深海适冷菌Pseudoalteromonas sp. SM9913胞外多糖的絮凝和吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从深海沉积物中分离出来的深海适冷菌Pseudoalteromonas sp.SM9913能分泌大量具有较强絮凝能力的胞外多糖(EPS)。本论文对EPS SM9913的絮凝性能和吸附性能进行了系列研究。
     首先,采用烧杯试验研究了EPS SM9913对高岭土悬浊液的絮凝效果,考察了多糖投加量、水样pH、不同阳离子和阴离子、盐度和温度对EPS SM9913絮凝性能的影响,通过测定Zeta电位和絮凝过程中絮体粒度的变化,探讨了EPSSM9913的絮凝机理,并针对EPS SM9913高度乙酰化的结构特点,通过脱乙酰对比EPS SM9913脱乙酰前后的絮凝效果,考察了大量乙酰基团的存在对EPSSM9913絮凝效果的影响,此外本论文还考察了存储方式对EPS SM9913稳定性的影响。结果表明,在1g/L的高岭土悬浊液中,当EPS投加量达10mg/L时絮凝活性达到最大值49.3(4.55mM CaCl_2)。pH值在5~8范围内EPS SM9913絮凝效果较好。二价阳离子Ca~(2+)和Fe~(2+)的加入可明显提高EPS SM9913的絮凝活性,而相同浓度的一价和三价阳离子则降低EPS SM9913的絮凝活性。向溶液中加入不同阴离子的钠盐,在Na~+浓度相同的条件下,在含有NO_3~-的溶液中,EPSSM9913的絮凝效果最好。在5~40℃范围内,EPS SM9913的絮凝活性随温度降低逐渐升高并在5~15℃时达到最高值。当溶液中的盐度为5~100‰时,EPSSM9913的絮凝活性高于Al_2(SO_4)_3的。此外,EPS SM9913还能够有效地絮凝其它分散体系。从P.sp.SM9913提取的胞外多糖和其他生物絮凝剂之间的比较表明,该EPS是一种相对高效的生物絮凝剂。Zeta电位和絮体粒径的测定、扫描电镜的观察显示,吸附架桥是EPS SM9913絮凝的主要机理。乙酰基含量的减少使得EPS SM9913的絮凝效果有了明显的下降,在含盐模拟水样及低温下都失去了以前的优势。可见,乙酰基的大量存在对EPS SM9913保持良好的絮凝性能有着重要的意义。多糖无须烘干或冻干,以湿糖形式在4℃下即可保存,在长达一年多的试验期间未观察到多糖絮凝效果的下降。
     采用EPS SM9913分别对Pb~(2+)和Cu~(2+)进行吸附试验,研究了胞外多糖用量、pH、吸附时间和共存离子对其吸附规律的影响及EPS SM9913对Pb~(2+)和Cu~(2+)的吸附热力学。结果表明,EPS SM9913对Pb~(2+)和Cu~(2+)的吸附量随多糖投加量的增加而减小。在pH分别为4.5~5.5和4.5~6时,EPS SM9913对Pb~(2+)和Cu~(2+)的吸附效果较好。EPS SM9913对Cu~(2+)的吸附平衡时间较短,90min后即可达到吸附平衡,而对Pb~(2+)的吸附平衡时间则长达180min。共存离子Ca~(2+)、Mg~(2+)、Na~+、K~+的加入降低了EPS SM9913对Pb~(2+)的吸附量,Ca~(2+)、Mg~(2+)的加入也降低了EPSSM9913对Cu~(2+)的吸附量,但低浓度的Na~+和实验范围浓度的K~+不仅没有降低反而增加了EPS SM9913对Cu~(2+)的吸附量。Freundlich和Dubinin-Radushkevich方程均能较好地描述EPS SM9913吸附Pb~(2+)和Cu~(2+)的热力学过程,由Dubinin-Radushkevich方程得到EPS SM9913对Pb~(2+)和Cu~(2+)的最大吸附量分别为243.3 mg/g(10℃)和36.7 mg/g(40℃)。胞外多糖吸附金属离子前后的红外光谱分析表明,多聚糖中C—O—C、乙酰基和羟基是起主要吸附作用的官能团。
Pseudoaltermonas sp.SM9913,a psychrophilic bacterium isolated from 1855 m deep-sea sediment can secrets a lot of sticky exopolysaccharide.The flocculation and adsorption ability and mechanism was investigated in this paper.
