菜青虫酚氧化酶抑制剂的抑制动力学及其构效关系(QSAR)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Kinetics Inhibition and Quantitative Structure-Activity Relationship (QSAR) Studies of Phenoloxidase Inhibitors on Pieris Rapae (L.)
  • 作者:薛超彬
  • 论文级别:博士
  • 学科专业名称:农药学
  • 学位年度:2007
  • 导师:罗万春
  • 学科代码:090403
  • 学位授予单位:山东农业大学
  • 论文提交日期:2007-05-01
摘要
酚氧化酶(Phenoloxidase,PO)(EC.1.14.18.1)又称酪氨酸酶(Tyrosinase),是结构复杂的多亚基的含铜氧化还原酶。它广泛存在于动物、植物和微生物等生物体内,与人体的衰老、伤口愈合、果蔬的褐变等有密切关系。它是昆虫体内的一种重要酶类,在昆虫的变态发育和免疫系统中起着重要作用。由于酚氧化酶具有重要的理论意义和发展前景,大量的研究工作集中在此领域,筛选、设计、合成酚氧化酶抑制剂成为研究热点。
     在前期研究的基础上,本文以菜青虫(Pieris rapae L.)酚氧化酶为试验对象,测定了5,7,4’-三羟基黄酮等化合物对菜青虫幼虫生长发育的影响;选取铜铁试剂等化合物为酶抑制剂,研究它们对酚氧化酶的抑制作用;采用我们课题组自主设计、合成的3-羟基-4-甲氧基苯甲醛缩氨基硫脲等化合物为效应物,研究了它们对菜青虫酚氧化酶的抑制动力学,并建立了抑制作用模型;根据测得的抑制活性结果,进行了定量的结构与活性关系的研究,获得了具有较强预测能力的构效关系模型;应用FlexX法将抑制剂小分子与酚氧化酶活性位点成功进行了分子对接。本文的主要研究内容和结果如下。
     1.选用5,7,4’-三羟基黄酮、槲皮素、芦丁、5-甲氧基水杨酸和曲酸五种化合物,采用触杀和摄食毒力法进行了生物活性测定,研究生物源化合物对菜青虫幼虫生长发育的影响,结果表明,5,7,4’-三羟基黄酮和槲皮素对菜青虫幼虫生长发育具有明显的影响,浸渍法处理后72 h,两种化合物对试虫致死LC50值分别为0.226和0.951 g/L;叶片药膜法处理后72 h,LC50值分别为0.062和2.420 g/L。采用叶片药膜法时,当5,7,4’-三羟基黄酮的浓度高于0.200 g/L时,所有试虫均不能正常化蛹;采用浸渍法时,与对照相比,用5,7,4’-三羟基黄酮、槲皮素、芦丁、5-甲氧基水杨酸和曲酸处理的试虫5龄幼虫体重增长量明显降低。
     2.对菜青虫酚氧化酶进行初步分离纯化,并研究了基本酶学特性。研究结果表明:酶活力存在于35%饱和度硫酸铵的沉淀中,得率为69.52%,再经Sephadex G-100凝胶过滤层析进一步纯化,测得比活力为粗酶的6.22倍,得率为42.50%。研究部分纯化的菜青虫酚氧化酶的基本特性得出,该酶的最适pH值为7.0, pH在6.5~7.4范围内酶保持稳定的活力。最适温度为42℃,当温度低于32℃时,酶具有稳定的活力。研究金属离子对酶活力的影响,结果表明Na+和K+对酶活力没有影响;Cu2+在0~0.100 mmol/L范围内对酶活力表现激活作用,浓度大于0.125 mmol/L时表现抑制作用,其IC50为0.651 mmol/L。
     3.测定了4-己基间苯二酚、4-十二烷基间苯二酚、铜铁试剂、5,7,4’-三羟基黄酮和槲皮素对酶活力的抑制作用,并探讨了其抑制机理。研究结果表明:4-己基间苯二酚和4-十二烷基间苯二酚对酶表现可逆抑制效应,均为竞争型抑制类型,其IC50分别为1.50μmol/L和1.12μmol/L,抑制常数KI分别为0.50μmol/L和0.47μmol/L;铜铁试剂对酶表现为可逆抑制效应,为竞争型抑制类型,其IC50为0.10 mmol/L,KI为0.076 mmol/L;5,7,4’-三羟基黄酮和槲皮素对菜青虫酚氧化酶具有明显的抑制作用, IC50分别为25.65 mg/L和43.94 mg/L;研究不同浓度铜离子对该酶的影响,结果表明Cu2+在0~0.100 mmol/L范围内对酶活力表现激活作用,浓度大于0.125 mmol/L时表现抑制作用,其IC50为0.651 mmol/L。
     4.以L-酪氨酸和L-DOPA为底物,在氧饱和的条件下测定酚氧化酶氧化底物的动力学过程;测定抑制剂3-羟基-4-甲氧基苯甲醛缩氨基硫脲(3-H-4-MBT)和2-羟基苯甲醛(2-HBD)对酚氧化酶单酚酶和二酚酶活性的影响,研究结果表明:3-H-4-MBT和2-HBD均能显著抑制单酚酶和二酚酶活性,在酶的测活体系中加入3-H-4-MBT或2-HBD,二者均能显著延长反应体系到达稳态的时间,即这两种化合物均可延长酶反应的迟滞时间。研究结果显示3-H-4-MBT和2-HBD均为可逆的非竞争性抑制剂,3-H-4-MBT对单酚酶和二酚酶的IC50分别为0.14±0.02μmol/L和0.26±0.04μmol/L,对二酚酶的抑制常数KI (KI=KIS)为0.30μmol/L;2-HBD对单酚酶和二酚酶的IC50分别为8.08±0.11 mmol/L和4.14±0.08 mmol/L,对二酚酶的抑制常数KI (KI=KIS)为1.21 mmol/L。在不同浓度的3-H-4-MBT(或2-HBD)测活体系中,测定酚氧化酶氧化底物L-DOPA的动力学过程,随着反应时间的增加,反应体系逐渐到达稳态,此时反应历程为一直线。根据邹氏动力学原理,建立了3-H-4-MBT(2-HBD)对酚氧化酶的抑制模型,并求得抑制反应速率常数k-0和k+0。
     5.定量构效关系(QSAR)是农药分子设计中很重要的方法,本文详细介绍了2D-QSAR中的Hansch-Fujita法及3D-QSAR中的比较分子力场分析(CoMFA)法和比较分子相似指数分析(CoMSIA)法,并运用上述三种方法对酚氧化酶抑制剂进行了构效关系研究。
     运用Hansch-Fujita法对苯甲醛类、苯甲酸类和苯甲醛缩氨基硫脲类三组化合物进行了2D-QSAR研究,其中采用了Hammett电子效应参数σ、疏水性参数clogP、立体效应参数MR和氢键受体共四个参数,研究结果表明,苯甲酸类和苯甲醛缩氨基硫脲类两组化合物的构效关系特点比较相似,这也说明此两类化合物很可能作用在酶的同一位点,并且氢键受体和立体效应参数是影响化合物抑制活性的两大因子;而苯甲醛类化合物的构效关系不同于上述两组化合物,影响该组化合物生物活性的因子主要是疏水性参数clogP。
     应用CoMFA和CoMSIA两种方法,采用公共亚结构基础的叠合原则,进行了三维定量构效关系(3D-QSAR)研究,研究结果表明,构建的CoMFA和CoMSIA模型具有很好的预测能力,统计结果可靠。CoMFA模型中使用了6个主成分,模型的交叉验证系数q2=0.926,预测标准误(SEE)为0.250,非交叉验证系数r2=0.986。CoMSIA模型的建立采用了立体场(steric)、静电场(electrostatic)、疏水场(hydrophobic)、氢键受体场(hydrogen bond acceptor)和氢键供体场(hydrogen bond donor)五种场的自由组合。当模型采用立体场、疏水场和氢键受体场三个场时,模型的交叉验证系数q2=0.933,非交叉验证系数r2=0.984,F值和SEE值分别为381.764和0.271。因此,获得的3D-QSAR模型将为设计新颖、高活性的酚氧化酶抑制剂提供理论指导。
     6.本文采用FlexX法,以抑制剂小分子为配体,以抗生链酶菌(S. castaneoglobisporus)酚氧化酶晶体(PDB:1WX2)为受体进行了分子对接。研究结果表明:用FlexX法将抑制剂小分子成功对接到酶的活性中心,抑制剂在酶活性位点的结合方式有三种,第一种结合方式是苯甲醛缩氨基硫脲类化合物与酶活性位点的结合,其主要结合模式为化合物上缩氨基硫脲结构中的“夹钳”(H21-N9-C10- N12-H22)结构与酪氨酸残基(Tyr98)上的氧原子形成氢键;第二种结合方式是苯甲醛类化合物与酚氧化酶活性位点的结合,与苯甲醛缩氨基硫脲类化合物类似,该类化合物苯环结构的邻、间、对位上的羟基、以及相邻的氢原子形成一个“夹钳”结构,分别与Tyr98上的氧原子形成氢键;第三种结合方式是苯甲酸类化合物与酚氧化酶活性位点的结合,其结合方式为苯甲酸类化合物的羧基中的羟基与Tyr98上的氧原子形成氢键,羧基对位上的基团与氨基酸Trp184,Arg185和Pro102等发生氢键作用。
Phenoloxidase (PO) (EC.1.14.18.1) also known as tyrosinase, is a structure-complex and multifunctional copper-containing enzyme, which widely distributed among animals, plants, fungi, and prokaryotes. PO is thought to be involved in many biological processes of invertebrates, such as consenescence of human body, wound healing, fruits and vegetables browning and pigment formation. It is one of the key enzymes in the development process of insects, the enzyme possesses an important function in metamorphism developing and immunity system. Currently, many studies focused on this field in order to screen, design and synthesis PO inhibitors for the importance theory of PO inhibitors and its bright future. In the present paper, compounds of 5, 7, 4’-trihydroxyflavone etc. were selected to investigate the effect of natural occurring compounds on the growth of Pieris rapae larvae, compounds cupferron etc. were selected as the PO inhibitors to determine the inhibitory effects against the enzyme, besides, compounds 3-hydroxy-4-methoxy benzaldehyde thiosemicarbazone (3-H-4-MBT) etc. were designed and synthesized in our laboratory, and the kinetics inhibition of PO were studied using these compounds.
