用户名: 密码: 验证码:
原料乳中耐热蛋白酶对UHT乳品质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引起UHT乳发生质量缺陷的因素有很多,但来源于原料乳中的耐热酶是最主要因素。本课题对原料乳中的耐热蛋白酶在加工过程中的变化规律其对UHT乳品质的影响进行了研究,并构建了以原料乳品质来预测UHT乳货架期的数学模型。本论文的主要结果如下:
     采用硫酸铵沉淀、DEAE-Sepharose F.F.离子交换层析、Sephacryl S-100HR凝胶过滤层析方法对从原料乳中分离出一株Pseudomanas fluorescens BJ-10胞外蛋白酶进行纯化及特性研究。纯化后蛋白酶的分子量为47kDa,经纯化后蛋白酶比活提高了近61.38倍;最适温度和pH分别为30℃和7.0;二硫苏糖醇对蛋白酶活性具有一定的抑制作用,Fe2+可以促进该酶活性的提高;该酶具有较强耐热性,原酶液经130℃热处理3min后,残留酶活仍超过原酶液的47.67%;该蛋白酶氨基酸组成中甘氨酸、丙氨酸和谷氨酸的含量占明显优势,其中甘氨酸含量最高,摩尔分数高达42%。
     嗜冷菌在冷藏过程中仍可大量生长繁殖。Pseudomanas fluorescens BJ-10在牛乳中的生长速度及产酶活性明显超过营养肉汤培养基;6℃贮藏,当嗜冷菌数超过109、酶活性超过0.775U/mL时,蛋白水解开始明显加快;28℃培养,当嗜冷菌数超过108、酶活性达到6.49U/mL时,κ-casein被完全水解。嗜冷菌蛋白酶对酪蛋白的水解次序依次为κ-casein> β-casein> αs-casein。乳清蛋白对其不敏感。
     纤溶酶(PL)水平与奶牛品种、泌乳期、挤奶时间及饲养环境等因素紧密相关。荷斯坦牛乳中PL最高,为7.81U/mL;水牛乳中,摩拉、尼里拉菲、一代杂交、高代杂交乳中PL分别为6.49、5.9、6.46、6.07U/mL;牦牛乳中PL为5.7U/mL;娟姗牛乳中PL最低,仅为4.6U/mL。2、3胎原料乳中PL高于1、4胎,但不同胎次原料乳中PL差异不显著(p>0.05)。牧场的原料乳中PL要低于养殖小区。原料乳中PL随着热处理温度的升高而逐渐下降,巴氏杀菌(75℃、15s)可以使原料乳中PL下降25%左右。半胱氨酸对原料乳中PL具有一定的抑制作用。
     纤溶酶、纤溶酶原(PG)、纤溶酶原激活剂(PA)主要附着在酪蛋白胶粒上;PL主要水解β-casein、as2-casein、as1-casein,不水解κ-casein、β乳球蛋白和a-乳白蛋白;原料乳中PG是PL的4倍。嗜冷菌蛋白酶对PG具有一定的激活效果,但嗜冷菌蛋白酶和尿激酶联合作用于PG的激活效果比尿激酶单独的激活效果更加明显。嗜冷菌蛋白酶在牛乳中和缓冲液中,充当的是PA的角色,将PG转化成PL。
     根据原料乳品质建立了UHT乳货架期数学模型,得到UHT乳货架期(y)与SCC(x_1)、嗜冷菌数(x_2)、贮藏温度(x3)以及耐热酶添加量(x4)四因素在编码空间的回归方程为:y=225.069167+0.324417x1-0.026167x2-8.776042x3-5.722143x4-0.000983x1×x1-0.000600_x2×x1-0.001083x2×x2-0.004688x3×x1+0.009375x3×x2+0.111979x3×x3+0.004429x4×x1+0.005143x4×x2+0.054464x4×x3+0.034422x4×x4。F回=8.87>F0.01(14,15)=4.94,方程回归极显著,该方程可用于设计范围内的预测。从因子分析可知嗜冷菌蛋白酶添加量(x_4)和贮藏温度(x_3)对UHT乳货架期的影响极显著(p<0.01);而体细胞数(x_1)和嗜冷菌数(x_2)对货架期的影响差异显著不显著(p>0.05),这和理想的结果存在一定偏差,主要和试验过程中难以精确控制有关。
     从本文结果可以看出,耐热蛋白酶对原料乳及UHT乳品质的影响较大,在实际生产中对其控制具有一定的难度。因此,实际生产加工中要加强原料乳卫生管理,尽量降低原料乳中的微生物数量及其耐热酶活力、使用健康奶牛所产原料乳,避免由耐热酶引起产品变质情况的发生。
Heat-stable protease can not be completely inactivated during UHT sterilization. The activities ofprotease that survive the heat treatments may cause some quality defects.The objective of this paper wasto carry out comprehensive research in the field of effect of processing on proteases and effect ofheat-stable proteases on the quality of UHT milk. The main results of this paper are as follows:
     Crude protease from Pseudomanas fluorescens BJ-10was purified by using ammonium sulfatefractionation, ion-exchange, and gel filtration chromatography. The purified enzyme was a monomerwith a molecular weight of47kD by SDS-PAGE. The specific activity of the enzyme increased61.38-fold. The optimum pH and temperature was7.0and30℃, respectively. The purified protease waspartially inhibited by DL-dithiothreitol, with little increase upon Fe2+addition. The protease showedtypical heat-stable behavior. After treatment at130℃for3min, more than47.67%activity wasremained. The purified protease had comparatively high content of glycine, alanine and glutamic acid.Glycine content was the highest, mole fraction up to42%.
