自噬对脑外伤引起的神经细胞死亡及神经功能障碍的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究自噬/溶酶体途径对脑外伤后神经细胞死亡和神经功能障碍的影响并探讨其相关机制。
     方法:建立小鼠定量脑外伤(traumatic brain injury, TBI)动物模型,运用影响自噬体成熟的工具药3-甲基腺嘌呤(3-methyladenine,3-MA)、布雷菲德菌素(Brefeldin A,BFA)侧脑室(lateral cerebral ventricle)注射给药,对3-MA组、BFA组及生理盐水对照组用PI标记和体视学方法观测损伤区及其周边区(皮层与海马)神经细胞死亡情况,通过连续切片苏木精染色和体视学软件测量脑缺损体积(lesion volume, LV),并通过行为学试验方法(Motor test和Morris water maze)检测TBI引起的神经功能障碍,研究自噬对TBI引起的神经细胞死亡和神经功能障碍的影响;同时应用免疫组织化学和免疫印记法检测损伤侧的脑皮质与海马中自噬/溶酶体途径及凋亡信号通路相关蛋白Cathepsin-B,LC3,Beclin-1,Caspase-3,Bcl-2,Bax的表达情况,研究自噬/溶酶体途径影响TBI引起的神经细胞死亡和神经功能障碍的可能机制。
     结果:(1)PI阳性细胞计数:TBI后1 h和6 h,3-MA组与生理盐水组PI阳性细胞数均开始逐渐增加,12 h后明显增加,但两组之间无统计学差异,24 h阳性细胞数达高峰,且两组的PI阳性细胞数有统计学差异(P<0.05),TBI后48 h组仍有大量的PI阳性细胞,但3-MA组与生理盐水组比较无统计学差异;同样,BFA组与生理盐水组比较,TBI后24 h,两组的PI阳性细胞数有统计学差异(P<0.05)。(2)LV检测:与生理盐水组比较,3-MA组、BFA组脑外伤后LV显著减小(P<0.05);(3)行为学检测:与生理盐水组比较,3-MA组和BFA组在TBI后24 h均能改善运动功能(P<0.05),48 h以后差异不显著;3-MA组在TBI后7 d到10 d能改善学习记忆能力(P<0.05);(4)蛋白表达检测:TBI后24 h和48 h,3-MA组相对与生理盐水组Cathepsin-B, Caspase-3表达减少(P<0.05),Beclin-1/ Bcl-2的比值减小(P<0.05),Bcl-2 /Bax的比值增大(P<0.05);与生理盐水对照组比较,TBI后24 h和48 h BFA组LC3Ⅱ/LC3Ⅰ的比值减小(P<0.05)。
     结论:
     1.自噬/溶酶体途径参与了TBI后的病理生理过程。阻滞自噬体形成可以减少TBI引起的神经细胞死亡和脑组织缺损体积,并改善运动和学习记忆功能。
     2.自噬/溶酶体途径通过影响细胞凋亡信号通路来调节TBI引起的神经细胞死亡和神经功能障碍。
Objective: The present study was sought to study the contribution of autophagy/lysosomal pathway to neuronal cell death and and neuronal dysfunctions after traumatic brain injury, and to explore its relevant mechanisms.
     Methods: Traumatic brain injury (TBI) model in mice was established quantitatively. Mice were pretreated with lateral cerebral ventricle infusion of two autophagic inhibitor 3-Methyladenine (3-MA) and Brefeldin A (BFA). TBI-induced cortical and hippocampal neuronal cell death was evaluated by intraperitoneal injection of propidium iodide. Lesion volume was estimated by campeachy dyeing and stereology microscopic observation, and a subset of mice were studied behaviorally (Motor test and Morris water maze) in our study to detect motor and cognitive function of the injured animals post-TBI. By Immunofluorescence, stereology microscopic observation and western blot analysis, changes of protein expression in autophagy/lysosomal pathway and apoptosis signal pathway were detected: Cathepsin-B, LC3, Beclin-1, Caspase-3, Bcl-2, and Bax in injuried cortex and hippocampus after TBI, and try to study the possible contribution of autophagy/lysosomal pathway to neuronal cell death and and neuronal dysfunctions after TBI.