     Additionally, the bioactivity results were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using two molecular field analysis techniques: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), robust and predictive 3D-QSAR models were obtained from CoMFA and CoMSIA. Furthermore, the molecular interactions between the ligands and the target were studied using a flexible docking method (FlexX) and the best scored candidates were docked flexibly.
     The contents and results were summarized as follows:
     1. Compounds of 5, 7, 4’-trihydroxyflavone, quercetin, rutin, 5-methoxysalicylic acid and kojic acid were selected, in the present paper, to investigate the effect of natural occurring compounds on the growth of Pieris rapae larvae. Both dipping methods and ingestion methods were used in the bioassay, and the results showed that the LC50 value of the chemicals against the tested larva were estimated to be 0.226 and 0.951 g/L at 72 hours after treatment with dipping methods for 5, 7, 4’-trihydroxyflavone and quercetin, respectively, or 0.062 and 2.420 gl/L with ingestion methods, respectively. The results also indicted that all of the tested larva couldn’t pupated when the concentration of 5, 7, 4’-trihydroxyflavone beyond 0.200 g/L with ingestion methods, and, the increased amount of body weight of the 5th instar Pieris rapae larva, which were dipped in the solution of 5, 7, 4’-trihydroxyflavone, quercetin, rutin, 5-methoxysalicylic acid or kojic acid, were decreased obviously compared with the control.
     2. The results of PO purification showed that much of the enzyme activity was in the deposition of 35% saturated (NH4)2SO4, and the enzyme was purified 3.08-fold with a recovery of 69.52%. And then, PO was purified 6.22-fold with a recovery of 42.50% when the enzyme was chromatographed on Sephadex G-100 gel filtration. The properties of PO were determined, in the present paper, the results indicated that the optimum pH was 7.0 and the enzyme with a stable activity when the pH reaction system between 6.5~7.4. The optimum temperature was 42℃, and the enzyme with a stable activity when the temperature reaction system less than 32℃. Effects of some metal ions on the PO activity were studied, the results showed that Na+ and K+ had no effects on the enzyme activity. Meanwhile, the results showed that the PO activity was enhanced by Cu2+ when the concentration at 0~0.100 mmol/L, but the activity was inhibited by the same ion when the concentration went over to 0.125 mmol/L, and the IC50 was estimated to be 0.651 mmol/L.
     3. The inhibitory effects on the PO activity by 4-hexylresorcino, 4-n-dodecylresorcino, cupferron, 5, 7, 4’-trihydroxyflavone and quercetin were determined, and the possible mechanism of these inhibitors were discussed also. The results showed that 4-hexylresorcino and 4-n-dodecylresorcino were reversible competitive inhibitors on PO, and the IC50 were 1.50μmol/L and 1.12μmol/L, respectively, the inhibitory constants (KI) were also determined to be 0.50μmol/L and 0.47μmol/L, respectively. Cupferron was a reversible competitive inhibitor on the enzyme, the IC50 and the inhibitory constant (KI) was 0.10 mmol/L and 0.076 mmol/L, respectively. The results also indicated that 5, 7, 4’-trihydroxyflavone and quercetin could also inhibit the PO activity, and the IC50 were estimated to be 25.65 and 43.94 mg/L, respectively.
     4. In the present study, the kinetic assay in air-saturated solutions and the kinetic behavior of PO from P. rapae larvae in the oxidation of L-tyrosine (a monophenol) and L-DOPA (L-3, 4-dihydroxyphenylalanine) (a diphenol) was studied. The inhibitory effects of 3-hydroxy-4-methoxybenzaldehyde thiosemicarbazone (3-H-4-MBT) and 2-hydroxybenzaldehyde (2-HBD) on the monophenolase and diphenolase activities of PO were also studied in the present paper. The results showed that 3-H-4-MBT and 2-HBD can inhibit both the monophenolase and diphenolase activities of PO. The lag period of L-tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activities of the enzyme sharply decreased in the reaction course. Inhibitor 3-H-4-MBT was found to be noncompetitively reversible compound with a KI (KI=KIS) of 0.30μmol/L and an estimated IC50 of 0.14±0.02μmol/L for monophenolase or 0.26±0.04μmol/L for diphenolase. Inhibitor 2-HBD was found to be noncompetitively reversible with a KI (KI=KIS) of 1.21 mmol/L and an estimated IC50 of 8.08±0.11μmol/L for monophenolase or 4.14±0.08μmol/L for diphenolase. In the time course of the oxidation of L-DOPA catalyzed by the enzyme in the presence of different concentrations of 3-H-4-MBT or 2-HBD, the rate decreased with increasing time until a straight line was approached. The microscopic rate constants k-0 and k+0 for the reaction of 3-H-4-MBT or 2-HBD with the enzyme were determined.