     Growth rate and enzyme production of Pseudomanas fluorescens BJ-10in milk was significantlymore than in nutrient broth medium.When the counts exceeding109cfu/mL, the enzyme activity morethan0.775U/mL at6°C cultivation, milk protein began to be hydrolyzed. When the counts exceeding108cfu/mL, the enzyme activity more than6.49U/mL at28°C cultivation, κ-casein was completelyhydrolyzed. The protease preferentially degrade caseins in the following order κ-casein> β-casein>α-casein and have low activity on whey proteins.
     Plasmin activity were closely related to the breeds, stage of lactation, feeding and environmentalfactors. Holstein milk showed a high content (7.81U/mL) of plasmin in comparison with milk fromother breeds. The plasmin of buffalo milk such as Murrah, Nili, crossbreed F1, multi-crossbreed FHmilkwere6.49,5.9,6.46,6.07U/mL, respectively. The plasmin activity of yak milk was5.7U/mL. Theplasmin activity of Jersey milk was lowest (4.6U/mL) in the measurement of breeds. Plasmin activity ofHolstein milk was higher in2,3parity than in1,4parity, but the difference was not significantly (p>0.05).Plasmin activity in the Pasture was lower than in the farming community. Upon pasteurization of milk at75°C for15s, plasmin decreased by about25%. Cysteine could inhibited plasmin activity in raw milk.
     Plasmin (PL), plasminogen (PG), plasminogen activator (PA), which were associated with caseinmicelle. Plasmin hydrolyzes β-, αs2-, and αs1-caseins, but has little or no activity on the whey proteinsβ-LG and α-LA. In fresh milk, PG was the predominant form, where its concentration was4times thatof PL. Pseudomanas fluorescens BJ-10protease had activation effect on PG, but effect of BJ-10proteaseand urokinase (uPA) on PG activation was better than urokinase activate PG alone. Results of this studyconfirmed the interaction of the BJ-10protease with the plasmin system by acting as a PA.
     The objective of this study was to establish the forecasting model for predicting the shelf life ofUHT milk. The model base on somatic cell count, the number of psychrophilic bacteria, heat-stableprotease activity of raw milk and preservation temperature of UHT milk. Through the quadratic orthogonal rotatable design and analysis, we obtained regression equation:y=225.069167+0.324417x1-0.026167x2-8.776042x3-5.722143x4-0.000983x1×x1-0.000600x2×x1-0.001083x2×x2-0.004688x3×x1+0.009375x3×x2+0.111979x3×x3+0.004429x4×x1+0.005143x4×x2+0.054464x4×x3+0.034422x4×x4. The results showed that regression equation was significant. It canbe used within the design range forecast. Analysis of variance of showed main factors have extremelysignificant impact on shelf life. Protease addition (x4) and storage temperature (x3) had siginificanteffect on UHT milk shelf life (p-<0.01); while SCC (x1) and psychrophile counts (x2) on the shelf lifewas not significant (p>0.05), there was a certain deviation with desired results, mainly due to thedifficult to control the whole experiment precisely.
     It can be concluded that heat stable proteases had a greater impact on the quality of UHT milk, itwas difficult to control it in the actual production. So, use of high-quality raw milk was of utmostimportance for achieving a long shelf-life of UHT milk. Storage of raw milk at low temperature (≤4°C)for a minimum period of time (≤48hours) minimizes growth of psychrotrophic bacteria and,consequently, the amount of extracellular bacterial proteinases produced in the milk before heattreatment. Furthermore, the use of milk with a low somatic cell count ensures a minimum level ofplasmin and plasminogen in the milk.
引文
1.敖晓琳,李诚.高体细胞牛乳的性质及对加工的影响.中国乳品工业,2003,31(5):38~41.
    2.陈莹. UHT牛奶的生产与销售.中国乳品工业,2004,32(4):43~46.
    3.董德宽,陆静,刘德娟.关于牛奶中体细胞.乳业科学与技术,2002,3:18~22
    4.付建平,靳烨,马玉玲.乳中蛋白酶与UHT乳贮存中的胶凝现象.中国乳品工业,2004,32(7):22~25.
    5.付建平. UHT奶贮存中胶凝现象产生原因及其防止措施的研究.内蒙古农业大学硕士论文,
    2005.
    6.付文菊,云振宇,云战友,张和平.不同体细胞数原料乳对UHT乳贮存期间蛋白和脂肪水解的影响.中国乳品工业,2007,35(6):9~30.
    7.郭奇慧,白雪,张少辉,刘卫星,姚国新.牧场管理水平对原料乳质量影响的研究.乳品科学与技术,2010,33(2):78~80.
    8.郭本恒.乳品化学.中国轻工业出版社(北京).1999,332.
    9.金世琳.超高温灭菌乳系列:牛乳在加热中蛋白质之变化.中外食品工业信息,1999,5:12.