     Results: (1) PI positive cell counts: PI-positive cells were found starting from 1 h and 6 h after TBI and increased rapidly at 12 h, peaked at 24 h, but decreased from 48 h. The number of PI positive cells in 3-MA or BFA group was signifcantly different from that in saline group at 24 h respectively (P<0.05). (2) Lesion Volume Measurements: the lesion volume was obviously reduced in 3-MA or BFA treated groups compared with the saline group (P<0.05). (3) Praxiology Experiment: 3-MA and BFA could significantly attenuated motor dysfunctions respectively in 24 h post-TBI (P<0.05), but it was not obviously different from that at later time stages; 3-MA could significantly attenuated learning and memory dysfunctions from 7 d to 10 d post-surgery campared with that in saline group (P<0.05). (4) Protein Expression: in 3-MA group, the mean ratios of the band intensities of cathepsin-B, caspase-3, beclin-1/bcl-2 significantly decreased (P<0.05) and a significant recovery of Bcl-2 /Bax (P<0.05) was observed at 24 h and 48h. Pretreatment with BFA resulted in a significant decrease of LC3-II/LC3-I levels from 24 h to 48 h (P<0.05).
     Conclusions:
     1. Autophagy/lysosomal pathway involved in the physiopathologic course of post-TBI. Blockage of autophagy/lysosomal pathway attenuated TBI-induced Neuronal cell death, decreased lesion volume, and improved motor and cognitive functions.
     2. Autophagy/lysosomal pathway regulated the TBI-induced neuronal cell death and neuronal dysfunction by influencing apoptosis signaling pathway.
引文
[1] Moerman AM, Mao X, Lucas MM, et al. Ch- aracterization of a neuronalκB-binding factor distinct form NF-κB [J]. Brain Res Mol Brain Res, 1999, 67: 303–305.
    [2] O’Neil LA,Kaltschmidt C, et al. NF-κB: a crucial transcription factor for glial and neuronal cell function [J]. Trends Neurosci, 1997, 20: 252–258.
    [3] Hinz M, Krappmann D, Eichten A, et al. NF kappaB function in growth control: regulation of cyclin Dl expression and G0/G1- to- S- phase transition [J]. Mol Cell Biol, 1999, 19(4): 2690–8.
    [4] Stephenson D, Yin T, Smalstig EB, et al. Tra-nscription factor nuclear factor-kappaB is activated in neurons after focal cerebral ischemia [J]. Cereb Blood Flow Metab. 2000, 20 (3): 592–603.
    [5] Diane S,Tiggui YE, Barrys, et al. Transccription factor nuclear factor Kappa B is activated in neurons after focal cerebral ischemia [J]. J Cereb Blood Flow Metab, 2000, 20(3): 592–602.
    [6] Nurmi A, Lindsberg PJ, Koistinaho M, et al. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia [J]. Stroke. 2004, 35(4) : 987–991 .
    [7] Wang yuehui,Meng zhaoxiang, et al. Expression of NF-κB,caspase3 and cell apoptosis after focal cerebral ischemia and reperfusion injury in rats [J]. Journal of Apoplexy and Nerous Diseases, 2004, 21(3): 208–210.
    [8] Zhu Y, Culmsee C, Klumpp S, et al. Neur-oprotectionby transforming growth factor- beta1 involves activation of nuclear factor-kappaB through phosphatidy linositol-3-OH kinase/Akt and mitogen-activated protein kinase–extra- cellular-signal regulated kinase1, 2 signaling pathways [J]. Neuroscience, 2004, 123(4): 897–906 .
    [9] Clemens JR, Stephenson DT, Yim T, et a1. Drug induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor kappaB in rats [J]. Stroke, 1998, 29(3): 677–682.
    [10]陶陆阳,丁梅,陈溪萍,等。大鼠脑挫伤后NF-κB表达的生物分子学研究[J].法医学杂志,2004, 20 (2):73–80。
    [11] Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct. Funct, 2002, 27: 421–429.
    [12] Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol, 2004, 14:70–77.
    [13] Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 2004, 6: 463–477.
    [14] Ashford TP, Porter KR. Cytoplasmic components in hepatic lysosomes. J Cell Biol, 1962, 12(1):198-202.
    [15] Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002, 4: 769-781.
    [16] Bellu AR, Kiel JA. Selective degradation of peroxisomes in yeasts. Microsc Res Tech, 2003, 61: 161-170.
