钙、磷和OPG对破骨细胞形成和活化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨细胞生物学功能(成骨细胞骨形成、破骨细胞骨吸收)对机体骨代谢平衡和骨骼的健康发育至关重要。多数疾病通过增加破骨细胞的数量和(或)增强破骨细胞的活性而引起骨量减少,因此正确理解破骨细胞形成和活化的调控机制具有重要的理论和实践意义。钙、磷是体内必需的矿物元素,也是体内含量最多的矿物元素。摄入充足的Ca、P对保持动物的骨骼完好至关重要。本研究利用成骨细胞和脾细胞共培养以诱导破骨细胞生成的方法,探讨了Ca、P因子对破骨细胞生成和活化的影响,为Ca、P的合理利用提供了理论依据。此外,本研究利用激素诱导脾细胞转化为破骨细胞的方法,证明了破骨细胞形成和活化确实涉及两种机制,为以后治疗骨质疏松症和骨营养不良性疾病提供了理论依据。
     1.钙磷因子对体外培养破骨细胞影响的研究 通过成骨细胞与脾细胞共培养的方法在体外诱导脾细胞转化为破骨细胞,在转化过程中加入高、中、低浓度的钙磷因子及不同比例浓度的钙磷双因子,采用形态学观察、抗酒石酸酸性磷酸酶(TRAP)染色计数、扫描电镜观察象牙片吸收陷窝方法检测钙磷因子作用下的破骨细胞的生成和活化。结果表明,中、高浓度的钙磷因子对破骨细胞的生成和活化均有显著抑制作用(P<0.05),高浓度钙因子与对照组比较,差异极显著(P<0.01),Ca:P为2:1时对破骨细胞生成和活化的抑制作用最强。
     2.骨保护素对体外培养破骨细胞影响的研究 通过成骨细胞与脾细胞共培养的方法在体外诱导脾细胞转化为破骨细胞,在转化过程中加入不同浓度的OPG,采用形态学观察、抗酒石酸酸性磷酸酶(TRAP)染色计数、扫描电镜观察象牙片吸收陷窝方法检测OPG作用下破骨细胞的生成和活化。结果表明,随着添加OPG浓度的增加,破骨细胞TRAP(+)数逐渐减少,各试验组与对照组相比,差异均极显著(P<0.01)。吸收陷窝的数目和面积也逐渐减少,OPG浓度为50ng/ml、75ng/ml已观测不到吸收陷窝。
     3.破骨细胞形成和活化的两种调控机制研究 提取四周龄C57雌性小鼠的脾细胞,将鼠重组粒细胞—巨噬细胞集落刺激因子(GM—CSF)和TNFα(±IL-1α)加入到体外培养的脾细胞中,同时加入OPG和sRANKL以区别RANKL/RANK/OPG机制。破骨细胞的形成和活化采用形态学、TRAP染色、骨吸收陷窝方法进行鉴定。结果表明,TNFα(±IL-1α)确实能诱导脾细胞融合产生TRAP阳性的多
Osteocyte's biological function is very important to metabolic balance and health of bone. Many diseases caused low bone mass through increasing the number of osteoclasts and (or) reinforcing the activation of osteoclasts, therefore, understanding the regulative mechanisms involved in osteoclasts formation and activation has the value both in theory and in practice. Calcium and phosphorus are necessary to body. The amount of them is also the most in body. Intaking enough calcium and phosphorus is vital to maintain bone's health, In our work, we study effects of calcium and phosphorus on the formation and activation of osteoclasts, which is induced by a co-culture system with rat spleen cells and osteoblasts, as thus, we offer theory basis to rational utilization of calcium and phosphorus. Moreover, we also prove that they are two mechanisms involved in the osteoclasts formation and activation through the way of cell culture in vitro, so we should take two mechanisms into account in treating osteoporosis and bone malnutrition.1. The effects of calcium and phosphorus on osteoclasts formatio and activationOsteoclasts are obtained by a co-culture system with rat spleen and osteoblast. In the conversion process, different strengths of calcium, phosphorus and different concentration ratios of calcium to phosphorus were added to the co-culture system. The formation and activation of osteoclasts is detected by ways of morphologic observation, cytochemical staining for tartrate-resistant acid phosphatase (TRAP) that is a marker of osteoclasts and detection of lacunar resorption through scanning electron micrograph. The results show that high concentration of calcium and phosphorus inhibit the formation and activation of osteoclasts (P<0.05) . Moreover, we also find that experimental group, in which the ratio of calcium to phosphorus is 2:1, has the most powerful inhibitory action to osteoclasts formation and activation.