    10.孔凡丕.微滤除菌技术提高乳品品质的研究.中国农业科学院硕士学位论文.2011.
    11.李博,满朝新,赵凤,杨士芹,郎友,蒋亚男,姜毓君.不同季节原料乳中主要微生物和理化指标分析.中国乳品工业,2011,39(7):33~39
    12.刘振君,李艳华,张胜利,黄毅,吴广安.现代化奶牛场原料乳质量的控制.中国乳业,2010,8:53~56.
    13.陆东锋,刘太宇.奶牛场与奶牛小区原料牛奶质量指标的研究.郑州牧业工程高等专科学校学报,2009,29(1):15~18.
    14.吕加平,丁玉振,于景华,宋晓飞.牛奶微滤除菌技术研究.中国乳品工业,2005,33(6):15~18.
    15.吕加平,王辉,刘鹭.原料乳耐热蛋白酶对UHT乳品质的影响.农产食品科技,2010,4(2):3~9.
    16.吕加平,张书义,王辉,靳磊.原料乳体细胞数与纤溶酶活性的相关性研究.中国乳品工业,2010,3
    17.母智深,白英,赵广华,胡小松.荧光假单胞杆菌胞外蛋白酶的纯化及热稳定性.高等学校化学学报,2008,29(4):762~766
    18.任静,张兰威.原料乳中嗜冷菌检测.食品工业科技,2007,28(3):217~220.
    19.生庆海,张爱霞. UHT乳贮存中常见问题及其原因分析.中国乳品工业,2002,30(5):143~
    144.
    20.师雯. UHT乳带动中国液体奶工业发展.中外食品,2004,7:48~49.
    21.史玉东,付治军,孙国庆.陶瓷膜微滤技术在牛乳除菌中的应用.中国乳品工业,2007,35(11):35~37.
    22.宋维政,候鑫.标准化奶牛场原料乳生产中关键点控制技术措施.畜禽业,2010,4:16~17.
    23.王辉.耐热蛋白酶对UHT乳品质影响规律的研究.东北农业大学博士学位论文,2008,6.
    24.王辉,吕加平,迟玉杰. Azocasein法测定嗜冷菌耐热胞外蛋白酶活性研究.中国乳品工业,2007,(07):13~16.
    25.王辉,吕加平,迟玉杰.耐热蛋白酶对UHT乳品质的影响及控制方法研究进展.中国乳品工业,2007,9:25~29.
    26.王辉,吕加平,迟玉杰.牛乳中嗜冷菌数与胞外蛋白酶活性相关性的研究.食品工业科技,2008,(02):84~89.
    27.王辉,吕加平,迟玉杰,靳磊.不同体细胞数牛乳中纤溶酶热变性动力学研究.食品科学,2009,(19):162~165.
    28.王荫榆,张少辉,李存瑞,龚广予,苏米亚,巫庆华.陶瓷膜微滤技术生产ESL牛乳的应用研究.中国乳品工业,2004,32(11):18~20.
    29.汪勇,唐书泽,欧仕益,李爱军,刘伟荣.无机陶瓷膜分离技术在乳品工业钟的应用.中国乳品工业,2005,33(11):50~53.
    30.武若飞,李艳华,吴平,张满芳. UHT奶的质量与原料奶的关系.中国乳品工业,1997,25
    31.(2):34~35.
    32.吴荣荣,王倩,王敏,张柏林.原料乳中嗜冷菌的危害分析及控制研究.中国酿造,2008,196(19):13~16.
    33.岳喜庆,黄威.嗜冷菌对牛乳货架期的影响.中国乳品工业,2010,38(5):13~15.
    34.张爱霞,生庆海,王玉良,张佳程.纤维蛋白酶及其对乳制品的影响.中国乳品工业,2002,30(5):80~82.
    35.张爱霞,张佳程,生庆海.牛乳中纤维蛋白酶及其酶原活性测定方法的比较.中国乳品工业,2003,30(2):29~40.
    36.张和平,张列兵.现代乳品工业手册.中国轻工业出版社(第二版)2012
    37.张嫚.原料乳——中国乳业发展瓶颈.中国食品工业,2006,(11):42~43.
    38.张秀玲,祝义伟,王卉.不同奶站原料乳质量初步分析.中国乳业,2006,6:47~49.
    39.张艳,郭利春,郭奇慧,刘振民,杨永龙,樊瑞胜. UHT乳结块原因分析.食品研究与开发,2007,28(12):84~85.
    40.赵平.超高温牛乳常见缺陷及排除方法.中国乳品工业,1999,27(6):29~31.
    41. Aaltonen T., Ollikainen P.. Effect of microfiltration of milk on plasmin activity. International DairyJournal,2011,21:193–197
    42. Adams D.M., Barach J.T, Speck M.L.. Heat Resistant Proteases Produced in Milk byPsychrotorophic Bacteria of Dairy Origin. Journal of Dairy Science,1975,58(6):828~834.
    43. Adams D.M., Barach J.T., Speck M.L.. Effect of psychrotrophic bacteria from raw milk on milk
    44. proteins and stability of milk proteins to ultrahigh temperature treatment. Journal of DairyScience,1976,59:823~827.
