条件,计算出了多孔TiO2薄膜的临界接触角,分析了多孔TiO2薄膜的超亲水机理。
With the development of science and technology, the superhydrophilic surfaces were paid attention to for their high properties. Although a lot of methods were used for preparation of superhydrophilic surfaces, they were not used widely owing to their complicated processes.
     According to superhydrophilic mechanics, the superhydrophilic porous films based on TiO2 surface with the light catalyst property were prepared using methods of template agents and double complexing agents
     The nanopores and micropores TiO2 films were prepared using tetrabutyl titanate as titanium precursor, polyethylene glycol (PEG) as a templating reagent by sol gel method.
     With the increasing of the PEG, the pores of film became larger and deeper, and the specific surface area increased also. When the amount of PEG was lower than the critical value 0.002 0.0025 M, the numerous small cracks disappeared on the surface. PEG molecules would not contribute to a complete enlargement of aperture, and the shape of holes would become irregular and fluctuating when the content of PEG was above 0.02 M. The experimental results showed that the surface of TiO2 films was rough and the contact angle with water was lower 5o under the natural light condition.
     When acac or DEA as the complexing agent, the film was compact and flat, and the contact angle with water was about 200 and 230 respectively.
     When the acac and DEA were used as complexing agents together, the phase separated for oligomers formation. With the increasing of the PEG, the time of the phase separated decreased. The surface roughness of the films increased for the carbon dioxide produced by the solvent when the films were calcined. The contact angle with water of the TiO2 films was about 6.50 under the no light condition.
     The superhydrophilic behavior was explained by the Wenzel and Cassie wetting impregnating model. The transition between these two wetting regimes was investigated. The criteria contact angle with water of the porous TiO2 films was got. And the superhydrophilic mechanics of the TiO2 films was also analyzed.
引文
[1] Wenzel, R.N. Surface roughness and contact angle[J]. J. Phys. Colloid Chem, 1949, 53: 1466 1467.
    [2] Cassie A.B.D., Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546 551.
    [3] Barthlott W., Neinhuis C. Purity of the sacred Lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1 8.
    [4] Neinhuis C., Barthlott W. Characterization and Distribution of Water repellent[J]. Annals of Botany, 1997, 79(6): 667 677.
    [5] Song S., Jing L., Li S., et al Superhydrophilic anatase TiO2 film with the micro and nanometer scale hierarchical surface structure[J]. Materials Letters, 2008, 130(5): 253 256.
    [6] Shafrin E.G., Zisman W.A. Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers[J]. J. Phys. Chem., 1960, 64(5): 519 524.
    [7] Kubo W. , Tatsuma T. . Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity[J]. Journal of Materials Chemistry, 2005, 15(30): 3104 3108.
    [8] Yang M. C., Xu J., Hu Z. Q. Synthesis of WC–TiC35–Co10 nanocomposite powder by a novel method[J]. International Journal of Refractory Metals and Hard Materials, 2004, 22(1): 1 7.
    [9] Mu Hsuan C., Wei Yu H., Da Yung W., et al. Characterization of Cr doped TiO2 thin films prepared by cathodic arc plasma deposition[J]. Surface and Coatings Technology, 2007, 202(4 7): 962 966.
    [10] Euvananont C., Junin C., Inpor K., et al. TiO2 optical coating layers for self cleaning applications[J]. Ceramics International, 2008, 34(4): 1067 1071.
    [11] Dorel C., Nicolae D., Maria C., et al. Crystallization study of sol–gel un doped and Pd doped TiO2 materials[J]. Journal of Physics and Chemistry of Solids, 2008, 7(4 6): 843 852.
    [12]胡杰,刘白玲,汪地强.有机氟材料的结构与性能及其在涂料中的应用[J].高分子通报, 2003, 1: 63.
    [13] Girifalco L.A., Good R.J.A. . Theory for the Estimation of Surface and Interfacial Energies. I.Derivation and Application to Interfacial Tension[J]. J. Phys. Chem., 1957, 61: 904 909.
    [14] Bernett M.K., Zisman W.A. . Wetting properties of acrylic and methacrylic polymers containing fluorinated side chains[J]. J. Phys. Chem., 1962, 66(6): 1207 1208.
    [15] Atsushi H. Fluoroalkylsilane Monolayers Formed by Chemical Vapor Surface Modification on Hydroxylated Oxide Surfaces[J]. Langmuir, 1999, 15: 7600 7604.