     The flocculation performance in kaolin suspension has been studied first.The effects of EPS dosage,pH,co-ions,salinity and temperature on the flocculation of EPS SM9913 were investigated.The flocculation Mechanism of EPS SM9913 had been studied by determining zeta potentials and flocs sizes during flocculation process. By deacetylating EPS SM9913 and measuring the flocculating activity of the deacetylated EPS,the function of the acetyl groups was studied.Additionally,the best storage method of this EPS was also determined.The results show that EPS SM9913 has a peak flocculating activity of 49.3 in 1 g/L kaolin suspension with 4.55 mmol/L CaCl_2 and the optimum pH range of 5~8.It appears that the flocculating activity of EPS SM9913 is stimulated by Ca~(2+)and Fe~(2+)and is highest in NO_3~- solution among various anions solution.This study also found that EPS SM9913 shows a better flocculation performance than Al_2(SO_4)_3 at salinity of 5~100‰or temperatures of 5~15℃.In addition,EPS SM9913 is effective to flocculate several other suspended solids.The measured Zeta potentials,the size of flocs formed during the flocculation process and the surface profile of flocs revealed by scan electron micrograph suggest that bridging is the main flocculation mechanism of the studied EPS SM9913. Deacetylation of EPS SM9913 results in a significant decrease in its flocculating activity indicating that the large number of acetyl groups in EPS SM9913 plays an important role in its flocculation performance.EPS SM9913 could be stored without desiccation in 4℃,as it has no decrease in flocculating activity during study period.
     Biosorption of Pb~(2+)and Cu~(2+)by EPS SM9913 was also investigated.The influences of EPS dosage,pH,equilibrium time and coexisted-ions on adsorption property and the adsorption isotherm of this EPS were studied.The results show that the equilibrium adsorption capacity(Q_e)decreases with the increase of EPS dosage. The optimum pH for the adsorption of Pb~(2+)is during 4.5~5.5,and for the adsorption of Cu~(2+)is during 4.5~6.The Cu~(2+)adsorption equilibrium is attained within 90min, while the Pb~(2+)adsorption equilibrium time is 180min.Q_e of Pb~(2+)decreases with the addition of co-ions as Ca~(2+),Mg~(2+),Na~+ and K~+.Addition of Ca~(2+)、Mg~(2+)also decreases the Q_e of Cu~(2+),but low dosage of Na~+ and the tested dosage of K~+ in study increases the Q_e of Cu~(2+).Both Freundlich and Dubinin-Radushkevich isotherm equations could well describe the thermodynamics process of Pb~(2+)and Cu~(2+)by the EPS.The maximum adsorption capacity determined by Dubinin-Radushkevich isotherm equation for Pb~(2+)and Cu~(2+)are 243.3 mg/g(10℃)and 36.7 mg/g(40℃).IR analysis demonstrates that the group of C—O—C,acetyl and hydroxyl of polysaccharide are the main functional groups for binding metal ions.
引文
[1]魏培莲.微生物胞外多糖的研究进展[J].浙江科技学院学报,2002(2):10-14.
    [2]Roger O,Kervarec N,Ratiskol J,Colliec-Jouault S,Chevolot L.Structural studies of the main exopolysaccharide produced by the deep-sea bacterium alteromonas infernus[J].Carbohydrate Research,2004,339(14):2371-2380.
    [3]Raguenes G.,Pignet P,Gauthier G,Peres A,Christen R,Rougeaux H,Barbier G,Guezennec J.Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent,Alteromonas macleodii subsp.fijiensis,and preliminary characterization of the polymer[J].Applied and Environment Microbiology,1996(62):67-73.
    [4]Rougeaux H,Talaga P,Carlson RW,Guezennec J.Structural studies of an exopolysaccharide produced by Alteromonas rnacleodii subsp,fijiensis originating from a deep-sea hydrothermal vent[J].Carbohydrate Research,1998(312):53-59.