     5. Quantitative structure-activity relationship (QSAR) studies are important approaches in the design of pesticidal molecules. The method of Hansch-Fujita of 2D-QSAR, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were introduced in detail in this paper, and the QSAR of PO inhibitors were carried out based on three methods above.
     In the present paper, the quantitative relationship between the structure of benzaldehyde derivatives, benzoic acid derivatives, benzaldehyde thiosemicarbazone derivatives and their inhibitory activities against P. rapae larvae PO were analyzed using Hansch-Fujita approach. The chemical descriptors, such as electronic parameters Hammettσ, hydrophobic parameters clogP, steric parameters MR and hydrogen bond acceptor were employed in this study. The results showed that the structure-activity relationships (SAR) of benzoic acid derivatives and benzaldehyde thiosemicarbazone derivatives were identical, and they may act on the same target site of the PO receptor. The hydrogen bond acceptor and steric parameters descriptors were the most significant factors on determining inhibitory activity of the two sets of compounds. The structure-activity relationships of benzaldehyde derivatives and benzaldehyde thiosemicarbazone derivatives indicated that the action mode on the PO receptor were different, or the action site of the two sets of compounds were different.
     The bioactivity results were used to construct 3D-QSAR models using two molecular field analysis techniques: CoMFA and CoMSIA. After carrying out superimposition using common substructure-based alignment, robust and predictive 3D-QSAR models were obtained from CoMFA (q2 = 0.926, r2 = 0.986, SEE = 0.250) and CoMSIA (q2 = 0.933, r2 = 0.984, F = 381.764, SEE = 0.271) with 6 optimum components. And, the steric field, hydrophobic field and hydrogen bond acceptor field were applied in the CoMSIA modle. The 3D-QSAR model built here will provide hints for the designing with novel phenoloxidase inhibitors.
     6. In the present study, the inhibitors were used as the ligands and the PO crystal structure (PDB: 1WX2) of S. castaneoglobisporus was employed as the target, and, the molecular interactions between the ligands and the target were studied using a flexible docking method (FlexX). The results showed that the best scored candidates were docked flexibly, and there are three interaction modes among the three compounds.
     The first interaction mode is the benzaldehyde thiosemicarbazone analogues interacted with the PO active site. The benzaldehyde thiosemicarbazone analogues contains a chain of atoms (H21 - N9 - C10 - N12 - H22) spatially arranged in what might be termed a“clamp”structure. The distance between both hydrogen atoms of the clamp and the carbonyl oxygen atom of Tyr98 is 1.991 ?, indicating the likely presence of a pair of hydrogen bonds. Formation of these two hydrogen bonds stabilizes the position of Tyr98, preventing Tyr98 from participating in the interaction between PO and ORF378. The second interaction mode is benzaldehyde analogues interacted with the PO active site, which is more like the first interaction mode, the hydrogen bonds were formed also. The third interaction mode is the benzoic acid derivatives interacted with the active site. Some hydrogen bonds were formed between the hydroxyl of carboxyl and oxygen of Tyr98, between the contraposition group of carboxyl and amino acid Trp184, Arg185 and Pro102.
引文
Andersen S O., Peter M G., Roepstorff P. Cuticlar sclerotization in insects [J]. Comparative Biochemistry and Physiology, 1996, 113B: 689-705.
    Andersson K., Sun S. C., Boman H. G., Steiner H. Purification of the prophenoloxidase from Hyalophora cecropia and four proteins involved in its activation [J]. Insect Biochem., 1989, 19: 629-637.
    Asanuma M., Miyazaki I., Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease [J]. J. Neurotox. Res., 2003, 5: 165-176.
    Ashida M., Yoshida H. Limited proteolysis of pro-phenoloxidase during activation by microbial products in insect plasma and effect of phenol oxidase on electrophretic mobilities of plasma proteins [J]. Insect Biochem., 1988, 18: 11-19.
    Ashida M. Purification and characterization of prophenoloxidase from hemolymph of the silkworm, Bombyx mori [J]. Arch. Biochem. Biophys., 1971, 144:749-762.
    Ashida M., Iwama R., Iwahana H., Yoshida H. Control and function of the prophenoloxidase activating system. In: Proceedings of the 3rd international colloquium on invertebrate pathology [M]. Brighton: University of Sussex Press. 1982, 81-86.
    Ashida M., Ohnishi E. Activation of prophenoloxidase in hemolymph of the silkworm, Bombyx mori [J]. Arch. Biochem. Biophys, 1976, 122: 411-416.
    Ashida M., Yamazaki H. Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In: Molting and Metamorphosis Eds: Ohnishi E & Ishizaki H, Tokyo/Springer-Verlag, Berlin. 1990, 239-265.
    Aso Y., Kramer K J., Hopkins T L., Lookhart G L. Characterization of hemolymph protyrosinase and a cuticular activator [J]. Insect Biochemistry. 1985, 15: 9-17.
    Asokan R., Arumugam M., Mullainadhan P. Activation of prophenoloxidase in the plasma and haenocytes of the marine mussel Perna viridis Linnaeus [J]. Dev. Comp. Immunol., 1997, 21: 1-12.
    Aspan A., Huang T S., Cernius L., S?derh?ll K. cDNA cloning of prophenolxidase from the fresh water crayfish Pacifastacus lenius-culus and its activation [J]. Proc. Natal. Acad. Sci. U.S.A. 1995, 92: 939-943.
    Beermann F., Ruppert S., Hummler E., Bosch F X., Müller G., Rüther U., Schütz G. Rescue of the albino phenotype by introduction of a functional tyrosinase gene into mice [J]. EMBO J. 1990, 9(9): 2819-2826.
    Bernan V., Filpula D., Herber W., Bibb M., Katz E. The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product [J]. Gene. 1985, 37(1-3): 101-110.
    Binnington K C., Barrett F M. Ultrastructural localization of phenoloxidase in cuticle and haemopoietic tissue of the blowfly lucilia cuppina [J]. Tissue and Cell. 1988, 20: 405-419.
    Bouchard B., Fuller B B., Vijayasaradhi S., Houghton A N. Induction of pigmentation in mouse fibroblasts by expression of human tyrosinase cDNA [J]. J. Exp. Med., 1989, 169: 2029-2042.
    Brehélin M., Drif L., Boemare H. Insect haemolymph: cooperation between humoral and cellular factors in Locusta migratoria [J]. Insect Biochem., 1989, 19: 301-307.
    Bryan P., Wang L., Hoskins J., Ruvinov S., Strausberg S., Alexander P., Almog O., Gilliland G. Gallagher T. Biochemistry, 1995,34: 10310-10318.
    Burks C S., Fuchs M S. Partial purification of plasma phenoloxidase of the yellow fever mosquito Aedes aegypti (Diptera: Culicidae) [J]. Comp. Biochem. Physiol., 1995, 110B: 641-647.
    Burmester T., Scheller L. Common origin of arthropod tyrosinase, arthrop hemcyanin, insect hemamerin and dipteran arylphorin receptor [J]. Mol. Evol., 1996, 42: 713-728.
    Cabanes J. A kinetic study of the melanization pathway between L-tyrosine and dopachrome [J]. Biochim Biophys Acta, 1987, 923(2): 187-195.
    Calvo P A., Frank D W., Bieler B M., Berson J F., Marks M S. A cytoplasmic sequence in human tyrosinase defines a second class of di-leucinebased sorting signals for late endosomal and lysosomal delivery [J]. J. Biol. Chem., 1999, 274: 12780-12789.
    Chase M R., Raina K., Bruno J., Sugumaran M. Purification, characterization and molecular cloning of prophenoloxidase from Sarcophaga bullata [J]. Insect Biochem. Mol. Biol., 2000, 30: 953-967.