    2. The effects of osteoprotegerin(OPG) on osteoclasts formatio and activationOsteoclasts are obtained by a co-culture system with rat spleen and osteoblast. In the conversion process, different strengths of OPG were added to the co-culture system. The formation and activation of osteoclasts is detected by ways of morphologic observation, cytochemical staining for tartrate-resistant acid phosphatase (TRAP) that is a marker of osteoclasts and detection of lacunar resorption through scanning electron micrograph. The results show that the number of TRAP(+) osteoclasts is decrease when concentration of OPG is increase, the number and area of lacunar resorption is as also. Discrepancy between experimental group and control group has statistical significance(P<0.01). In experimental group (50ng/ml、 75ng/ml), we can not detect lacunar resorption.3. Studies on two regulative mechanisms involved in osteoclast formation and activationGM-CSF and TNF α ( ± IL-1 a ) were added to spleen cells obtained from C57 female rat, meanwhile, OPG and sRANKL were also added to these cultures to distinguish the pathway of osteoclastogenesis. The formation and activation of osteoclasts is detected by ways of morphologic observation, cytochemical staining for tartrate-resistant acid phosphatase (TRAP) that is a marker of osteoclasts and detection of lacunar resorption through scanning electron micrograph. The results indicate that in the presence of GM-CSF, TNF α is sufficient for inducing osteoclast differentiation from spleen cells and that TNF α acts synergistically with IL-1 α to stimulate lacunar resorption. This process is distinct from the RANKL/RANK/OPG signalling pathway.
引文
[1] 王维力主编.骨矿疾病(第一版).天津:天津科技翻译出版公司,1997,1~3.
    [2] 赵伟业,董碧蓉,欧雪梅等.骨质疏松药物治疗的新进展及循证依据[J].中国骨质疏松杂志,2003,9(1):80~82.
    [3] 秦岭,张戈.美国国家卫生院有关骨质疏松症的预防、诊断和治疗的共识文件[J].中国骨质疏松杂志,2002,8(1):90~93.
    [4] 朴俊红,庞莲萍,刘忠厚,等.中国人口状况及原发性骨质疏松症诊断标准和发生率[J].中国骨质疏松杂志,2002,8(1):1~7.
    [5] 唐文山.骨营养不良乳牛血清钙及血清游离羟脯氨酸含量测定[J].中国兽医科技,2002,32(11):26~28.
    [6] 钱桂芬.猫、狗钙缺乏的治疗[J].四川畜禽,1997,87:34.
    [7] 刘宗平,马卓,杨得兵,等.双峰驼骨质疏松症的流行特点及其与生物地球化学因子之间的关系[J].应用与环境生物学报,1997,3(4):345~348.
    [8] 屈会起,邱明才.骨保护素的研究进展[J].国外医学内科学分册,2000,27(8):345-347.
    [9] Roodman GD. Cell biology of the osteoclast [J]. Exp Hematol, 1999, 27: 1229~1241.
    [10] 胡仁明主编.内分泌代谢病临床新技术(第一版).北京:人民军医出版社,2002,362.
    [11] Yoshida H, Hayashi S, Kunisada T, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene [J]. Nature, 1990, 345: 442~444.
    [12] Cecchini MG, Hofstetter W, Halasy J, et al. Role of CSF-1 in bone and bone marrow development [J]. Mol Reprod Dev, 1997, 46: 74~83.
    [13] Lorenzo JA, Grcevic D, Lee S, et al. Murine osteoclasts and B-lymphocytes share a common progenitor cell whose abundance in bone marrow is regulated by estrogen [J]. J Biol Chem, 1998, 273: 4119~4128.
    [14] Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors[J]. J Exp Med, 1999, 190: 1741~1745.
    [15] Kong YY, William JB, JosefMP. Osteoprotegerin ligand: a regulator of immune responses and bone physiology[J]. Immunol, 2000, 21 (10): 495-502.
    [16] Lum L, Wong BR, Josien R, et al. Evidence for a role of a tumor necrosis factor-alpha(TNF-alpha)-converting enzyme-like protease in shedding of TRANCE , a TNF family member involved in osteoclastogenesis and dendritic cell survival[J]. J Biol Chem, 1999, 274: 13613-13618.
    [17] Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis[J]. Nature, 1999, 397 (6717): 315-323.
    [18] Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANk mediates osteoclast differentiation and activation induced by osteoprotegerin ligand[J]. Proc Natl Acad Sci USA, 1999, 96: 3540-3545.