    45. Alichanidis E., Wrathall J. H. M., Andrews A.T.. Heat stability of plasmin and plasminogen. JournalDairy Research,1986,53:259~269.
    46. Kennedy A., Kelly A.L.. The influence of somatic cell count on the heat stability of bovine milkplasmin activity. International Dairy Journal,1997,7:717~721.
    47. Auldist M.J., Coats S., Sutherland B. J., Mayes J. J., McDowell G.H., Rogers G. L.. Effects ofsomatic cell count and stage of lactation on raw milk composition and the yield and quality ofCheddar cheese. Journal of Dairy Research,1996,63:269~280.
    48. Auldist M.J., Hubble I.B.. Effects of mastitis on raw milk and dairy product. Australian Journal ofDairy Technology,1998,53:28~36.
    49. Aroonkamonsri J.H., AroonkamonsriW., Kakuda Y.. The role of plasmin and bacterial proteinaseson age gelation of UHT milk. Scanning,1996,18(3):203~204.
    50. Barbano D.M., Ma Y., Santos M.V. Influence of raw milk quality on fluid milk shelf life. Journal ofDairy Science,2006,89(1):15~9.
    51. Barach J.T., Adams D.M. and Speck M.L. Low temperature inactivation in milk of heat-resistantproteinases from psychrotrophic bacteria. Journal of Dairy Science,1976,59(3):391~395
    52. Bastian E.D., Brown R.J., Ernstorm C.A. Plasmin activity and milk coagulation. Journal DairyScience,1991c,74:3677~3685.
    53. Bastian E.D., Brown R.J.. Plasmin in milk and dairy products: An update. International DairyJournal,1996,6(5):435~457.
    54. Benfeldt C., Larsen L.B., Rasmussen I. T., Andreasen P. A., Petersen T.E.. Isolation andcharacterization of plasminogenand plasmin from bovine milk. International Dairy Journal,1995,5:577~591.
    55. Bramley A.J..The role of lysine as an inhibitor of plasmin on protein quality NEDFRC AnnualReport (http://www.foodscience. cornell.edu/dairycenter/qs18.htm),1998
    56. Burton H.. Ultra-High-Temperature Processing of Milk and Milk Products. New York, elsevierscience publishing Co., Inc1988.
    57. Caessens P.W.J.R., Daamen W.F., Gruppen H., Visser S., Voragen A. G. J.. Beta-lactoglobulinhydrolysis.2. Peptideidentification, SH/SS exchange, and functional properties of hydrolysatefractions formed by the action of plasmin. Journal Agriculture Food Chemistry,1999b,4:2980~2990.
    58. Caessens P.W.J.R., Visser S., Gruppen J., Voragen A. G. J.. Beta-lactoglobulin hydrolysis.1. Peptidecomposition andfunctional properties of hydrolysates obtained by the action of plasmin, trypsin,and Staphylococcus aureus V8protease. Journal Agriculture Food Chemistry,1999a,47:2973~
    2979.
    59. Carlosafo, Andrezza M.F.. Composition and sensory evaluation of whole yogurt produced frommilk with different somatic cell counts. Australian Journal of Dairy Technology,2002,57:192~196.
    60. Cauvin E., Sacchi P., Rasero R.,&Turi R. M.. Proteolytic activity during storage of UHT milk.Industrie Alimentari,1999,38:825~829.
    61. Chove1L.M., Grandison A.S., Lewis M.J..Comparison of methods for analysis of proteolysis byplasmin in milk. Journal of Dairy Research,2011,78:184~190.
    62. Considine T., Healy A., Kelly A.L., McSweeney P.L.H.. Proteolytic specificity of elastase on bovineαs1-casein. Food Chemistry,2000,69(1):19~26.
    63. Considine T., Healy A., Kelly A.L., McSweeney P.L.H.. Proteolytic specificity of elastase on bovineβ-casein. Food Chemistry,1999,66(4):463~470.
    64. Cousin M.A.. Presence and activity of psychrotrophic microorganisms in milk and dairy products.Journal of Food Protect,1982,45(9):172~207.
    65. Crudden A., Kelly A.L. Studies of plasmin activity in whey.International Dairy Journal.2003,13:987~993.
    66. Datta N., Deeth H.C..Age gelation of UHT milk–a review. Food and Bioproducts Processing,2001,79(4):197~210.
    67. Datta N., Deeth H.C.. Diagnosing the cause of proteolysis in UHT milk. Lebensmittel Wissenschaftund Technologies,2003,36:173~182.
    68. De Koning P.J.. Age-thinning and gelation inconcentrated and concentrated UHT-sterilizedskimmilk. Netherlands Milk and Dairy Journal,1985,39:71~87.
    69. Devon Durkee, Kirby Hayes. Effects of cysteine addition and heat treatment during non-fat drymilk processing on the plasmin enzyme system. Dairy Science and Technology,2008(88):81~94.
    70. Driessen F.M., Van Der Waals C.B.. Inactivation of nativemilk proteinase by heat treatment.Netherlands Milk and Dairy Journal,1978,32:245~254.
    71. Eric D.B., Rodney J.B., and Anthon Ernstrom C.. Plasmin Activity and Milk Coagulation. Journalof Dairy Science1991,74(11):3677~3685.