    Chen L Y., Chen M Y., Leu W M., Tsai T Y. Lee Y H W. J. Biol. Chem., 1993, 268: 18710-18716.
    Chen L Y., Leu W M., Wang K T. Lee Y H. W. J. Biol. Chem., 1992, 267: 20100-20107.
    Chen Q X., Ke L N., Song K K., Huang H., Liu X D. Inhibitory Effects of Hexylresorcinol and Dodecylresorcinol on Mushroom (Agaricus bisporus) Tyrosinase [J]. Protein J. 2004, 23, 135-141.
    Chen Q X., Liu X D., Huang H. Inactivation Kinetics of Mushroom Tyrosinase in the Dimethyl Sulfoxide Solution [J].Biochemistry (Moscow), 2003, 68(6): 644-649.
    Chen Q X., Song K K., Qiu L., Liu X D., Huang H., Guo H Y. Inhibitory effects on mushroom tyrosinase by p-alkoxybenzoic acids [J]. Food Chem., 2005, 91: 269-274.
    Chosa N., Fukumitsu T., Fujimoto K., Ohnishi E. Activation of prophenoloxidase A1 by an activating enzyme from crayfish blood cells [J]. Insect Biochem. Mol. Biol., 1997, 27: 61-68.
    Coles J A., Pipe R K. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis [J]. Fish and Shellfish Immunology, 1994, 4: 337-352.
    Congcong M., Michael R. A β-1,3-Glucan Recognition protein from an insect, Manduca Sexta, agglutinates microorganisms and actives the phenoloxidase cascade [J]. J. Biol. Chem., 2000, 275 (11): 7505-7514.
    Conrad J S., Dawso S R., Hubbard E R., Meyers T E., Strothkamp K G. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH, and solvent deuterium isotope effects [J]. Biochemistry, 1994, 33(19): 5739-5744.
    Cuff M E., Miller K I., van Holde K E., Hendrickson W. A. J. Mol. Biol., 1998, 278: 855-870.
    Cui L., Luckhart S., Rosenberg R. Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi [J]. Insect Molecular Biology, 2000, 9(2): 127-137.
    Della L S., Ascone I., Bianconi A., Bonfigli A., Congiu-Castellano A., Zarivi O., Miranda M. The dinuclear copper site structure of agaricus bisporus tyrosinase in solution probed by X-ray absorption spectroscopy [J]. Journal of Biological Chemistry, 1996, 271(35): 21025-21030.
    Dularay B., Lackie A M. Haemocytic encapsulation and the prophenoloxidase -activation pathway in the locust Schistocerca gregaria Forsk [J]. Insect Biochem. 1985,15: 827-834.
    Durstewitz G., Terwilliger N B. cDNA cloning of a developmentally regulated hemocyanin subunit in the crustacean Cancer magister and phylogenetic analysis of the hemocyanin gene family [J]. Mol. Biol. Evol., 1997, 14: 266-276.
    Espín J C. Kinetic characterizations of the substrate specificity and mechanism of mushroom tyrosianse [J]. Eur. J. Biochem., 2000, 267: 1270-1279.
    Essawy M., Maleville A., Brehélin M. The haemocytes of Heliothis armiqura: ultrastructure, functions and evolution in the course of larval development [J]. J. Morph. 1985, 186: 255-264.
    Feng C J., Fu W J. Tissue Distribution and Purification of Prophenoloxidase in Larvae of Asian Corn Borer, Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae) [J]. Acta Biochimica et Biophysica Sinica, 2004, 36(5): 360-364.
    Fenoll L G., José Neptuno Rodríguez-López, Francisco García-Sevilla, Pedro Antonio Gercía-Ruiz. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones [J]. Biochimica et Biophyica Acta, 2001, 548: 1-22.
    Fisher C W., Brady U E. Activation, properties and collection of haemolymph phenoloxidase of the American cockroach Periplaneta americana. Comp [J]. Biochem. Physiol., 1983, 75C, 111-114.
    Friedman M. Food browning and its prevention: an overview [J]. J. Agric. Food Chem., 1996, 44(3): 631-653.
    Fujimoto K., Okino N., Kawabata S., Lwanaga S., Ohnishi E. Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A1 of Drosophila melanogaster [J]. Proc. Natl. Acad. Sci. U.S.A. 1995, 92: 7769-7773.
    Gallagher T., Gilliland G.,Wang L. Bryan P. Structure, 1995, 3: 907-914.
    Gauillard F., Richard-Forget F., Nicolas J. New spctrophotometric assay for polyphenoloxidase activity [J]. Anal. Biochem., 1993, 215(1): 59-65.
    Gerdemann C., Eicken C., Krebs B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins [J]. Acc. Chem. Res., 2002, 35(3): 183-191.
    Giebel L B., Strunk K M., King R A., Hanifin J M., Spritz R A. A frequent tyrosinase gene mutation in classic, tyrosinase-negative (type IA) oculocutaneous albinism [J]. Proc. Natl. Acad. Sci. USA., 1990, 87(9): 3255-3258.
    Gillespie J P., Kanost M R., Trenczek T. Biological mediators of insect immunity [J]. Annua Reviews in Entomology, 1997, 42: 611-643.
    Gregorio E A., Ratcliffe N A. The prophenoloxidase system and in virto interaction of trypanosoma rangeli with rhodnius prolixus and triatoma infestans haemolymph [J]. Parasite Immunol., 1991, 13: 551-564.
    Hall M., Scott T., Sugumaram M., S?derh?ll K., Law J H. Proenzyme of Manduca sexta Phenol Oxidase: Purification, Activation, Substrate Specificity of the Active Enzyme, and Molecular Cloning [J]. Proc .Natl. Acad. Sci. USA, 1995, 92: 7764-7768.
    Hazes B., Magnus K. A., Kalk K.H., Bonaventura C., Hol, W. G. J. Mol. Biol., 1996, 262: 532-541.
    Hazes B., Magnus K.A., Bonaventura C., Bonaventura J., Dauter Z., Kalk K.H., Hol W. G. Protein Sci., 1993, 2: 597-619.
    Heyneman R A., Vercauteren R E. Evidence of a lipid acitvator of prophenoloxidase in Tenebrio molitor [J]. J. Insect Physiol., 1968, 14: 409-415.
    Huang L H., Christensen B M., Chen C C. Molecular cloning of a second prophenoloxidase cDNA from the mosquito Armigeres subalbatus: prophenoloxidase expression in blood-fed and microfilariae-inoculated mosquitoes [J]. Insect Molecular Biology, 2001, 10: 1: 87-96.
    Ikeda K., Masujima T., Suzuki K., Sugiyama M. Cloning and sequence analysis of the highly expressed melanin-synthesizing gene operon from Streptomyces castaneoglobisporus [J]. Appl. Microbiol Biotechnol, 1996, 45: 80-85.
    Inaba T., Suetake Y., Funatsu M. Studies on tyrosinase in the housefly, activation of protyrosinase by sodium dodecyl sulphate [J]. Agri. Biol. Chem., 1963, 27: 332-339.
    Ito S., Wakamatsu K., Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis [J]. Pigment Cell Res., 2000, 13 (Suppl 8): 103-109.
    Jackman M P., Hajnal A., Lerch K. Albino mutants of Streptomyces glaucescens tyrosianse [J]. Biochem. J. 1991, 274: 707-713.
    Jackson A., Smith V J., Peddie C M. In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians [J]. Dev. Comp. Immunol., 1993, 17: 97-108.
    Jackson I J., Chambers D M., Tsukamoto K., Copeland N G., Gilbert D J., Jenkins NA. Hearing V. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus [J]. EMBO J., 1992, 11: 527-535.