    [17] Roberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M, Goldfarb DS. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell, 2003, 14: 129-141.
    [18] Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol, 2005, 17(4): 415-422.
    [19] Klionsky DJ, Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol, 1999, 15: 1-32.
    [20] Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun, 2004, 313(2): 453-458.
    [21] Wang CW, Klionsky DJ. Microautophagy. TX: Landes Bioscience, 2004, 54: 107-114.
    [22] Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol, 2004, 36(12): 2435-2444.
    [23] Kenji S, Nobuo N. S, Yuko F, Noboru M, Yoshinori O, Fuyuhiko I. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8 .Genes to Cells 2004, 9: 611–618.
    [24] Suzanne S. M, James A. H. Molecular Characterization of Light Chain 3 . TheJournal of Biological Chemistry, 1994, 269: 11492-11497.
    [25] Takahide K, Mineyuki M, Isei T, Takashi U, Takashi K,Yoshihiro M, Hiroyuki S, Masato H, Eiki K, Keiichi K. Solution Structure of Microtubule-associated Protein Light Chain 3 and Identification of Its Functional Subdomains. The Journal of Biological Chemistry, 2005, 280: 24610–24617.
    [26] Yukiko K, Noboru M, Akitsugu Y, Satsuki OO,Yoshinori O, Tamotsu Y. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. Journal of Cell Science, 2004, 117: 2805-2812.
    [27] Hua H, Dang Yj, Dai FY, Guo ZK, Wu JX, She XY, Pei Y, ChenYJ, Ling WH, et al. Post-translational Modifications of Three Members of the Human MAP1LC3 Family and Detection of a Novel Type of Modification for MAP1LC3B. The Journal of Biological Chemistry, 2003, 278: 29278–29287.
    [28] Virginie MS, Fabrice T, Régis DM, Annick F, et al. Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, LC3 messenger RNAs in rat brain areas by quantitative real-time PCR. Brain Research, 2006, 1073-1074: 83-87.
    [29] Mann S S, Hammarback J A. Gene localization and developmental expression of light chain 3: a common subunit of microtubule-associated protein 1A(MAP1A) and MAP1B. Journal of Neuroscience Research, 1996, 43(5) :535-544.
    [30] Noboru M. Methods for monitoring autophagy. The International Journal of Biochemistry & Cell Biology, 2004, 36: 2491–2502.
    [31] Isei T, Takashi U, Eiki K. LC3 conjugation system in mammalian autophagy. The International Journal of Biochemistry & Cell Biology, 2004, 36: 2503–2518.
    [32] Wu JX, Dang YJ, Su W, Liu C, Ma HJ, Shan YX, Pei Y, et al. Molecular cloning and characterization of rat LC3A and LC3B—Two novel markers of autophagosome. Biochemical and Biophsical Research Communications, 2006, 339: 437–442.
    [33] Meijer AJ and Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004, 36: 2462.
    [34] Yue ZY, Jin SK, Yang CW, et al. Beclin-1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 2003, 100(25): 15077-15082.
    [35] Bursch W, Ellinger A, Gerner C, et al. Autophagocytosis and programmed cell death. In: Klionsky DJ, editor. Autophgy. Georgetown, TX: Landes Bioscience, 2004, 3: 287-303.
    [36] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(2):2891-2906.
    [37] Pattingre S, Levine B. Bcl-2 inhibition of autophagy: A new route to cancer? Cancer Res, 2006, 66: 2885–2888.
    [38].Hiroshi N. Neuronal and microglial cathepsins in aging and age-related diseases. Aging research reviews, 2003, 2: 367-381.
    [39] Nishimura Y et al. Intracelluar processing and activation of lysosomal cathepsins. Acta Histochem Cytochem, 1990, 23: 53-64.
    [40] Vito turk et al. Lysosomal cathepsins: structure, role in antigen processing and presetation,and cancer. Advances in Enzyme Regulation, 2002, 422: 285-303.
    [41] Kohnken RE, Ladror US, Wang GT, Holzman TF, Miller BE. Krafft GA. Cathepsin D from Alzheimer’s-diseased and normal brains. Exp. Neurol, 1995, 133: 105–112.
    [42] Adamec E, et al. Up-regulation of the lysosomal system in experimental models of neuronal injury:implications for Alzheimer’s diseasse. Neurosci, 2000, 100: 663-675.