    [5]Rougeaux H,Guezennec J,Carlson R W,Kervarec N,Pichon R,Talaga P.Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent[J].Carbohydrate Research.1999(315):273-285.
    [6]Guezennec J.Deep-sea hydrothermal vent:a new source of innovative bacterial exopolysaccharides of biotechnological interest?[J].Journal of Industrial Microbiology and Biotechnology,2002(29):204-208.
    [7]Guezennec J.From extreme environments to biologically active exopolysaccharides[J].Communications in Agricultural and Applied Biological Sciences,2003(68):227-234.
    [8]Nichols C A,Guezennec J,Bowman J P.Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean,sea ice,and deep-sea hydrothermal vents:a review[J].Marine Biotechnology,2005(7):253-271.
    [9]Raguenes G.,Christen R,Guezennec J,Pignet P,Barbier G.Vibrio diabolicus sp.nov.,a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid,Alvinella pompejana[J].International Journal of Systematic Bacteriology.1997(47):989-995.
    [10]Rougeaux H,Kervarec N,Pichon R,Guezennec J.Structural of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent[J].Carbohydrate Research,1999(322):40-45.
    [11]李健伟,潘军,何海伦,陈秀兰,张玉忠,高培基.深海适冷假交替单胞菌Pseudoalteromonas sp.SM9913产适冷蛋白酶的条件优化[J].山东大学学报(理学版),2004,39(4):104-108.
    [12]陈秀兰,张玉忠,栾裼武,高培基.深海适冷菌Pseudoalteromonas sp.SM9913的适冷生长机制探讨[J].高技术通讯,2002,5:95-98.
    [13]Qin G K,Zhu L Z,Chen X L,et al.Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp.SM9913[J].Microbiology-SGM,2007,153:1566-1572.
    [14]Costerton,J W.The role of exopolysaccharides in nature and disease[J].Developments in Industrial Microbiology,Society for Industrial Microbiology.1984,26:249-262
    [15]尹光琳,占立克,赵根楠.发酵工业全书[M].北京:中国医学科技出版社.1992:10-12.
    [16]昊东儒主编.糖类的生物化学.北京:高等教育出版社,1987:27.
    [17]John A L.Exopolysaccharides in Plant-Bacterial Interactions[J].Annual Review of Microbiology,1992,46:307-346.
    [18]那淑敏,贾盘兴等.产无色胞外多搪菌株的筛选及其产物鉴定[J].微生物学通报,1990,17(1):7-9.
    [19]Cerning,J.Exocellular polysaccharides produced by lactic acid bacteria FEMS[J].Microbiology Reviews,1990,87:113-130.
    [20]Amy P S.Starvation-survival patterns of sixteen isolated open ocean bacteria[J].Applied and Environmental Microbiology,1983,45:1109-1115.
    [21]John A L.Exopolysaccharides in Plant-Bacterial Interactions[J].Annual Review of Microbiology,1992,46:307-346.
    [22]谷才恩.短梗茁霉胞外多糖的研究Ⅰ菌种的选育[J].微生物学通报,1995,12(2):67-69.
    [23]那淑敏,贾盘兴等.产无色胞外多糖菌株的筛选及其产物鉴定[J].微生物学通报,1990,17(1):7-9.
    [24]刘洪灿,任永娥等.齐整小核菌多糖的研究[J].微生物学通报,1993,20(3): 148-149.
    [25]任永娥.发酵法生产小核菌多糖[J].微生物学通报,1992,19(3):142-145.
    [26]王修垣,俞南雄等.由原油及其制品生产细菌胞外多糖的研究Ⅱ黄橙色棒杆菌由原油产生胞外多糖[J].微生物学报,1982,22(1):71.
    [27]王修垣,刘秀芳等.由原油及其制品生产细菌胞外多糖的研究Ⅲ产粘短杆菌74-230合成胞外多糖的适宜培养基[J].微生物学报,1982,22(4):367-372.
    [28]张启先.我国微生物多糖工业发展中的喜与忧[J].生物工程进展,1991.6:24-29.
    [29]Banks W A,Niehoff M L,Drago D,Zatta P.Aluminum complexing enhances amyloid β protein penetration of blood-brain barrier[J].Brain Research,2006,1116:215-221.