    [19] Li J, Sarisu I, McCabe SM, et al. Absolute requirement for the TNFR-related protein RANK during osteoclastogenesis and in regulation of bone mass and calcium metabolism[J].J Bone Miner Res, 1999, 14 (Suppl.1): S149.
    [20] Arch RH, Gedrich RW, Thompson CB, et al. Tumor necrosis factor receptor-associated factors(TRAFs)—a family of adapter proteins that regulates life and death[J].Cenes Dev, 1998, 12: 2821-2830.
    [21] Franzoso G, Carlson L, Xing LP, et al. Requirement for NF-kappa B in osteoclast and B-cell development[J]. Genes Dev, 1997, 11: 3482-3496.
    [22] Darnay BG, Haridas V, Ni J, et al. Characterization of the intracellular domain of receptor activator of NF- k B (RANK)[J]. J Biol Chem, 1998, 273: 20551-20555.
    [23] Darnay BG, Ni J, Moore PA, et al. Activation of NF-κ B by RANK requires tumor necrosis factor receptor-associated factor(TRAF6) and NF- κ B-inducing kinase. Identification of a novel TRAF6 interaction motif [J]. J Biol Chem, 1999, 274: 7724-7731 .
    [24] Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling [J]. Genes Dev, 1999, 13: 1015-1024 .
    [25]Natio A, Azuma S, Tanaka S, et al. Severe osteopetrosis, defective interleukin-1 signaling and lymphnode organogenesis in TRAF6-deficient mice [J]. Genes Cells, 1999, 4: 353-362.
    [26] Mark C, Horowitz, Yougen Xi, et al. Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands [J]. Cytogfr, 2001, 12: 9~18.
    [27] Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin [J]. Biochem Biophys Res Commun, 1998, 247: 610~615.
    [28] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89: 309~319.
    [29] Kong YY, Feige U, Sabino MAC, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand [J]. Nature, 1999, 402 (6759): 304~309.
    [30] Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism [J]. Proc Natl Acad Sci USA, 2000, 97: 1566~1571.
    [31] Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction [J]. J Exp Med, 2000, 191: 275~286.
    [32] Zou W, Hakim I, Tschoep K, et al. Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism [J]. J Cell Biochem, 2001, 83 (1): 70~83.
    [33] Sabokbar A, Kudo O, Athanasou NA, et al. Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis [J]. J Ortho Res, 2003, 21: 73~80.
    [34] Merkel KD, Erdmann JM, McHugh KP, et al. TNF-alpha mediates orthopaedic implant osteolysis [J]. Am J Pathol, 1999, 154: 203~210.
    [35] 朱梅,杨福军,孙元明,等.源于脾细胞的破骨细胞样细胞体外培养及其对成骨细胞的影响[J].中华骨科杂志,2003,23(4):239~244.
    [36] 刘继中,纪宗玲,胡蕴玉,等.人骨保护素(OPG)重组腺病毒的制备及其生物活性研究[J].生物工程学报,2003,19(1):35~40.
    [37] 刘继中,胡蕴玉,纪宗玲,等.人骨形成蛋白—2和骨保护素在小鼠成肌细胞中的共表达[J].中国修复重建外科杂志,2003,17(1):1~4.
    [38] 王维力主编.骨矿疾病(第一版).天津:天津科技翻译出版公司,1997,31~36.
    [39] 刘宗平主编.现代动物营养代谢病学(第一版).北京:化学工业出版社,2003,19.
    [40] 胡仁明主编.内分泌代谢病临床新技术(第一版).北京:人民军医出版社, 2002,360~378.
    [41] 谢湘玉.钙的代谢机理探讨[J].安庆师范学院学报(自然科学版),1997,3(1):93~94.
    [42] 王维力主编.骨矿疾病(第一版).天津:天津科技翻译出版公司,1997,35~36.
    [43] Doige CE, Owen BD, Mills JHL. Influence of calcium and phosphorus on growth and skeletal development of growing swine[J]. Can.J.Anim.Sci, 1975, 55: 147~164.
    [44] Matkovic V. Calcium metablism and calcium requirements during skeletal modeling and consolidation of bone mass[J]. Am.J.Clin.Nutr, 1991, 54(suppl):245s~260s.
    [45] Peterson CA, Eurell JAC, Erdman JWJr. Alterations in calcium intake on peak bone mass in the female rat[J]. J. Bone. Miner.Res, 1995, 10:81~95.