    [43] Cheryl LW, et al. Huntingtin proteolysis in Huntington disease. Clini Neurosci Res 2003, 3: 129-139.
    [44] Hitoshi K, et al. Involvement of cathepsin B in the motor neuron degeneration of amyotrophic lateral sclerosis. Acta Neuropathol, 2003, 105: 462-468.
    [45] Yang YP, Liang Z, Gu ZL, et a1.Molecular mechanism and regulation of autophagy[J]. Acta Pharmacol Sin, 2005, 26(12): 1421-1434.
    [46] Lee SB, Kim S, Lee J, et a1. ATG 1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase[J]. EMBO Rep, 2007, 8(4): 360-436。
    [47] Wullschleger S, Loewith R, Oppliger W, et a1.Molecular organization of target of rapamycin complex 2 [J]. J Biol Chem, 2005, 280(35): 30697—30704。
    [48] Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atgl inhibits cell growth and induces apoptotic cell death [J]. Curr Biol, 2007, 17(1): 1一l 1。
    [49] Baehrecke EH. Autophagy: dual roles in life and death [J]? Nat RevMol Cell Bio, 2005, 6(6): 505—510.
    [50] Klionsky DJ. The molecular machinery of autophagy: unanswered questions[J]. J Cell Sci, 2005, 1 18: 7—18。
    [51] Kamyama M, Kawaguchi T, Berger MS, et a1. DNA damaging agentinduced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells[J]. Cell Death Differ, 2007, 14(3): 548—558
    [52] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation[J ].Science, 1998 , 281(5381): 1305 -1308.。
    [53] Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outermitochondrial membrane [J] . Mol Cell Biol, 2000, 20 (3): 929 - 935.。
    [54] Cain K, Bratton SB, Langlais C, et al. Apaf1 oligomerizes into biologically active approximately 7002kDa and inactive approximately 1.4Mda apoptosome complexes[J ]. J Biol Chem, 2000, 275(9) : 6067- 6070.
    [55] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic- reticulum-specific apoptosis and cytotoxicity by amyloidbeta[J]. Nature, 2000, 403 (6765): 98 -103.
    [56] Skulachev VP. Cytochrome C in the apoptotic and antioxidant cascades [J]. FEBS Letters, 1998, 423: 275-280.
    [57] Neuzil J, Wang XF, DongLF, Low P, Ralph SJ. Molecularmech anism of’mitocan’- induced apop tosis in cancer cells ep itomizes the multip le roles of reactive oxygen species and Bcl - 2 family proteins. FEBS Lett, 2006, 580 (22) : 5125-5129.
    [58]Behrens TW, MuellerDL. Bcl - x and the regulation of survival in the immune system. Immunol Res, 1997, 16: 149-160。
    [59]骆纯,朱诚,卢亦成。大鼠脑外伤后细胞凋亡的变化规律研究[J]。上海医学,2002,15(1):77-80。
    [60]段磊,王维平,张建生,等。人脑挫裂伤后神经细胞凋亡及凋亡相关基因Bel-2/Bax的蛋白质表达[J]。中国临床康复,2003,7(16):2280-2281。
    [61] Schweichel JU, Merker HJ. The morphlogy of various types of cell death in prenatal tissues. Teratology, 1973, 7: 253–266.
    [62] Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci, 2000, 20: 7268–7278.
    [63] Zakeri Z, Bursch W, Tenniswood M, Lockshin RA. Cell death: Programmed, apoptosis, necrosis, or other Cell Death Diff. 1995, 2: 87–96.
    [64] Roberg K, Johansson U, Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med, 1999, 27(11-12): 1228-1237.
    [65] Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signaling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell. Neurosci, 1999, 14: 180-198.
    [66] Ollinger K. Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Arch.Biochem.Biophys, 2000, 373: 346-351.
    [67] Turk B, Turk D, Turk V. Lysosome cysteine proteases: more than scavengers. Biochim.Bioph-Acta, 2000, 1477: 98-111.
    [68] Elmore SP, Qian T, Grisson SF, Lemasters J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB, 2001, 15: 2287-2287.
    [69] Bauvy C, Gane Pierre, Arico S. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer line HT-29. Exper cell res, 2001, 268: 139-149.