    72. Ewings N. K., Conner 'O R. E., Mitchell G. E.. Proteolytic microflora of refrigerated raw milk insouth east Quecnsland. Australian Journal of Dairy Technology,1984,39(2):3275~3283.
    73. Fajardo L.C., Nielsen S.S.. Effect of psychrotrophic microorganisms on the plasmin system in milk.Journal of Dairy Science,1998,81:901~908.
    74. Fajardo L.C., Oria M., Hayes K. D., Nielsen S. S.. Effect of psychrotrophic bacteria and of anisolated protease from Pseudomonas fluorescens M3/6on the plasmin system of fresh milk. Journalof Dairy Science,2000,83(10):2190~2199.
    75. Fortina M.G.. Heat resistant protease from Pseudomonas fluorescens strain MFP1. Journal FoodScience,1989,48:63~70.
    76. Fox P.F., Kelly A.L..Indigenous enzymes in milk: Overview and historical aspects—Part.International Dairy Journal,2006,16(6):500~516.
    77. Frohbieter K.A., Ismail B., Nielsen S.S., Hayes K.D.. Effects of Pseudomonas fluorescens M3/6bacterial protease on plasmin system and plasminogen activation. Journal of Dairy Science,2005,88(10):3392~3401.
    78. Fortina M.G.. Heat resistant protease from Pseudomonas fluorescens strain MFP1. Journal FoodScience,1989,48:63~70.
    79. Garc′a-Risco M. R., Recio I., Molina E., R. Lo′pez-Fandin O.. Plasmin Activity in PressurizedMilk. Journal Dairy Science,2003,86:728~734.
    80. Gargouri A., Hamed H., ElFeki A.. Total and differential bulk cow milk somatic cell counts andtheir relation with lipolysis. Livestock Science,2008,113(2-3):274~279.
    81. Gaucher I., Boubellouta T., Beaucher E., Piot M., Gaucheron F., Dufour E.. Investigation of theeffects of season, milking region, sterilisation process and storage conditions on milk and UHTmilk physico-chemical characteristics: a multidimensional statistical approach. Dairy Science andTechnology,2008,88(3):291~312.
    82. Gaucher I., Tanguy G., Fauquant J., Jardin J., Rousseau F., Robert B., Madec M.N., Gaucheron F..Proteolysis of casein micelles by Pseudomonas fluorescens CNRZ798contributes to thedestabilisation of UHT milk during its storage. Dairy Science and Technology,2011,91:413~429
    83. Griffiths M.W.,Phillips J.D.,Muir D.D..Thermostability of proteases and lipases from a number ofspecies of psychrotrophic bacteria of dairy origin. Journal Applied Microbiology,1981,50(2):289~303.
    84. Grieve P.A, Kitchen B.J. Proteolysis in milk: the significance of proteinases originating from milkleucocytes and a comparison of the action of leucocyte, bacterial and natural proteinases on casein.Jounal of Dairy Research,1985,52:101~112.
    85. Grufferty M.B.,Fox P.F. Milk alkaline proteinase. Journal Dairy Research,1988a,55:609~630.
    86. Harrington R.2009.Asia and UHT milk to lead strong growth in aseptic packaging. www.foodProduction daily.com, Accessed Dec15,2010.
    87. Harwalkar V.R.. Age gelation of sterilized milks. Dairy Chemistry,1982,1:229~269.
    88. Hayes M.G., Hurley M.J., Larsen L.B., Heegaardv C.W., Abdallah A. A., Magboul J.C.O., Paul L.H., McSweeney, Alan L. K.. Thermal inactivation kinetics of bovine cathepsin D. Journal of DairyResearch,2001,68:267~276.
    89. Heck J.M.L., van Valenberg HJ, Dijkstra J, van Hooijdonk A.C.. Seasonal variation in the Dutchbovine raw milk composition. Journal of Dairy Science,2009,92(10):4745-55.
    90. Heegaard C. W., White J. H., Zavizion B., Turner J. D., Politis I.. Production of various forms ofplasminogen activator and plasminogen activator inhibitor by cultured mammary epithelial cells.Journal Dairy Science,1994a,77:2949~2958.
    91. Holt C., De Kruif C. G., Tunier R., Timmins P. A.. Substructure of bovine casein micelles by smallangle X-ray and neutron scattering. Colloids and Surfaces A,2003,213:275~284.
    92. Holt C., Timmins P. A., Errington N., Leaver J.. A coreshell model of calcium phosphatenanoclusters stabilized by bcasein phosphopeptides derived from sedimentation equilibrium andsmall-angle X-ray and neutron-scattering experiments. European Journal of Biochemistry,1998,252:73~78.
    93. Ismail B., Nielsen S.S.. Invited review: Plasmin protease in milk: Current knowledge and relevanceto dairy industry. Journal of Dairy Science,2010,93(11):4999~5009.
    94. Kelly A. L., Foley J.. Proteolysis and storage stability of UHT milk as influenced by milk plasminactivity, plasmin=betalactoglobulin complexation, plasminogen activation and somatic cellcount.International Dairy Journal,1997,7(6–7):411~420.
    95. Kelly A.L., O’Flaherty F., Fox P.F.. Indigenous proteolytic enzymes in milk: A brief overview of thepresent state of knowledge. International Dairy Journal,200616:563~572.