    [30]Polizzi S,Pira E,Ferrara M,Buginani M,Papaleo A,Albera R,Palmi S.Neurotoxic effects of aluminum among foundry workers and Alzheimer's Disease[J].Neurotoxicology,2002,23:761-774.
    [31]Shih I L,Van Y T,Yeh L C,Lin H G.,Chang Y N.Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties[J].Bioresoure.Technology.2001,78:267-272.
    [32]陈元彩,肖锦.天然有机高分子絮凝剂研究与应用[J].环境科学进展,1999.7(3):84-89.
    [33]刘紫鹃,徐桂云,刘志培等.絮凝剂BP25的化学组成及结构研究[J].微生物学报,2001,41(3):348-352.
    [34]胡筱敏,邓述波,牛力东等.一株芽孢杆菌所产絮凝剂的研究[J].环境科学研究,2001,14(1):36-40.
    [35]Yokoi H,Arima T,Hirose J,et al.Flocculation properties of poly(γ-glutamic acid)produced by Bacillus subtilis[J].Journal of Fermentation and Bioengineering,1996,82(1):84-87.
    [36]Prasertsan P,Dermlim W,Doelle H,Kennedy J F.Screening,characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7.Carbohydrate Polymers,2006,66:289-297.
    [37]Suh H,Kwon G,Lee C,Kim H,Oh H,Yoon B.Characterization of bioflocculant produced by Bacillus sp.DP-152[J].Journal of Fermentation and Bioengineering, 1997,84:108-112.
    [38]Kurane R,Matsuyama H.Production of a bioflocculant by mixed culture[J].Bioscience Biotechnology and Biochemistry,1994,58:1589-1594.
    [39]Yokoi H,Arima T,Hirose J,Hayashi S,Takasaki Y.Flocculation properties of polyglutamic acid produced by Bacillus subtilis[J].Journal of Fermentation and Bioengineering,1996,82:84-87.
    [40]Kurane R,Nohata Y.Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from Alcaligenes latus[J].Agricultural and Biological Chemistry,1991,55:1127-1129.
    [41]Salehizadeh H,Vossoughi M,Alemzadeh I.Some investigations on biofocculant producing bacteria[J].Biochemical Engineering Journal,2000,5:39-44.
    [42]Nakamura J,Miyashiro S,Hirose Y.Purification and chemical analysis of microbial cell flocculant produced by Aspergillus sojae AJ-7002[J].Agricultural and Biological Chemistry,1976,40:619-624.
    [43]Bar-Or Y,Shilo M.Characterization of macromolecular flocculants produced by Phormidium sp.J-1 and by Anabaenopsis circularis PCC 6720.Applied and Environmental Microbiology,1987,53:2226-2230.
    [44]Labille J,Thomas E,Milas M,Vanhaverbeke C.Flocculation of colloidal clay by bacterial polysaccharides-effect of macromolecule charge and structure.Journal of colloid and interface science,2005,284(1):149-156.
    [45]邓述波,余刚,蒋展鹏等.微生物絮凝剂MBFA9的絮凝机理研究[J].水处理技术,2001,27(1):22-25.
    [46]马放,张金凤,远立江,王微,王琴,王爱杰.复合型生物絮凝剂成分分析及其絮凝机理的研究[J].环境科学学报,2005,25(11):1491-1496.
    [47]李洪强,刘成伦,徐龙君.微生物吸附剂及其在重金属废水处理中的应用[J].材料保护,2006,11(39):48-52.
    [48]王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社,2002:306-315.
    [49]Tsezos M,Volesky B.The mechanism of Uranium biosorption by Rhizopus Arrhizus[J].Biotechnology and Bioengineering,1982,24:385-401.
    [50]李志勇,郭祀远,李琳.多糖在藻类富集微量元素中的作用及机理[J],生命的化学,1998,18(1):17-19.
    [51]康春莉,苏春彦,董德明等.自然水体生物胞外多糖吸附铅和镉的研究[J].吉林大学学报(理学版),2005,43(1):121-125.
    [52]Margesin R T,Schinner F.Properties of cold-adapted microorganisms and their potential role in biotechnology.Journal of Biotechnology,1994,33:11-14.