    [16] Masamichi M. Surface Properties of Perfluoroalkylethyl Acrylate/n Alkyl Acrylate Copolymers[J]. J. Appl. Poly. Sci., 1999, 73: 1741 1749.
    [17] Blossey R. Self cleaning surfaces virtual realities[J]. Nature Material, 2003, 2: 301 306.
    [18] Onda T., Shibuichi S., Satoh N., et al. Super water repellent fractal surfaces[J]. Langmuir, 1996, 12: 2125 2127.
    [19] Jiang L. A lotus leaf like superhydrophobic surface:a porous microsphere/nanofiber composite film prepared by electrohydrodynamics [J]. Chem. Ind. Eng. Pro., 2003, 22(12): 1258 1264.
    [20] Didemoner L., Thomas J., McCarthy C. Effects of Topography Length Scales on Wettability [J]. Langmuir, 2000, 16: 7777 7782.
    [21] Weixin H., Hong H., Hui L., et al. Superhydrophilic nano TiO2 film with porous surface structure[J]. Mater. Res. Innovations, 2009, 13: 253 259.
    [22] Shibuichi S., Onda T., Satoh N., et al. Super water repellent surfaces resulting from fractal structure[J]. J. Phys. Chem., 1996, 100: 19512 19517.
    [23]郑黎俊,乌学东,楼增,等.表面微细结构制备超疏水表面[J].科学通报, 2004, 49(17): 1691 1699.
    [24]段辉.掺杂氟化聚合物硅溶胶超疏水复合涂层的制备及性能研究[D].武汉:武汉科技大学, 2006,
    [25] Nakajima A., Hashimoto K., Watanabe T. Transparent superhydrophobic thin films with self cleaning properties[J]. Langmuir, 2000, 16(7): 7044 7047.
    [26] He, B., Patankar, N. A., and Lee, J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces[J]. Langmuir, 2003, 19: 1249 1253.
    [27] Yoshimitsu Z., Nakajima A., Watanabe T., et al. Effects of Surface Structure on theHydrophobicity and Sliding Behavior of Water Droplets[J]. Langmuir, 2002, 18(15): 5818 5822.
    [28] Kijlstra J., Reihs K., Klamt A. Roughness and topology of ultra hydrophobic surfaces[J]. Colloids and Surface A:Physicochemical and Engineering Aspects, 2002, 206: 521 529.
    [29] Ashkarran A.A., Mohammadizadeh M.R. Superhydrophilicity of TiO2 thin films using TiCl4 as a precursor[J]. Materials Research Bulletin, 2008, 43(3, 4): 522 530.
    [30] Yamashita H., Ohshiro S., Kida K., et al. Visible light responsive photocatalytic reaction on tetrahedrally coordinated chromium oxide moieties loaded on ZSM 5 zeolites and HMS mesoporous silica:Partial oxidation of propane[J]. Res. Chem. Intermed. , 2003, 29(7 9): 881 890.
    [31] Ohshiro S., Chiyoda O., Maekawa K., et al. Design of Cr oxide photocatalyst loaded on zeolites and mesoporous silica as a visible light sensitive photocatalyst[J]. Compres Rendus Chimiea, 2006, 9(5 6): 846 850.
    [32] Jiang L., Feng L., Li S., et al. Super hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angew.Chem.Int.Ed., 2002, 41(7): 1221 1223.
    [33] Feng L., Song Y., Zhai J., et al. Creation of a superhydrophobic surface from an amphiphilic polymer[J]. Angew.Chem.Int.Ed., 2003, 42(7): 800 802.
    [34] Jin M., Feng X., Feng L., et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Adv.Mater., 2005, 17: 1977 1981.
    [35] Weixin H., Ming L., Hong H., et al. Effect of Polyethylene Glycol on Hydrophilic TiO2 Films: Porosity Driven Superhydrophilicity[J]. Surface and Coatings Technology, 2010, in press.
    [36] Nakajima A., Hashimoto K., Watanabe T.,et a. Transparent superhydrophobic thin filins with self cleaning properties[J]. Langmuir, 2000, (16): 7044 7047.
    [37] Nakajima A., Fujishima A., Hashimoto K. . Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J]. Adv. Mater., 1999, 11(16): 1365 1368.