    [70] Bursch W, Ellinger A, Gerner C, et al. Autophagocytosis and programmed cell death. In: Klionsky DJ, editor. Autophgy. Georgetown, TX: Landes Bioscience, 2004, 287-303.
    [71] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(2): 2891-906.
    [72] Liang XH, Jackson S, Seaman M, et a1.Induction of autophagy and inhibition of tumorigenesis by beclin1 [J]. Nature, 1999, 402(6762): 672- 676.
    [73] Misumi Y, et al. Specifically and reversibly blocks translocation of proteins from the endoplasmic reticulum to the Golgi apparatus. "Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes." J. Biol. Chem, 1986, 261: 11398-11403.
    [74] Guo H, et al. Brefeldin A-mediated apoptosis requires the activation of caspases and is inhibited by Bcl-2. Exp. Cell Res, 1998, 245: 57-68.
    [75] Linardic CM, et al. Activation of the sphingomyelin cycle by brefeldin A: effects of brefeldin A on differentiation and implications for a role for ceramide in regulation of protein trafficking. Cell Growth Differ, 1996, 7: 765-774 .
    [76] Tao LY, Chen XP, Ding M, et a1.Study on the expression of caspase-3 after brain contusion in rat[J].J Forensic Medicine, 2004, 20(1): 9-12.
    [77] Wang CW, Klionsky DJ. Microautophagy. In: Klionsky DJ, editor. Autophagy. Georgetown, TX: Landes Bioscience, 2004, 107-14.
    [78] Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol, 2004, 36(12): 2435-2444.
    [79] Kenji S, Nobuo NS, Yuko F, Noboru M, Yoshinori O, Fuyuhiko I. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes to Cells, 2004, 9: 611–618.
    [80] Chwieralski CE, Wehe T, Bhling F. Cathepsin-regulated apoptosis[J]. Apoptosis, 2006, 11(2): 143-149.
    [81] Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death[J].Oncogene, 2004, 23: 2881-2890.
    [82] Leist M, Jaattela M. Triggering of apoptosis by cathepsins[J]. Cell Death Difer, 2001, 8: 32-326.
    [83] Petiot A, Ogler-Denis E, Blommaart EF , et a1. Distinctclasses of phosphatidylinositol 3,-kinases are involved insignaling pathways that control macroautophagy in HT-29 cells. J Biol Chem, 2000, 275: 992—998.
    [84]王忠诚,赵元立。加强颅脑外伤临床基础研究提倡规范化治疗.中华神经外科杂志, 2001,17 (3):1332134。
    [85] Bramlett HM, Dietnich WD. Pathophysiology of cerebral ischemia and braintraume: similentes and differened. J Cereb Blood Flow Metab.2004, 24:133-150.
    [86] Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA. Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. Journal of Cerebral Blood Flow & Metabolism, 2008, 28(3): 490- 505.
    [87] Unal CI, Dalkara T. Intravenously administered propidium iodide labels necrotic cells in the intact mouse brain after injury. Cell Death Differ, 2003, 10: 928-929.
    [88] Liang XH, Jackson S, Seaman M, et a1. Induction of autophagy and inhibition of tumorigenesis by beclin1 [J]. Nature, 1999, 402(6762): 672-676.
    [89] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor echanism. Oncogene, 2004, 23(2): 2891-906.
    [90] Ishisaka R, Utsumi T, Yabuki M, et al. Activation of caspase-3-like pmtease by digitonin-treated lysosomes [J]. FEBS Lett, 1998, 435(2-3): 233-236.
    [91] Schotte P, Van Criekinge W, Van de Cmen, et a1. Cathepsin B-mediated activation of the proinflammatory caspase-1 [J]. Biochem Biophys Res Commun, 1998, 251(1): 379-438.
    [92] Vancompemolle K, Van Herreweghe F, Pynaert G, et a1. Atractyloside—induced release of cathepsin B, a protease with caspase-processing activity[J]. FEBS Lett, 1998, 438(3): 150-158.
    [93] Roberg K, Ollinger K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes[J]. Am J Pathol, 1998, 152(5): 1151-1156.
    [94] Deiss LP, Galinka H, Berissi H, et al. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha [J]. EMBO J, 1996, 15(15): 3861-3870.