    Jiang H., Wang Y., Ma C., Kanost M R. Subunit composition of pro-phenoloxidase from Manduca sexta: molecular cloning of subunit ProPo-P1 [J]. Insect Biochem. Mol. Biol., 1997, 27: 835-850.
    Jimbow K., Park J S., Kato F., Hirosaki K., Toyofuku K., Hua C., Yamashita T. Assembly, target-signaling and the intracellular transport of tyrosinase gene family proteins in the initial stages of melanosome biogenesis [J]. Pigment Cell Res., 2000, 13: 222-229.
    Kawabata T., Yauhara Y., Ochiai M., Matsuura S., Ashida M. Molecular cloning of insect pro-pheonl oxidase: a cooper-containing protaining protein homologous to arthropod hemocyanin [J]. Proc. Natl. Acad. Sci. U.S.A. 1995, 92: 7774-7778.
    Klabunde T., Eicken C., Sacchettini J. C., Krebs B. Nat. Struct. Biol., 1998, 5: 1084-1090.
    Kohashi P Y., Kumagai T., Matoba Y., Yamamoto A., Maruyama M., Sugiyama M. Protein Expr. Purif., 2004, 34: 202-207.
    Kubo I., Kinst-Hori I., Ishiguro K., Chaudhuri S. K., Sanchez Y., Ogura T. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria [J]. Bioorg. Med. Chem., 2000, 8: 1585-1591.
    Kwon T H., Lee S Y., Lee J H., Choi J S., Kawabata S., Iwanaga S., Lee B L. Purification and characterization of prophenoloxidase from the hemolymph of coleopteran insect, Holotrichia diompilia larvae [J]. Mol. Cells, 1997, 7(1): 90-97.
    Larue L., Mintz B. Pigmented cell lines of mouse albino melanocytes containing a tyrosinase cDNA with an inducible promoter [J]. Somat Cell Mol. Genet., 1990, 16(4): 361-368.
    Lee M J., Anstee J H. Phenoloxidase and its zymogen from the haemolymph of larvae of the lipidopteran Spodoptera littoralis (Lepidoptera: Noctuidae) [J]. Comp. Biochem. Physiol., 1995, 110B: 379-384.
    Lee Y H., Chen B F., Wu S Y., Leu W M., Lin J J., Chen C W., Lo S C. A trans-acting gene is required for the phenotypic expression of a tyrosinase gene in Streptomyces [J]. Gene. 1988, 15, 65(1): 71-81.
    Leonard C., Ratcliffe N A., Rowley A F. The role of prophenoloxidase activation in non-self recognition and phagocytosis by insect blood cells [J]. J. Insect Physiol. 1985, 31: 789-799.
    Lerch K., Germann U A. Evolutionary relationships among copper proteins containing coupled binuclear copper sites [J]. Prog Clin Biol Res., 1988, 274: 331-48.
    Li J., Christensen B M. Involvement of L-tyrosine and phenol oxidase in the tanning of Aedes aegypti eggs [J]. Insect Biochem. Mol. Biol. 1993, 23: 739-748.
    Li J., Tracy J W., Christensen B M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae [J]. Dev. Comp. Immunol. 1992, 16: 41-48.
    Locke M., Krishnan N. The distribution of phenoloxidase and polyphenols during cuticle formation [J]. Tissue and Cell, 1971, 3: 103-126.
    Magnus K A., Hazes B., Ton-That H., Bonaventura C., Bonaventura J., Hol W G. Proteins, 1994, 19: 302-309.
    Matoba Y., Kumagai T., Yamamoto A., Yoshitsu H., Sugiyama M. Crystallographic evidence that dinuclear copper center of tyrosinase is flexible during catalysis [J]. J. Biol. Chem., 2006, 281: 8981-8990.
    Micheal R C., Kiran R., James B. Purification, characterization and molecular cloning of prophenoloxidase from Sarcophage bullata [J]. Insect Biochemistry and Molecular Biology, 2000, 30: 953-967.
    Morris S W., Muir W., Clair D St. Dinucleotide repeat polymorphism at the human tyrosinase gene [J]. Nucl. Acids Res., 1991, 19: 6968.
    Naish-Byfield S., Riley P A. Oxidation of m onohydric phenol substrates by tyrosinase [J]. An oximetric study. Biochem. J. 1992, 288 (Pt 1): 63-67.
    Naqvi S N H., Karlsson P. Purification of prophenoloxidase in the haemolymph of Calliphora vicina (R & D) [J]. Arch. Int. Physiol. Biochem., 1979, 87: 687-695.
    Nektarios D., Charalmbids L C., Foukas C G. Hemocyte surface phenoloxidase and immune resonse to Lipopolysaccharide(LPS) in ceratitis capitata [J]. Insect Biochem. Mol. Biol., 1996, 26(8-9): 867-874.
    Nihei Ken-ichi, Yamagiwa Yoshiro, Kamikawa Tadao, Kubo Isao. 2-Hydroxy-4-isopropylbenzaldehyde, a potent partial tyrosinase inhibitor [J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14: 681-683.
    Oetting W. S. The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation [J]. Pigm. Cell Res., 2000, 13, 320-325.
    Perazzolo L M., Barracco M A. The prophenoloxidase activating system of the shrimp Penaeus pauledsis and associated factors [J]. Dev. Comp. Immunol., 1997, 21: 385-395.
    Qiu L., Chen Q X., Wang Q., Huang H., Song K K. Irreversibly inhibitory kinetics of 3,5-dihydroxyphenyl decanoate on mushroom (Agaricus isporus) tyrosinase [J]. Bioorgan. Med. Chem. 2005, 13, 6206-6211.
    Ratciliffe N A., Leonard C., Rowley A F. Preprophenoloxidase activation: nonself recognition and cell cooperation in insect immunity [J]. Science, 1984, 226: 557-559.
    Rodriguez-Lopez J N., Tudela J., Varon R., Garcia-Carmona F., Garcia-Canovas F. J. Biol. Chem., 1992, 267: 3801-3810.
    Sánchez-Ferrer A., Rodríguez-López J N, García-Cánovas F., García-Carmona F. Tyrosinase: a comprehensive review of its mechanism [J]. Biochimica et Biophysica Acta, 1995, 1247: 1-11.
    Sato S., Masuya H., Nukamakunai Y., Satoh N., Lkeo K., Gojobori T., Tamuura K., Lde H., Takeuchi T., Yamamoto H. Asidian tyrosinase gene: its unique strcture and expression in the developing brain [J]. Dev. Dynamics. 1997, 208: 363-374.
    Saul S J., Sugumaran M. Prophenoloxidase activation in the hemolymph of Sarcophga bullata larvae [J]. Arch. Insect Biochem. Physiol. 1988, 7: 91-103.
    Saul S.J., Bin L., Sugumaran M. The majority of prophenoloxidase in the haemolymph of Manduca Sexta is present in the plasma and not in the hemocytes [J]. Dev. Comp. Immunol., 1987, 11: 479-486.
    Seo S Y., Sharma V K., Sharma N. Mushroom tyrosinase: recent prospects [J]. J. Agric. Food Chem., 2003, 51 (10): 2837-2853.
    Simmen T., Schmidt A., Hunziker W., Beermann F. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells via a di-leucine and a tyrosine-based signal [J]. J. Cell Sci., 1999, 112: 45-53.
    S?derh?ll K. β-1,3-Glucan enhancement of protease activity in crayfish haemocyte lysate [J]. Biochem. Biophys. Acta., 1983, 74B: 221-224.
    S?derh?ll K., Aspan A., Duvic B. The proPo system and associated role in cellular communication in arthropods [J]. Reserch in Immunology, 1990, 141: 896-907.