    [38] Tsoi S., Fok E., Sit C., et al. Superhydrophobic,high surface area,3 D SiO2 nanostructures through siloxane based surface fimctionalization[J].[J]. Langmuir, 2004, 20: 10771 10774.
    [39] Chun Y., Yean K., Che H., et al. Design and fabrication of a TiO2/nano silicon composite visible light photocatalyst[J]. Applied Surface Science, 2006, 253(2): 898 903.
    [40] McSporran N., Rico V., Borrás A., et al. Synthesis of undoped and Ni doped InTaO4 photoactive thin films by metal organic chemical vapor deposition[J]. Surface and Coatings Technology, 2007, 201(22 23): 9365 9368.
    [41] Zhang X., Shi F., Yu X., et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super hydrophobic surface[J]. J. Am. Chem. Soc., 2004, 126: 3064.
    [42] Nemitz M., Kolmehl G. . Wettability of poly(2,2' bithienyl 5,5' diyl)layers[J]. Angew. Mackromol.Chem., 1991, 185: 147 154.
    [43] Pauporte T., Rathousky J. Growth mechanism and photocatalytic properties for dye degradation of hydrophobic mesoporous ZnO/SDS films prepared by electrodeposition[J]. Microporous and Mesoporous Materials, 2009, 117(1 2)
    [44] Rico V., Romero P., Hueso J.L., et al. Wetting angles and photocatalytic activities of illuminated TiO2 thin films[J]. Catalysis Today, 2008, 11: 34 39.
    [45] McCarthy T.J., Chen W., Fadeev A.Y., et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples[J]. Langmuir, 1999, 15: 3395 3399.
    [46] Youngblood J.P., McCarthy T.J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene)using radio frequency plasma[J]. Macromolecules, 1999, 32: 6800 6806.
    [47] Teshima K., Sugimura H., Takai O., et al. Wettablity of polyethylene terephthalate substrates modified by a two step plasma process:ultra water repellent surface fabrication[J]. Chem.Vapor Depos., 2004, 10(6): 295 297.
    [48] Yamashita H., Nishio S., Katayama I., et al. Photo induced super hydrophilic property and photocatalysis on transparent Ti containing mesoporous silica thin films[J]. Catalysis Today, 2006, 111(3 4): 254 258.
    [49] Xiong L., Ying bo W., Yu rong L., et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol–gel techniques[J]. Materials Letters, 2007, 61(18): 3970 3973.
    [50] Yamashita H., Horiuchi Y., Imaoka S., et al. Surface hydrophilic hydrophobic propertyon transparent mesoporous silica thin films containing chromium oxide single site photocatalyst[J]. Catalysis Today, 2008, 132(1 4): 146 152.
    [51] Rao A.V., Manish M.K., Amalnerkar D.P., et al. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor[J]. Journal of Non Crystalline Solids, 2003, 330(1 3): 187 195.
    [52] Tadanaga K., Kitamuro K., Matsuda A., et al. Formation of Superhydrophobic Alumina Coating Films with High Transparency on Polymer Substrates by the Sol Gel Method[J]. Journal of Sol Gel and Technology, 2003, 26: 705 708.
    [53] Pilotek S., Schmidt H.K. Wettability of Microstructured Hydrophobic Sol Gel Coatings[J]. Journal of Sol Gel and Technology, 2003, 26: 789 792.
    [54] Shirtliffe N.J., Mchale G., Newton M.I., et al. Intrinsically Superhydrophobic Organosilica Sol Gel Foams[J]. Langmuir, 2003, 19(14): 5626 5631.
    [55] Satoh J K., Nakazumi H., Morita M. Preparation of super water repellent fluorinated inorganic organic coating films on nylon 66 by the sol gel method using microphase separation[J]. Journal of Sol Gel and Technology, 2003, 27(327 329)
    [56] Nakajima A., Abe K., Hashimoto K., et al. Preparation of hard super hydrophobic films with visible light transmission[J]. Thin Solid Films, 2000, 376: 140 143.
    [57] Nakajima A., Saiki C., Hashimoto K., et al. Processing of roughened silica film by colloidal silica for super hydrophobic coating[J]. J. Mater. Sci. Lett., 2001, 20: 1975 1977.
    [58] Erbil H.Y., Demirel A.L., Avci Y., et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science, 2003, 299: 1377.