    [53]Morita R Y.Psychrophilic bacteria[J].Bacteriology Reviews,1975,39:144-167.
    [54]高宝玉.聚硅氯化铝混凝剂的应用基础研究[D].清华大学环境科学与工程系,1999.
    [55]韩利华,张秀玲,张学东.无机、有机复合絮凝剂对废乳化切削液处理[J].河北理工学院学报,2002,24(1):116-119.
    [56]Masanori W,Yumiko S,Ken S,Yutaka N,Naomochi N.Flocculating property of etracellular polymeric substance derived from a marine photosynthetic bacterium.Rhodovulum sp.Journal of Bioscience and Bioengineering.1999,87(5):625-629.
    [57]Yokoi H,Natsuda O,Hirose J,Hayashi S,Takasaki Y.Characteristics of a biopolymer flocculant produced by Bacillus sp.PY-90.Journal of Fermentation and Bioengineering,1995,79:378-380.
    [58]Yokoi H,Yoshida T,Mori S,Hirose J,Hayashi S,Takasaki Y.Biopolymer flocculant produced by an Enterobacter sp.Biotechnology Letters,1997,19(6):569-573.
    [59]Kwon G S,Moon S H,Hong S D,Lee H M,Kim H S,Oh H M,Yoon B D.A novel flocculant biopolymer produced by Pestalotiopsis sp.KCTC 8637P.Biotechnology Letter,1996,18(12):1459-1464.
    [60]Levy N,Magdasi S,Bar-Or Y.Physico-chemical aspects in flocculation of bentonite suspensions by a cyanobacterial.Water Research,1992,26:249-254.
    [61]Swenson H.Why is the ocean salty? US Geological Survey Publication.1983,Available on line:http://www.palomar.edu/oceanography/salty ocean.htm.
    [62]樊艳雪,林波.微生物絮凝剂絮凝机理研究进展[J].江西化工,2006,9(3):1-3.
    [64]周洪英,王学松.李娜,单爱琴.关于海藻吸附水溶液中重金属离子的研究进展[J].科技导报,2006,24(12):61-66.
    [65]潘响亮,王建龙,张道勇,王凡.硫酸盐还原菌混合菌胞外聚合物对Zn~(2+)的吸附和机理[J].环境科学研究,2005,18(6):53-55.
    [66]Sibel T,Tamer A.Zn(Ⅱ)biosorption properties of Botrytis cinerea biomass.Journal of Hazardous Materials(2006)137-145.
    [67]韩润平,卫华,张敬华,石杰,杨久俊.谷壳的热差红外扫描电镜分析及对铜铅离子的生物吸附研究[J].环境科学学报,2006,26(1):32-39.
    [68]Kuyucak N,Volesky B,1989b.Accumulation of cobalt by marine alga.Biotechnology and Bioengineering.33,815-822
    [69]Vijayaraghavan K,Palanivelu K,Velan M.Biosorption of Copper(Ⅱ)and cobalt(Ⅱ)from aqueous solution by crab shell particles.Bioresource Technology,2006(97):1411-1419.
    [70]康春莉,苏春彦,郭平等.自然水体生物膜胞外蛋白质吸附铅和隔的研究.高等化学学报,2006,27(7):1245-1246.
    [71]Wang J L,Chen C.Biosorption of heavy metals by Saccharomyces cerevisiae:A review[J].Biotechnology Advances,2006,24(5):27-451.
    [72]Basha S,Murthy Z V P.Kinetic and equilibrium models for biosorption of Cr(Ⅵ)on chemically modified seaweed Cystoseira indica[J].Process Biochemistry,2007,42(11):1521-1529.
    [73]Dubinin M M.The potential theory adsorption of gases and vapors for adsorbents with energetically non-uniform surface.Chemistry Reviews,1960,60:235-66.
    [74]Srihari V,Das A.Comparative studies on adsorptive removal of phenol by three agro-based carbons:Equilibrium and isotherm studies.Ecotoxicology and Environmental Safety.Available on line.
    [75]孙道华,李清彪,凌雪萍,王琳,傅谋兴.气单胞菌SH10吸附银离子机制的研究,环境科学学报,2006,26(7):1107-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700