    S?derh?ll K., Cerenius L., Johansson M W. The prophenolocidase activating system and its role in invertebrate defence. In: Beck G., Cooper E L., Habicht G S., Marchalonis J J.(eds.) Primordial immunity: Foundations for the vertebrate immune system [M]. Ann. NY Acad. Sci. Press. 1994, 712: 155-161.
    S?derh?ll K., Hall L., Unestam T., Nyhlen L. Attachment of phenoloxidase to fungal cell walls in arthropod immunity [J]. J. Invert. Pathol. 1979, 34: 285-294.
    Solomon E I., Lowery M D. Structure contributions to function in bioinorganic chemistry [J]. Science, 1993, 259(5101): 1575-1581.
    Solomon E I., Sundaram U M., Machonkin T. E. Chem. Rev., 1996, 96: 2563-2606.
    Song K K., Huang H., Han P., Zhang C L., Shi Y., Chen Q X. Inhibitory effects of cis- and trans-isomers of 3,5-dihydroxystilbene on the activity of mushroom tyrosinase [J]. Biochem. Bioph. Res. Co. 2006, 342, 1147-1151.
    Stevenson J R., Adomako T Y. Diphenol oxidase in the crayfish cuticle: Localization and changes in activity during the molting cycle [J]. J. Insect Physiol. 1967, 13: 1803-1811.
    Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects [J]. Pigment Cell Res., 2002, 15(1): 2-9.
    Sugumaran M. Unified mechanism for sclerotization of insect cuticle [J]. Advance Insect Physiology. 1998, 27: 229-334.
    Sugumaran M., Nellaiappan K. Lysolecithin a potent activator of prophenoloxidase from the hemolymph of the lobster, Homarus Americanus [J]. Biochem. Biophys. Res. Commun, 1991, 176: 1371-1376.
    Takase M., Miura I., Nakata A., Takeuchi T., Nishioka M. Cloning and sequencing of the cDNA encoding tyrosinase of the Japanese pond frog, Rana nigromaculata [J]. Gene, 1992, 121: 359-363.
    Van Hold K E., Muller K I., Lang W H. Molluscan hemocyanins: Structure and function. In: dances in comparative environmental physiology [M], Springe-Verlag, Berlin. 1992, 13: 257-300.
    Vijayasaradhi S., Doskoch P M., Wolchok J., Houghton A N. Melanocyte differentiation marker gp75, the brown locus protein, can be regulated independently of tyrosinase and pigmentation [J]. J. Invest. Dermatol., 1995, 105, 113-119.
    Volbeda, A. and Hol, W. G. J. Mol. Biol., 1989, 209: 249-279.
    Volbeda A., Feiters M C., Vincent M G., Bouwman E., Dobson B., Kalk K H., Reedijk J., Hol W G. Eur. J. Biochem., 1989, 181: 669-673.
    Wittbjer A., Odh G., Rosengren A. M., Rosengren E., Rorsman H. Isolation of tyrosinase from bovine eyes [J]. Pigment Cell Res., 1990, 3(3): 168-172.
    Xie J J., Chen Q X., Wang Q., Song K K., Qiu L. Activation kinetics of cetylpyridinium chloride on the prophenol oxidase from pupae of blowfly (Sarcophaga bullata) [J]. Pesticide Biochemistry and Physiology, 2007, 87: 9-13.
    Xu Y., Stokes A H., Freeman W M., Kumer S C., Vogt B A., Vrana K E. Tyrosinase mRNA is expressed in human substantia nigra [J]. Mol. Brain Res., 1997, 45: 159-162.
    Xu Y., Stokes A H., Roskoski R J., Vrana K E. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase [J]. J. Neurosci. Res., 1998, 54, 691-697.
    长谷川金作 著,张义成 陆明贤 译. 昆虫变态的生理化学 [M]. 北京:农业出版社. 1988, 43-77.
    程振衡,梁子才. 亚洲玉米螟血淋巴酚氧化酶的研究 [J]. 昆虫学报,1990,33(4):424-428.
    丁波,张亚平. 灵长尖酪氨酸酶基因外显子1序列进化研究 [J]. 复旦学报(自然科学版),1998,37(4):524-526.
    冯从经,杜予州,陆自强,符文俊. 亚洲玉米螟幼虫血清中酚氧化酶原的性质 [J]. 昆虫学报,2005,48(5):649-654.
    罗克斯坦 M 编,李绍文等 译. 昆虫生物化学 [M]. 北京:科学出版社. 1988, 138-157.
    王荫长. 昆虫生物化学 [M]. 北京: 中国农业出版社. 2001, 129-130.
    Benjamin N D., Montgomery M W. Polyphenoloxidase of royal ann cherries: purification and characterization [J]. Food Sci. , 1973, 38: 799-806.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding [J]. Anal. Biochem., 1976, 72: 248-254.
    Jiménez M., Chazarra S., Escribano J., Cabanes J., Garcia C F. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes [J]. J. Agric. Food Chem., 2001, 49: 4 063-4 064.
    McEvily A J., Iyengar R., Otwell W S. Sulfite alternative prevents shrimp melanosis [J]. Food Technology, 1991, 45, 80-86.
    Niwa Y., Akamasu H. Kojic acid scavenges free radicals while potentiating leukocyte functions including free radical generation [J]. Inflammation, 1991, 15(4): 303-315.
    Rodríguez-López J N., Fenoll L G., García-Ruiz P A., Varón R., Tudela J., Thoneley RN., García-Cánovas F. Stopped-Flow and steady-state study of the dipenolase activity of mushroom tyrosinase [J]. Biochemistry, 2000, 39: 10497-10506.
    Wang S D., Luo W C., Xu S J. et al. Inhibitory effects of 4-dodecylresorcinol on the phenoloxidase of the diamondback moth Plutella xylostella (L.) (Lepidoptera: plutellidae) [J]. Pesticide Biochemistry and Physiology, 2005, 82(1):52-58.
    Wei C I., Huang T S., Fernando S Y. et al. Mutagenicity studies of kojic acid [J]. Toxicology Letters, 1991, 59(1-3): 213-220.
    Xie L P., Chen Q X., Huang H., Liu X D., Chen H T., Zhang R Q. Inhibitory effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase [J]. J. Biochem. & Cell Biol., 2003, 35: 1 658-1 666.
    高兴祥,罗万春,谢桂英,等. 芹菜素等 3 种生物源化合物对甜菜夜蛾酚氧化酶的抑制作用 [J]. 植物资源与环境学报,2003,12(3):16-19.
    高兴祥,罗万春,谢桂英,等. 甜菜夜蛾多酚氧化酶的特性及其对曲酸等抑制剂的反应 [J]. 中国农业科学,2004,37(5):687-691.
    刘诗平,陈尚猛,朱卫东,等. 槲皮素及其衍生物的生物活性研究进展 [J]. 中草 药,1991,22(4):182-184.
    孙微,陶文沂. 曲酸在食品添加剂中的应用 [J]. 食品与发酵工业,1997,23(1):69-72.
    王君玲,口如琴,成汇,袁静明,周永安,马铃薯酪氨酸酶的部分纯化及理化性质的研究 [J]. 山西大学学报(自然科学版),1995,18(2):184-189.
    王姝梅. 天然黄酮类化合物的抗氧化作用及构效关系 [J]. 海峡药学,2004,16(3):10-13.
    王树栋,罗万春,高兴祥,等. 曲酸对小菜蛾酚氧化酶抑制作用的研究 [J]. 中国农业科学,2004,37(9):1316-1321.