    [95] Shibata M, Kanamori S, Isahara K, et al. Participation of cathepsins B and D in apoptosis of PC 12 cells following serum deprivation[j]. Biochem Biophs Res Commun, 1998, 251(1): 199-203.
    [96] Dunn BM, Scarborough PE, Lowther WT, et a1. Comparison of the active sitepecificity of the aspartic proteinases based on a systematic series of peptide substrates[J]. Adv Exp Med Biol, 1995, 362: 1-9.
    [97] Bidere N, Lorenzo HK, Carmona S, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis inducing factor(AIF)relocation in T lymphcytes entering the early commitment phase to apoptosis[J]. J Biol Chem, 2003, 278: 31401-31411.
    [98] Kohnken RE, Ladror US, Wang GT, Holzman TF. Miller BE, Krafft GA. Cathepsin D from Alzheimer’s-diseased and normal brains. Exp. Neurol, 1995, 133: 105–112.
    [99] Adamec E, et al. Up-regulation of the lysosomal system in experimental models of neuronal injury:implications for Alzheimer’s diseasse. Neurosci, 2000, 100: 663-675.
    [100] Cheryl L. Wellington et al. Huntingtin proteolysis in Huntington disease. Clini Neurosci Res, 2003, 3: 129-139.
    [101] Erlich S, Shohami E, Pinkas KR. Neurodegeneration induces up regulation of Beclin-1, Autophagy, 2006, 2: 49–51.
    [102] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor echanism. Oncogene, 2004, 23(2): 2891-906.
    [103] Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin-1 and Bcl-2 family members, Autophagy, 2007, 3: 561–568.
    [104] Feng W, Huang S, Wu H, Zhang M. Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of beclin-1. J. Mol. Biol, 2007, 372: 223–235.
    [105] Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer?, Cancer Res, 2006, 66: 2885–2888.
    [106] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin-1-dependent autophagy. Cell, 2005, 122: 927–939.
    [107] Liu D, Lu C, Wan R, et al. Activation of mitochondrial APT dependent potassium channels p roducts neurons against ischemia-induced by a mechanism involve supp ression of Bax translocation and cytochrome C release [ J ]. Cereb BloodFlow Metab, 2002, 22 (4): 431 - 443.
    [108] Bidere HK, Lorenzo S, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J. Biol. Chem, 2003, 278: 31401-31411.
    [109] Erdal M, Berndtsson J, Castro U, Brunk MC, Shoshan S. Linder,Induction of lysosomal membrane permeabilization by compounds that activate p53-indepen- dent apoptosis. Proc. Natl. Acad. Sci, 2005, 102: 192-197.
    [110] Reiners JJ, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death & Differentiation, 2002, 9(9): 934-944.
    [1] Moerman AM, MaoX,Lucas MM, et al. Charac- terization of a neuronalκB-binding factor distinct form NF-κB [J]. Brain Res Mol Brain Res, 1999, 67: 303–305.
    [2] O’Neil LA,Kaltschmidt C, et al. NF-κB: a crucial transcription factor for glial and neuronal cell func- tion [J]. Trends Neurosci, 1997, 20: 252–258.
    [3] Hinz M, Krappmann D, Eichten A, et al. NF- kappaB function in growth control: regulation of cyclin Dl expression and G0/ G1- to- S- phase transition [J]. Mol Cell Biol, 1999, 19(4): 2690–8.
    [4] Stephenson D,Yin T, Smalstig EB,et al. Transcripti- on factor nuclear factor-kappaB is ac- tivated in neurons after focal cerebral ischemia [J]. Cereb Blood Flow Metab. 2000, 20 (3): 592–603.
    [5] Diane S,Tiggui YE,Barrys, et al. Transccription fact- or nuclear factor Kappa B is activated in neurons after focal cerebral ischemia [J]. J Cereb Blood Flow Metab, 2000, 20(3): 592–602.
    [6] Nurmi A, Lindsberg PJ, Koistinaho M, et al. Nuclear factor-kappaB contributes to infarction after perma- nent focal ischemia [J]. Stroke. 2004, 35(4) : 987– 991 .
    [7] Wang yuehui,Meng zhaoxiang, et al. Expression of NF-κB,caspase3 and cell apoptosis after focal cerebral ischemia and reperfusion injury in rats [J]. Journal of Apoplexy and Nerous Diseases, June 2004, 21(3): 208–210.