    96. Klei L.R., Lynch J.M., Barbano D.M., Oltenacu P.A., Lednor A.J., Bandler D.K.. Influence ofmilking three times a day on milk quality. Journal Dairy Science,1997,80(3):427-36.
    97. Kocak H. R., Zadow J. G.. Age gelation of UHT whole milk as influenced by storage temperature.Australian Journal of Dairy Technology,1985,40(1):14~21.
    98. Kocak, H. R. and Zadow, J. G.,1985, The effect of low-temperatureinactivation treatment on agegelation of UHT whole milk, Australian Journal of Dairy Technology,40(2):53~58.
    99. Kocak, H. R. and Zadow, J. G.,1989, The effect of lactose hydrolysis and subsequent lowtemperature inactivation treatment on age gelation of UHT whole milk, Australian Journal of DairyTechnology,44(1):37~40.
    100. Kohlmann K.L., Nielsen S.S., Ladisch M.R.. Purification and Characterization of an ExtracellularProtease Produced by Pseudomonas fluorescens M3/6. Journal of Dairy Science,1991,74:4125~4136.
    101. Kohlmann K.L., Nielsen S.S.. Effects of serine proteolytic enzymes (trypsin and plasmin),trypsininhibitor, and plasminogen activator addition to ultra-high temperature processed milk.Journal Dairy Science,1988,71:1728~1739.
    102. Kohlmann K.L., Nielsen S. S.. Effects of a low concentration of added serine proteolytic plasmin),trypsin inhibitor on ultra-high temperature processed milk. Journal Dairy Science,1991,74:1151~1156.
    103. Koka R., Weimer B.C.. Isolation and characterization of a protease from Pseudomonas fluorescensRO98. Journal of Applied Microbiology,2000,89(2):280~288.
    104. Koka R..Heat stable extracellular enzymes of pseudomonas. Dissertation of Utah state university,
    1999.
    105. Kough B.P.. Influence of enzyme in raw milk on age gelation after activity of bacteria andleucocvtes UHT processing. Journal Food Prot,1984,47:105~110.
    106. Korycka Dahl M., Ribadeau Dumas B., Chene N., Martal J.. Plasmin activity in milk, Journal DairyScience,1983,66(4):704~711.
    107. Larsen L.B., Boison A., Petersen T. E.. Procathepsin D cannot autoactivate to cathepsin D at acidpH.FEBS Letters,1993,319:54~58.
    108. Law B.A., Andrews A.T.. Gelation of ultra-high-temperature-sterilized milk by proteases from astrain of Pseudomonas fluorescens isolated from raw milk. Journal Dairy Research,1977,44:145~148.
    109. Leriche F., Fayolle K.. No seasonal effect on culturable pseudomonads in fresh milks from cattleherds. Journal of Dairy Science,2012,95(5):2299~2306.
    110. Liao C.H., McCallus D.E.. Biochemical and genetic characterization of an extracellular proteasefrom Pseudomonas fluorescens CY091. Applied and Environmental Microbiology,1998,64(3):914~921.
    111. Larson N.K., Ismail B., S.S. Nielsen, K.D. Hayes.Activity of Bacillus polymyxa protease oncomponents of the plasmin system in milk. International Dairy Journal,2006(16):586~592.
    112. Lotte B. L., Morten D. R., Martin B., Jacob H.N.. Proteases and protein degradation in milk fromcows infected with Streptococcus uberis. International Dairy Journal,2004,14:899~907.
    113. Lucey J.. Cheese making from grass based seasonal milk and problems associated withlate-lactation milk. Journal of the Society of Dairy Technology,1996,49:59~64.
    114. Lucy M.C., Alistair S., Grandison and Lewis M.J.. Comparison of methods for analysis ofproteolysis by plasmin in milk. Journal of Dairy Research,2011,78:184~190.
    115. Lu D. D., Nielsen S.S.. Assays for native plasminogen activators in bovine milk. Journal DairyScience,1993b,76:3362~3368.
    116. Lu D.D., Nielsen S.S.. Heat inactivation of native plasminogen activators in bovine milk. JournalFood Science1993a,58:1010~1016.
    117. Magda M.. Content of free fatty acids, lipolytic bacteria and somatic cells in relation to milkingtechnology. Journal of Agrobiology,2011,28(1):49~54.
    118. Malik R.K., Mathur D.K.. Purification and Characterization of a Heat-Stable Protease fromPseudomonas sp. B-25. Journal of Dairy Science,1984,67(3):522~530.
    119. Malone A. S., Wick C., Shellhammer T. H., Courtney P. D.. High Pressure Effects on Proteolyticand Glycolytic Enzymes Involved in Cheese Manufacturing. Journal of Dairy Science,2003,86(4):1139~1146.
    120. Manji B., Kakuda Y.. Effect of storage temperature on age gelation of ultra-high temperature milkprocessed by direct and indirect heating system. Journal Dairy Science,1986,69:2944~3001.
    121. Marchand S., Coudijzer K., Heyndrickx M., Dewettinck K., Block J. De. Development of a methodto select the heat-resistant proteolytic activity of bacterial origin in raw milk samples. InternationalDairy Journal,2008,18:514-518.