    薛超彬. 菜青虫酚氧化酶性质及抑制剂对其活性的抑制作用研究. 山东农业大学硕士论文. 2004.
    苑林宏,吴坤. 芹菜素抗肿瘤作用的研究进展 [J]. 中国公共卫生,2004,20(2):241-242.
    周彩琴,张才乔,曾卫东,等. 维生素 E 和槲皮素对多氯联苯引起的鸡胚肝细胞损伤的缓解作用 [J]. 农业生物技术学报,2004,12(2):179-182.
    Ashida M., Brey P. Role of the integument in insect defense: prophenoloxidase cascade in the cuticular matrix [J]. Proc. Natl. Acad. Sci. USA, 1995, 92: 10698-10702.
    Benjamin K S., Maurice R M. Phenoloxidase from pink and white shrimp: kinetic and other properties [J]. J. Food Biochem., 1998, 12: 20 5-217.
    Chase M R., Raina K., Bruno J., Sugumaran M. Purification, characterization and molecular cloning of prophenoloxidase from Sarcophaga bullata [J]. Insect Biochem. Mol. Biol., 2000, 30: 953-967.
    Chen Q X., Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin [J]. J. Agric. Food Chem., 2002, 50: 4108-4112.
    Chen Q X., Liu X D., Huang H. Inactivation kinetics of mushroom tyrosinase in the dimethyl sulfoxide solution [J]. Biochemistry (Moscow), 2003, 68: 644-649.
    Dowd P F. Relative inhibition of insect phenoloxidase by cyclic fungal metabolites from insect and plant pathogens [J]. Natural Toxins, 1999, 7: 337-341.
    Espín J C., Jolivt S., Wichers H J. Kinetic Study of the oxidation of γ-L-glutaminyl-4- hydroxybenzene catalyzed by (Agaricus Bisporus) tyrosinase [J]. J. Agric. Food Chem., 1999, 47: 3495-3502.
    Espín J C., Varón R., Fenoll L G., Gilabert M A., García-Ruíz P A., Tudela J., García-Cánovas F. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase [J]. Eur. J. Biochem., 2000, 267: 1270-1279.
    Espín J C., Wichers H J. Slow-Binding inhibition of mushroom (Agaricus bisporus) tyrosinase isoforms by tropolone [J]. J. Agric. Food Chem., 1999, 47: 2638-2644.
    Fenoll L G., Rodríguez-López J N., García-Sevilla F., García- Ruiz P A., Varón R., García-Cánovas F., Tudela J. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenolase and diphenols generating highly unstable o-quinones [J]. Biochim Biophys Acta, 2001, 1548: 1-22.
    Fenoll L G., Rodríguez-López J N., García-Sevilla F., Tudela J., García- Ruiz P A., Varón R., García-Cánovas F. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones [J]. Eur. J. Biochem., 2000, 267: 5865-5878.
    Friedman M. Food browning and its prevention: An overview [J]. J. Agric. Food Chem., 1996, 44: 631-653.
    Jiménez M., Chazarra S., Escribano J., Cabanes J., Garcia-Carmína F. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes [J]. J. Agric. Food Chem., 2001, 49: 4060-4063.
    Kim Y M., Yun J., Lee C K., Lee H., Min K R., Kim Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action [J]. J. Biol. Chem., 2002, 277: 16340-16344.
    Kubo I., Kinst-Hori I., Nihei K., Soria F., Takasaki M., Calderón J S., Céspedes C L. Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects on insects [J]. Z. Naturforsch C. J. Biosci., 2003, 58c: 719-725.
    Kubo I., Kinst-Hori I. Tyrosinase Inhibitors from Cumin [J]. J. Agric. Food Chem., 1998, 46: 5338-5341.
    Kubo I., Kinst-Hori I. Flavonols from saffron flower: tyrosinase inhibitory activity an inhibition mechanism [J]. J. Agric. Food Chem., 1999, 47: 4121-4125.
    Kubo I., Kinst-Hori I. Tyrosinase inhibitory activity of the olive oil flavor compounds [J]. J. Agric. Food Chem., 1999, 47: 4574-4578.
    Maeda K., Fukuda M. In vitro effectiveness of several whitening cosmetic components in human melanocytes [J]. J. Soc. Cosme. Chem., 1991, 42: 361-368.
    Makino N., McMahill P., Mason H S., Moss T H. The oxidation state of copper in resting tyrosinase [J]. J. Biol. Chem., 1974, 249: 6062-6066.
    Mason H S. Structure and functions of the phenolase complex [J]. Nature, 1956, 177: 79-81.
    Nakayama T., Sato T., Fukui Y., Yonekura-Sakakibara K., Hayashi H., Tanaka Y., Kusumi T., Nishino T. Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration [J]. FEBS Letters, 2001, 499: 107-111.
    Rodríguez-López J N., Fenoll L G., García-Ruiz P A. Stopped-Flow and steady-state study of the diphenolase activity of mushroom tyrosinase [J]. Biochemistry, 2000, 39: 10497-10506.
    Sánchez-Ferrer A., Rodríguez-López J N., García-Cánovas F., García-Carmona F. Review Tyrosinase: A comprehensive review of its mechanism [J]. Biochem. Biophys. Acta, 1995, 1247: 1-11.
    Tsou C L(邹承鲁). Kinetics of substrate reaction during irreversible modification of enzyme activity [J]. Adv. Enzymol. Relat. Area Mol. Biol., 1988, 61: 381-436.
    Wang S D., Luo W C., Xu S J., Ding Q. Inhibitory effects of 4-dodecylresrcinol on the phenoloxidase of the diamondback moth Plutella xylostella (L.) (Lepidoptera: plutellidae) [J]. Pestic. Biochem. Phys., 2005, 82 (1): 52-58.
    Xie L P., Chen Q X., Huang H., Liu X D., Chen H T., Zhang R Q. Inhibitory effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase [J]. Int. J. Biochem. Cell Biol., 2003, 35: 1658-1666.
    解先业,姜林,薛超彬,罗万春. 取代苯甲醛缩氨基硫脲的合成及其对昆虫酚氧化酶的抑制活性[J]. 化学试剂,2007,29(1):34-36.
    Battershell C., Malhotra D., Hopfinger A J. Inhibition of Dihydrofolate Reductase: Structure-Activity Correlations of Quinazolines Based upon Molecular Shape Analysis [J]. J. Med. Chem., 1981, 24: 812-818.
    Buolamwini J K., Assefa H. CoMFA and CoMSIA 3D-QSAR and docking studies on conformationally-restralned cinnamoyl HIV-1 integrase inhibitors: exploration of a binding mode at the active site [J]. J. Med. Chem., 2002, 45: 841-582.
    Clark M., Cramer R D., III. The Probability of Chance Correlation Using partial least squares (PLS) [J]. Quant. Struct.-Act. Relat., 1993, 12: 137-145.
    Cramer R D. III., Patterson D E., Bunce J D. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins [J]. J. Am. Chem. Soc., 1988, 110: 5959- 5967.
    Crippen G M. Distance Geometry and Conformational Calculations. In: Baldwin D, ed. Chemometric Research Studies [M]. Chichester: Wiley, 1987.
    Draper N R., Smith H. Applied Regression Analysis, 2nd Edition [M]. New York: Wily, 1981.
    Ghose A K., Crippen G M. General distance geometry three-dimensional receptor model for diverse dihydrofolate reductase inhibitors [J]. J Med Chem., 1984, 27(7): 901-914.
    Hopfinger A J. A QSAR investigation of dihydrofolate reductase inhibition by baker trizaines based upon molecular shape analysis [J]. J. Am. Chem. Soc., 1980, 102(24): 7196-7206.