    [8] Zhu Y, Culmsee C, Klumpp S, et al. Neur opro- tectionby transforming growth factor- beta1 involves activation of nuclear factor- kappaB through phosphatidy linositol-3-OH kinase/Akt and mito gen-activated protein kinase extra cellularsignal regulated kinase1, 2 signaling pathways [J]. Neuro- science, 2004, 123(4) : 897–906 .
    [9] Clemens JR, Stephenson DT, Yim T, et a1. Drug induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor kappaB in rats [J]. Stroke, 1998, 29(3): 677–682.
    [10]陶陆阳,丁梅,陈溪萍,等.大鼠脑挫伤后NF-κB表达的生物分子学研究[J].法医学杂志,2004, 20 (2) : 73–80.
    [11] Yang K, MuXS, HayesRL. Increased cortical cortical nuclear factor kappaB (NF-κB) DNA binding activity after traumatic brain injury in rats [J]. Neurosci Lett, 1995, 197: 101–104.
    [12] Nanaka M,ChenXH, Pierce JES, et al. Prolonge dac- tivation of NF-kappaB following traumatic brain injury in rats [J].Neuro trauma 1999, 16: 1023–1034.
    [13] Jans sen Heininger YM,Poynter ME, Baeuerle PA, et al. Recent advances forward under- standing redox mechanism sinthe activation of NF-κB [J]. FreeRadic . BiloMed, 2000, 28: 1317–1327.
    [14] Beni SM,Tsenter J, Alexandrovich AG, et al. Cu Zn SOD deficiency, rather than over expres- sion,is associated with enhanced recover and at tenuated activation of NF-kappaB after brain traumain mice [J]. Cereb Blood Flow Metab, 2006, 26(4): 478–490.
    [15]骆纯,朱诚,卢亦成,等.大鼠液压脑损伤后Bcl-2、Bcl-x和Bax蛋白表达的改变[J].第二军医大学学报,2001, 22 (1): 54–56.
    [16] Luyang Tao, Xiping Chen, Zhenghong Qin, Shizhong Bian. Could NF-kB and caspase-3 be markers for estimation of post-interval of human traumatic brain Injury? [J]. Forensic Science International, Oct. 2006, 162 (1-3): 174–177.
    [17] Casal C,Serratosa J,Tusell JME ffectsof beta AP peptide so nactivation of the transcription factor NF- kappaB and in cell peoliferation inglial cell cultures [J]. Neurosci Res 2004 , 48 (3): 315– 323.
    [18] Kaltschmidt B, Uherek M,Wellmann H,et al. lnhibi- tion of NF-kappaB potentiates amyloid beta mediated neuronal apoptosis [J]. Proec Natl Acad Sci USA, 1999, 96 (16): 9409–9414.
    [19] Cechetto DF. Role of nuclear factor-κB in neu rop- athological mechanisms [J]. Prog Brain Res, 2001, 132: 391–404.
    [20]Yu Z,zhou D,Cheng G,et al.Neuroprotective role for the p50 subunit of in an experimental model of Huntington’s disease.[J] J Mol Neurosci,2000,15:31- 44
    [21] Ferri A,M Nencini,Casciati A, et al. Cell death in amyotrophic lateral Sclerosis:interplay between neur- onal and glial cells [J]. FASEB. 2004, 18(11): 1261–1263.
    [22] Casciati A,Ferri A,Cozzolino M, et al.Oxidutive modulation of nuclear factor-κB in human cells expressing mutant fALS typical superoxide dismu- tases [J]. Neurochem, 2002, 83: 1019–1029.
    [23] Lerner Natoli M Montpied P,Rousse MC, et al. Sequential expression of surfaceantigens and trans- cription factor NF kappaB by hippocampal cells in excitotoxic experimental epilepsy [J]. Epilepsy Res 2000, 41(2): 141–154.
    [24] Pahan K,Sheinkh FG,Liu X, et al. Induction of nitricoxide synthase and activation of NF-κB by interleukin-12P40 in microglial cells [J]. Biol chem 2001, 276 (11): 7899–905.
    [25]裴正斌,彭国光,MPTP帕金森病小鼠黑质NF-κB的表达及其意义[J].中国神经精神疾病杂志,2006, 32 (3): 279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700