    122. Matta H., Punj V., Kalra M.S.. Isolation and partial characterization of a heat stable extracellularprotease from Pseudomonas sp. AFT-36. Milchwissenschaft,1994,49:186~189.
    123. Matta H., Punj V.. Isolation and partial characterization of a thermostable extracellular protease ofBacillus polymyxa B-17. International Journal of Food Microbiology,1998,42(3):139~145.
    124. McMahon D.J.. Heat-induced changes in β-lactoglobulin and the stability of UHT milk.2nd BiennUHT milk symposium. U.S.A: Utah State Univ,1996a:1~6.
    125. McSweeney P. L. H., Fox P.F., Olson N. F.. Proteolysis of bovine caseins by cathepsin D:Preliminary observations and comparison with chymosin. International Dairy Journal,1995,5:321~326.
    126. McMahon D. J.. Age-gelation of UHT milk: Changes that occur during storage, their effect on shelflife and the mechanism by which age-gelation occurs. Heat treatments and alternative methods (pp.315–325). International Dairy Federation ref S.I.9602. Brussels, Belgium, International DairyFederation.1996b
    127. McSweeney P. L. H., Fox P.F., Olson N. F.. Proteolysis of bovine caseins by cathepsin D:preliminary observations and comparison with chymosin. International Dairy Journal,1995,5:321~336
    128. Micheala N. J., Robert G. H.. Activation of plasminogen by Streptococcus mutans. Biochemical andBiophysical Research Communications,2004,322:37~41.
    129. Michelle B, Rich G W, Conor M, et al.Temperature regulation of protease in Pseudomonasfluorescens LS107d2by an ECF sigma factor and a transmembrane activator. Microbiology,2000,146:3149-3155.
    130. Mitchell G.E., Ewings K.N... Quantification of bacterial proteolysis causing gelation in UHT-treatedmilk. N.Z. J. Dairy Science Technology,1985,20:65~76.
    131. Munsch-Alatossava P., Alatossava T.. Phenotypic characterization of raw milk Associatedpsychrotrophic bacteria. Microbiological Research,2006,161(4):334~346.
    132. Mo D., Huang J., Jia X., Luan H., Rozelle S., Swinnen J.. Checking into China's cow hotels: Havepolicies following the milk scandal changed the structure of the dairy sector? Journal of DairyScience,2012,95(5):2282~2298.
    133. Mu Z.S., Du M., Bai Y.. Purification and properties of a heat-stable enzyme of Pseudomonasfluorescens Rm12from raw milk. European Food Research and Technology,2009,228(5):725~734.
    134. Niesen S.S..Plasmin system and microbial proteases in milk:Characteristics,roles,and relationshipJournal of Agricural and Food Chemistry,2002,50(22):6628~6634.
    135. Nielsen S. S.. Plasmin system in milk. Encyclopedia of Dairy Sciences Pages2003,929~934. Vol II.H Roginskin, J. W. Fuquay, P. F. Fox, ed. Academic Press, London, UK.
    136. Nissim S.,Physiological role of indigenous milk enzymes:An overview of an evolving picture.2006,16(6):533~545.
    137. O'Driscoll B.M., Rattray F.P., McSweeney P.L H., Kelly A. L.. Protease activities in raw milkdetermined using a synthetic heptapeptide substrate. Journal of Food Science,1999,64:606~611.
    138. Ozen B. F., Hayes K. D., Mauer L. J.. Measurement ofplasminogen concentration anddifferentiation of plasmin and plasminogenusing Fourier-transform infrared spectroscopy.International Dairy Journal,2003,13:441~446.
    139. Patel T. R., Jackman D.M., Bartlett F.M.. Heat-stable protease from Pseudomonas fluorescens T16:purification by affinity column chromatography and characterization. Applied and EnvironmentalMicrobiology,1983,46(2):333~337.
    140. Politis, Barbano D.M., Gorewit R.C.. Distribution of plasminogen and plasmin in fractions ofbovine milk. Journal of Dairy Science,1992,75:1402~1410.
    141. Politis I.. Enzyme assay for the combined determination of plasmin plus plasminogen inmilk:revisited.Journal Dairy Science,1993,76:1260~1267.
    142. Politis I., Lachance E., Block E., Turner J. D... Plasmin and plasminogen in bovine milk: A relationwith involution. Journal Dairy Science,1989,72:900~906.
    143. Politis I.,Ng Kwai Hang K.F.. environmental factors affecting plasmin in milk.Journal of DairyScience,1989,72:1713~1718.
    144. Politis I., Zhao S., McBride B.W., Burton J. H., Turner J. D.. Plasminogen activator production bybovine milk macrophagesand blood monocytes. American Journal Veterinary Research,1991,52:1208~1213.
    145. Prado B. M., Ramos O., Ismail B., Hayes K. D.. Effect ofthermal treatment on plasminogenactivators in milk and in buffer system. International Dairy Journal,2007,17:1028~1033.
    146. Prado B. M., Sombers S. E., Ismail B., Hayes K. D.. Effectof heat treatment on the activity ofinhibitors of plasmin and plasminogenactivator in milk. International Dairy Journal,2006,16:593~599.
    147. Precetti A.S., Oria M.P., Nielsen S.S.. Presence in bovine milk of two protease inhibitors of theplasmin system. Journal of Dairy Science,1997,80:1490~1496.