    [46] Eklou-Kalonji. E.,Zerath.E.,and Colin.C. Calcium-regulating hormones, bone mineral content,breakingload and trabecular remodeling are altered in growing pigs fed calcium-dificient diets [J].J.Nutr. 1999,129:188~193.
    [47] Avioli LV. Calcium and osteoporosis[J]. Annu.Rev.Nutr, 1984, 4: 471~491.
    [48] Nordin BEC, Morris HA. The calcium deficiency model for osteoporosis[J]. Nutr.Rev., 1989, 47: 65~73.
    [47] Blum JW, Fischer JA, Schwoerer D, etal. Acute PHT response:sensitivity, relationship to hypocalcemia, and rapidity[J]. Endocrinology, 1974, 95: 753~759.
    [48] Thomas ML, Ibarra MJ, and Solcher B. The effect of low dietary calcium and calcium supplementation on calcium metabolism and bone in the immature growing rat[J]. Bone Miner, 1988, 4: 73~82.
    [49] Persson P, Gagnemo-Persson R, Hakanson R. The effect of high or low dietary calcium on bone and calcium homeostasis in young male rats[J]. Calcif.Tissue Int.,1993, 52: 460~464.
    [50] Heaney RP, Nordin BEC. Calcium effect on phosphorus absorption: Implications for the prevention and co-therapy of osteoporosis[J]. J.Am.Coll.Nutr., 2002, 21(3): 239~244.
    [51] Ireland R, Heaney RP. Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency[J]. Bone, 2003, 32(5): 532~540.
    [52] Nicolaysen P, Heaney. Constructive Interactions among Nutrients and Bone-Active Pharmacologic Agents with Principal Emphasis on Calcium, Phosphorus,Vitamin D and Protein[J]. J.Am.Coll.Nutr., 2001, 20:403~409.
    [53] Favus P, Heaney, Nordin BEC. Calcium Effects on Phosphorus Absorption: Implications for the Prevention and Co-Therapy of Osteoporosis[J]. J. Am. Coll. Nutr., 2002, 21: 239~244.
    [54] Pansu ML, Ibarra MJ, Solcher B. The effect of low dietary calcium and calcium supplementation on calcium metabolism and bone in the immature,growing rat[J]. Bone Miner., 1981, 8: 173~182.
    [55] Favus WJ, Langman PR. Effect of dietary calcium supplementation with lactose on bone in vitamin D-deficient rats[J]. Bone, 1986, 7: 357~362.
    [56] 刘晓松.矿物质磷缺乏对家畜的影响[J].当代畜禽养殖业,1995,6:26~27.
    [57] 陈云,黄义强,李华,等.幼龄鸵鸟磷缺乏症的研究[J].中国兽医科技,1997,27(2):15~17.
    [58] 王兴强,杨富生,葛前进.双因子对体外培养大鼠破骨细胞的诱导作用[J].牙体牙髓牙周病学杂志,2003,13(11):628~632.
    [59] 王洪复.骨细胞图谱与骨细胞体外培养技术(第一版).上海:上海科学技术出版社,2001,55~69.
    [60] Masanori K, Toshitsugu S, Michiko K, et al. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells[J]. Biochemical and Biophysical Research Communications, 1999, 261: 144~148.
    [61] Lorget F, Kamel S, Mentaverri R, et al. High extracelluar calcium concentrations directly stimulate osteoclast apotosis[J]. Bicchemical and Biophysical Research Communications, 2000, 268:899~903.
    [62] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89: 309~319.
    [63] Brandstrom H, Jonsson KB, Vidal O, et al. Tumor necrosis factor-α and -β upregulate the levels of osteoprotegrin mRNA in human osteosarcoma MG-63 cells[J]. Biochem Biophys Res Commun, 1998, 248: 454~457.
    [64] Hofbauer LC, Lacey TN, Dunstan CR, et al. Interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells[J]. Bone, 1999, 25:255~259.
    [65] Vidal ONA, Sjogren K, Eriksson BI, et al. Osteoprotegerin mRNA is increased by interleukin-1 α in the human osteosarcoma cell line MG-63 and in human osteoblast-like cells[J]. Biochem Biophys Res Commun, 1998, 248:696-700.
    [66] Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction[J]. J Exp Med, 2000,191:257-286.
    [67] Azuma Y, Kaji K, Katogi R, et al. Tumor necrosis factor-alpha induces differention of and bone resorption by osteoclasts[J]. J Biol Chem, 2000,275: 4858-4864.
    [68] Lam J, Takeshita S, Barker JE, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand[J]. J Clin Invest, 2000, 106: 1481-1488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700