    Hopfinger A. J., Burke B J. Molecular shape analysis of structure-activity tables [J]. Prog. Clin. Biol. Res., 1989, 291: 151-159.
    Hopfinger A J. Inhibition of Dihydrofolate Reductase: Structure-Activity Correlations of 2,4-Diamino-5-benzylpyrimidine Bsased upon Molecular Shape Analysis [J]. J. Med. Chem.,1981, 24: 818-822.
    Kier L B., Hall L H., Murray W J., Randic M. Molecular connectivity. Ⅰ. reaction to nonspecific local anesthesia [J]. J. Pharm. Sci., 1975, 64: 1971.
     Klebe G., Abraham U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries [J]. J. Comput. Aided Mol. Des., 1999, 13: 1-10.
    Klebe G., Abraham U., Mietzner T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity [J]. J. Med. Chem., 1994, 37: 4130-4146.
    Kubinyi H. QSAR: Hansch Analssis and Related Approches. Vol.1. Methods and Principles in Medicinal Chemistry [M]. Weinheim: VCH, 1993, 1-51.
    Li W., Kubo I. QSAR and kinetics of the inhibition of benzaldehyde derivatives against Sacrophaga neobelliaria phenoloxidase [J]. Bioorga. Med.Chem., 2004, 12: 701-713.
    Otto M W. Spectrophotometric multicomponent analysis appliedto tracemetal determination [J]. Anal. Chem., 1985, 57: 63-69.
    Swain C G., Lupton Jr E C. Field and ressonance components of substituent effects [J]. J. Am. Chem. Soc., 1968, 90(15): 4328-4337.
    Taft R. W. In: Newman MS (ed) Steric effects in organic chemistry [M]. New York: Wiley, 1956.
    Verloop A. The STERIMOL Approach to Drug Design [M]. New York: Marcel Dekker, 1987.
    Wold S., Albano C., Dunn W J III, Edlund U., Esbensen K., Geladi P., Hellberg S., Johanson E., Lindberg W., Sjostrom M. Multivariate data analysis in chemistry [J]. NATO ASI Ser., Ser. C, 1984, 138: 17-95.
    Wold S., Rhue A., Wold H., Dunn W J I. The covariance problem in linear regression. The partial least squares (PLS) approach to generalized inverses [J]. SIAM J. Sci. Stat. Comput., 1984, 5: 735-743.
    Wolff M E. Berger’s Medicinial Chemistry and Drug Discovery. 5th. Ed. Vol. 1. Principles and Practice [M]. New York: John Wiley & Sons, 1995, 497-572.
    仇缀百. 药物设计学(第一版)[M]. 北京: 高等教育出版社,1999. 196-208.
    徐文芳. 新药设计原理与方法 [M]. 北京:中国医药科技出版社,1997. 170-189.
    Affinity User Guide. MSI Inc. San Diego, USA, 2002.
    Baxter C A., Murray C W., Waszkowycz B., et al. New approach to molecular docking and its application to virtual screening of chemical databases [J]. J. Chem. Inf. Comput. Sci., 2000, 40(2): 254-262.
    B?hm H J. LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads [J]. J. Comput. Aided Mol. Des., 1992, 6: 593-606.
    B?hm H J. The computer program LUDI: a new method for the. de novo design of enzyme inhibitors [J]. J. Comput. Aided Mol. Des., 1992, 6: 61-78.
    B?hm H J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure [J]. J. Comput. Aided Mol. Des., 1994, 8: 243-256.
    Bures M G., Black-Schaefer C., Gardner G J. The discovery of novel anxin transport inhibitors by molecular and three-dimensional pattern analysis [J]. J. Comput. Aided Mol. Des., 1991, 5(4): 323 -335.
    Ewing T J A., Kuntz I D. Critical evaluation of search algorithms for automated molecular docking and database searching [J]. J. Comput. Chem., 1997, 18(9): 1175-1189.
    Ewing T J A., Makino S., Skillman A G., Kuntz I D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases [J]. J. Comput. Aided Mol. Des., 2001, 15(5):411-428.
    Goodsell D S., Olson A J. Automated docking of substrates to proteins by simulated annealing [J]. Proteins, 1990, 8:195-202.
    Gschwend D A., Sirawaraporn W., Santi D V., Kuntz I D. Specificity in structure-based drug design: identification of a. novel, selective inhibitor of Pneumocystis carinii dihydrofolate reductase [J]. Proteins, 1997, 29(1): 59-67.
    Jiang F., Kim S H. Soft docking-matching of molecular surface cubes [J]. J. Mol. Biol., 1991, 219: 79-102.
    Klebe G. The use of composite crystal-field environments in. molecular recognition and the de-novo design of protein ligands [J]. J. Mol. Biol., 1994, 237: 221-235.
    Kuntz I D. Structure-based strategies for drug design and discovery [J]. Science, 1992, 257: 1078-1082.
    Kuntz I D., Blaney J M., Oatley S J., Langridge R., Ferrin T E. A Geometric approach to macromolecule-ligand interactions [J]. J. Mol. Biol., 1982, 161:269-288.
    Leff P. Receptor-Based Drug Design [M]. NewYork: Marcel Dekker Inc., 1998.
    Matoba Y., Kumagai T., Yamamoto A., Yoshitsu H., Sugiyama M. Crystallographic evidence that dinuclear copper center of tyrosinase is flexible during catalysis [J]. Journal of Biological Chemistry, 2006, 281 (13): 8981-8990.
    Morris G M., Goodsell D S., Halliday R S., Huey R., Hart W E., Belew R K., Olson A J. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function [J]. J. Comput. Chem., 1998, 19:1639-1662.
    Norel R., Sheinerman F., Petrey D., Honig B. Electrostatic contributions to protein-protein interactions: fast energetic filters for docking and their physical basis [J]. Protein Sci., 2001, 10(11): 2147-2161.
    Rarey M., Kramer B., Lengauer T. Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention [J]. J. Comput. Aided Mol. Des., 1997, 11: 369-384.
    Rarey M., Kramer B., Lengauer T., Kleb G. A Fast Flexible Docking Method using an Incremental Construction Algorithm [J]. J. Mol. Biol., 1996, 261: 470-489.
    Shoichet B K., Stroud R M., Santi D V., Kuntz I D., Perry K M. Structure-based discovery of inhibitors of thymidylate synthase [J]. Science, 1993, 259 (5100): 1445-1450.
    Sybyl [Computer Programme], Version 6.9 Manual. South Hanley Rd, St. Louis Missouri: Tripos Associate Inc, USA, 2003.
    Van Drie J H., Weininger D., Martin Y C. ALADDIN: An integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of 3-dimensional molecular structures [J]. J. Comput. Aided Mol. Des., 1989, 3: 225-251.
    Veerapandian P. Structure-Based Drug Design [M]. NewYork: Marcel Dekker Inc., 1997.
     Wodak S J., Janin J. Computer Analysis of Protein-Protein Interaction [J]. J. Mol. Biol., 1978, 124(2): 323-342.
    Zhang C., Chen J., DeLisi C. Protein-protein recognition: exploring the energy funnels near the binding sites [J]. Proteins, 1999, 34: 255-267.
    罗小民,蒋华良,沈建华,陈凯先. 药物分子设计研究进展 [J]. 中国科学院院刊,2003,255-259.
    赵丽琴,肖军海,李松. 分子对接在基于结构药物设计中的应用 [J]. 生物物理学报,2002,18(3):263-270.
    朱丽荔,侯廷军,陈丽蓉,徐筱杰. 表皮生长因子受体和抑制剂之间分子对接的研究 [J]. 化学学报, 2002, 60(1):43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700