    148. Rajmohan S., Dodd C.E., Waites W.M..Enzymes from isolates of Pseudomonas fluorescensinvolved in food spoilage. Journal of applied microbiology,2002,93:205~213.
    149. Richardson B. C.. Effect of heat stable proteases on the storage life of UHT milk. N.Z. J. DairyScience Technology,1979,14:536~540.
    150. Richardson B. C., Elston P. D.. Plasmin activity in commercial caseins and caseinates. N.Z. J. DairyScience Technology1984,19:63~67.
    151. Richardson B.C., Pearce K.N.. The determination of plasmin in dairy products. New ZealandJournal of Dairy Science and Technology,1981,16:209~220.
    152. Richardson B. C.. The proteinases of bovine milk and the effectof pasteurization on their activity.N.Z. J. Dairy Science Technology1983a,18:223~245.
    153. Richardson B. C.. Variation of concentration of plasmin and plasminogen in bovine milk withlactation. N.Z. J. Dairy Science Technology1983b,18:247~252.
    154. Robert J.V., David M. B.. Effect of coagulants,somatic cell enzymes,and extracellular bacterialenzymes on plasminogen activation. Journal Dairy of Science,1991,74:772~781
    155. Rupesh S.C., Shraddha R.C., Chandrashekar D.K. et al.. UHT Milk Processing and Effect ofPlasmin Activity on Shelf Life: A Review. Comprehensive Reviews in Food Science and FoodSafety,2011,10(5):251~268.
    156. Ryan K.N., Stevenson C.D., Hayes K.D.. Mechanism of decreased heat-induced activation ofplasminogen in the presence of cysteine. International Dairy Journal,2012,23(2):79~85.
    157. Santos M.V., Ma Y., Barbano D. M.. Effect of cell count on pro teolysis and lipolysis in pasteurizedfluid milk during shelf life storage. Journal Dairy Science,2003,86:2491~2503.
    158. Schaar J.. Plasmin activity and proteose-peptone content of individualmilks. Journal Dairy Research,1985,52:369~378.
    159. Snoeren T.H.M.. Proteolysis during the storage of UHT-sterilized whole milk.2. Experiments withmilk heated by the indirect system for4seconds at142℃. Netherlands of Milk Dairy Journal.1981,35:113~119.
    160. Sorhaug T., Stepaniak L.. Psychrotrophs and their enzymes in milk and dairy products:qualityaspects. Trends Food Science and Technology,1997,8(2):35~41.
    161. Sperber W.H., Doyle M. P.. Compendium of the microbiological spoilage of foods and beverages.Food Microbiology and Food Safety,2010:41~67.
    162. Stepaniak L., Patrick F.F.. Isolation and characterization of heat stable proteinases fromPseudomonas isolate AFT21. Journal of Dairy Research,1985,52:77~89.
    163. Stepaniak L., S rhaug T.. Thermal denaturation of bacterial enzymes in milk. In book:Heat inducedchanges in milk,1995:349~363.
    164. Te Giffel M.C., Van Der Horst H.C.. Comparison between bactofugation and microfiltrationregarding efficiency of somatic cell and bacteria removal. Journal of International Dairy Federation2004,389(5):49~53.
    165. Denis T. S., Humbert G., Gaillard J. L.. Heat inactivation of native plasmin, plasminogen andplasminogen activators in bovine milk: a revisited study. Dairy Science and Technology,2001:715~729.
    166. Tondo E. C., Lakus F.R., Oliveira F.A., Bradelli A.. Identification of heat stable protease ofKlebsiella oxytoca isolated from raw milk. Letters in Applied Microbiology,2004,38(2):146~150.
    167. Visser S.. Proteolytic enzymes and their action on milk proteins. Netherlands Milk and DairyJournal,1981,35:65~88.
    168. S. Visser. Proteolytic enzymes and their action on milk proteins. A review, Netherlands Milk andDairy Journal,1981(35),65~88
    169. Weber B. A., Nielsen S. S.. Isolation and partial characterization of a native serine-type proteaseinhibitor from bovine milk. Journal Dairy Science,1991,74:764~771.
    170. West, F. B., Adams, D. M. and Speck,M. L.,1978, Inactivation of heat resistant proteinases innormal ultra-high temperature sterilized skim milk by a low temperature treatment. Journal DairyScience,61(8):1078~1084
    171. White J. H., Zavizion B., O’Hare K., Gilmore J., Guo M. R., Kindstedt P., Politis I.. Distribution ofplasminogen activatorsin different fractions of bovine milk. Journal Dairy Research,1995,62:115~122.
    172. William J. M., David M., Alan K.. Influence of somatic cell count and storage interval oncomposition and processing characteristics of milk from cows in late lactation. Australian Journalof Dairy Technology,2001,56:213~218.
    173. Zacharov E. H.,Halpern M.. Culturable psychrotrophic bacterial communities in raw milk and theirproteolytic and lypolytic traits. Applied and Environmental Microbiology,2007,73(22):7162~7168.
    174. Zadow J. G., Chituta F..Age gelation of ultra-high-temperature milk. Australian Journal of DairyTechnology,1975,30(3):104~106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700