    [59] Xu J., Jiang L., Xie Q. D., et al. Facile Creation of a Super Amphiphobic Coating Surface with Bionic Microstructure[J]. Adv. Mater., 2004, 16: 302 305.
    [60] Shang H. M., Wang Y., Limmer S.J. Optically transparent superhydrophobic silica based films[J]. Thin Solid Films, 2005, 472(1 2): 37 43.
    [61] Ren S.L., Yang S.R., Zhao Y.P., et al. Preparation and characterization of an ultrahydrophobic surface based on astearicacid self assembled monolayer over polyethyleneimine thin films[J]. Surface Science, 2003, 546(2 3): 64 74.
    [62] Shiu J. Y., Kuo C. W., Chen P. L. Fabracation of tunable superhydrophobic surface. Proceedings of SPIE, 2005, 5648: 325 332.
    [63] Genzer J., Efimenko K. Creating Long Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers[J]. Science, 2000, 290: 2130.
    [64] Shibuichi S., Onda T., Tsujii K., et al. Super Water Repellent Surfaces Resulting from Fractal Structure[J]. J. Phys. Chem., 1996, 100: 19512 19517.
    [65] Shibuichi S., Yamamoto T., Tsujii K., et al. Super Water and Oil Repellent Surfaces Resulting from Fractal Structure[J]. J. Colloid Interf. Sci., 1998, 208: 287 294.
    [66] Veeramasuneni S., Drelich J., Miller J.D., et al. Hydrophobicity of ion plated coatings[J]. Prog. Org. Coat., 1997, 31: 265 270.
    [67] Miller J.D., Veeramasuneni S., Drelich J., et al. . Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films[J]. Polym Eng.Sci., 1996, 36: 1849 1853.
    [68] Wang R., Hashimoto K., Fujishima A. Light induced amphiphilic surfaces[J]. Nature, 1997, 388(31): 431 432.
    [69] Chan M., Ho W., Wang D., et al. Characterization of Cr doped TiO2 thin films prepared by cathodic arc plasma deposition[J]. Surface and Coatings Technology, 2007, 202(4 7): 962 966.
    [70] Luca D., Mardare D., Iacomi F., et al. Increasing surface hydrophilicity of titania thin films by doping[J]. Applied Surface Science, 2006, 252(18): 6122 6126.
    [71] Asahi R., Morikawa T., Ohwaki T., et al. Visible Light Photocatalysis in Nitrogen Doped Titanium Oxides[J]. 2001, Science, 293(5528): 269– 271.
    [72] Premkumar J. Development of Super Hydrophilicity on Nitrogen Doped TiO2 Thin Film Surface by Photoelectrochemical Method under Visible Light[J]. Chem. Mater., 2004, 16(21): 3980 3981.
    [73] Wang S., Chen T., Rao K., et al. Nanocolumnar titania thin films uniquely incorporated with carbon for visible light photocatalysis[J]. Applied Catalysis B: Environmental, 2007, 76(3 4): 328 334.
    [74] Ken O., Hiroshi I., Kazuhito H. Enhanced photocatalytic activities of Ta, N co doped TiO2 thin films under visible light [J]. Chemical Physics, 2007, 339(1 3): 124 132.
    [75] Yuka W., Ken O., Kazuhito H., et al. Enhancement of visible light induced hydrophilicity on nitrogen and sulfur codoped TiO2 thin films[J]. Vacuum, 2008, 31(4 6): 843 852.
    [76] Hiroshi I., Hisashi M., Kazuhito H. Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property[J]. Vacuum, 2004, 74(3 4): 625 629.
    [77] Masuda Y., Kato K. Liquid Phase Patterning and Microstructure of Anatase TiO2 Films on SnO2:F Substrates Using Superhydrophilic Surface[J]. Chem. Mater., 2008, 20(3): 1057 1063.
    [78] Jiang X., Chen X. Crystallization behavior and hydrophilic performances of V2O5–TiO2 films prepared by sol–gel dip coating[J]. Journal of Crystal Growth, 2004, 270(3 4): 547 552.
    [79] Permpoon S., Houmard M., Riassetto D., et al. Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi layer films[J]. Thin Solid Films, 2008, 516(6): 957 966.
    [80] Liu X., He J. Hierarchically structured superhydrophilic coatings fabricated by self assembling raspberry like silica nanospheres[J]. Journal of Colloid and Interface Science, 2007, 314(1): 341 345.
    [81] Ji?íR., Dina F., Michael W., et al. Illumination induced properties of highly ordered mesoporous TiO2 layers with controlled crystallinity[J]. Thin Solid Films, 2007, 515(16): 6541 6543.
    [82] Zhang X., Jin M., Liu Z., et al. Superhydrophobic TiO2 Surfaces: Preparation, Photocatalytic Wettability Conversion, and Superhydrophobic Superhydrophilic Patterning[J]. J. Phys. Chem. C, 2007, 111(39): 14521 14529.
    [83] G. Q. Liu, Z. G. Jin, X. X. Liu, et al, . Anatase TiO2 porous thin films prepared by sol gel method using CTAB surfactant[J]. J. Sol Gel Sci Techn., 2007, 41: 49 55.
    [84] Obata K., Irie H., Hashimoto K. Enhanced photocatalytic activities of Ta, N co doped TiO2 thin films under visible light[J]. Chemical Physics, 2007, 339(1 3): 124 132.
    [85] Denison K. R., Boxall C. Photoinduced "Stick Slip" on Superhydrophilic Semiconductor Surfaces[J]. Langmuir, 2007, 23(8): 4358 4366.
    [86] Cebeci C., Wu Z., Zhai L. Nanoporosity Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings[J]. Langmuir, 2006, 22(6): 2856 2862.
    [87] Tsuge Y., Kim J., Sone Y. Fabrication of transparent TiO2 film with high adhesion by using self assembly methods: Application to super hydrophilic film[J]. Thin Solid Films, 2008, 516(9): 2463 2468.
    [88] Hosono E., Matsuda H., Honma I. Synthesis of a Perpendicular TiO2 Nanosheet Film with the Superhydrophilic Property without UV Irradiation[J]. Langmuir, 2007, 23(14): 7447 7450.
    [89] Liu Z., Jin Z., Li W., et al. Preparation of ZnO porous thin films by sol gel method using PEG template[J]. Materials Letters, 2005, 59: 3620 3625.
    [90] Miwa M., Nakajima A., Fujishima A.,et al. Effects of the Surface Roughness on Silding Angles of Water Droplets on Superhydrophobic Surfaces[J]. Langmuir, 2000, 16: 5754 5760.
    [91]杨南如,余桂郁.溶胶凝胶法的基本原理与过程[J].硅酸盐通报, 1993, 12(2): 56 63.
    [92] Bu S, Jin Z., Liu X., et al. Fabrication of TiO2 porous thin films using peg templates and chemistry of the process[J]. Materials Chemistry and Physics, 2004, 88(2 3): 273 279.
    [93] Bu S., Jin Z., Liu X., et al. Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process[J]. Journal of the European Ceramic Society, 2005, 25(5): 481 487.
    [94]胡安正,唐超群. SOL GEL法制备纳米TiO2的原料配比及凝胶过程机理探讨[J].功能材料, 2002, 33(4): 394 397.
    [95] Konishi J., Fujita K., Nakanishi K., et al. Monolithic TiO2 with Controlled Multiscale Porosity via a Template Free Sol Gel Process Accompanied by Phase Separation[J]. Chemistry of Materials, 2006, 18: 6069 6074.
    [96] Nakanishi K., Tanaka N. Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High Performance Liquid Chromatography Separations[J]. Accounts of chemistry research, 2007, 40: 863 873.
    [97] Bormashenko E., Pogreb R., Whyman G., et al. Vibration induced Cassie Wenzel wetting transition on rough surfaces. Applied Physics Letters, 2007, 90: 162 193.
    [98] Bormashenko E., Pogreb R., Whyman G., et al. Cassie wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic cassie wenzel wetting transition a 2D or 1D affair?[J]. Langmuir, 2007, 23: 6501 6503.
    [99] Bormashenko E., Pogreb R., Whyman G., et al. Resonance Cassie Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface[J]. Langmuir, 2007, 23: 12217 12221.
    [100] Bo H., Junghoon L., Neelesh A. Contact angle hysteresis on rough hydrophobic surfaces[J]. Colloids and surfaces. A, 2004, 248(1 3): 101 104.
    [101] Bico J., Thiele U., QuéréD., et al. Wetting of textured surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1 3): 41 46.
    [102] M., Nosonovsky. On the Range of Applicability of the Wenzel and Cassie Equations[J]. Langmuir, 2007, 23(19): 9919 9920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700