新型可见光催化剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料废水是目前最难降解的工业废水之一,随着染料工业的蓬勃发展,对水体等环境的危害日趋严重。如何绿色经济地处理染料废水逐渐受到人们重视。半导体光催化技术具有速度快、无选择性、降解完全等优点,在处理染料废水方面备受关注。但是,目前传统的光催化材料存在只能利用紫外光、光生载流子复合率高、粉体催化剂难以分离回收等难题而大大限制了其应用。具有高催化活性的可见光响应催化剂的制备与应用,已成为研究人员广泛关注和研究的热点课题。
     本论文围绕Ti02和Ag3PO4等潜力光催化剂,从催化剂的合成和改性入手,制备了Ti-Cr-MCM-48、Ag3PO4/MWCNT、AgBr/Ag3PO4/Fe3O4等一系列可见光催化剂,通过多种表征手段考察其结构、形貌、光吸收性质及可见光条件下对甲基橙染料的降解性能。本论文的主要研究内容如下:
     1、采用十六烷基三甲基溴化铵为模板剂,钛酸异丙酯为钛源、正硅酸乙酯为硅源,硝酸铬为金属前驱体,结合超声-水解合成工艺,一步法制备了具有可见光活性的Ti-Cr-MCM-48钛硅分子筛催化剂。结果表明,Ti-Cr-MCM-48具有良好的可见光活性,5h内对甲基橙的降解效率达到81%,远高于Cr-MCM-48相同时间内45%的甲基橙降解效率,而MCM-48几乎无可见光催化活性。Ti-Cr-MCM-48的高催化活性这主要归因于Ti-O-Cr异质结间良好的电子传递作用。
     2、通过沉淀法比较分析了三种沉淀剂(Na3PC、Na2HPO4和NaH2PO4)对Ag3PO4形貌和催化活性的影响。通过简单的控制溶剂pH值来寻求制备高效Ag3PO4光催化剂。结果表明,酸性条件下制备的Ag3PO4具有最佳的光催化活性,40min就可以使甲基橙完全褪色,其表观反应速率常数是碱性条件下制备的Ag3PO4的5.2倍。
     3、以十二烷基硫酸钠为辅助剂,采用原位沉淀法制备合成了Ag3PO4/MWCNT复合催化剂。结果表明,MWCNTs提高了与Ag3PO4的光催化降解效率和稳定性。Ag3PO4/1.4wt%MWCNT光照反应12min后即可完全降解甲基橙,其表观化学反应速率达到0.258min-1,是纯Ag3PO4的5.84倍。并且循环三次后Ag3PO4/1.4wt%MWCNT的光催化活性依然保持有最初的85.6%。
     4、针对粉体Ag3PO4难回收利用的问题,利用磁性Fe304固定Ag3PO4,增强磁分离能力,并通过在Ag3PO4的表面复合AgBr纳米颗粒,提高Ag3PO4光催化剂的稳定性。制备的AgBr-80/Ag3PO4/Fe3O4复合催化剂光照反应15min后可完全降解甲基橙,远高于纯Ag3PO4相同时间内不到50%的甲基橙降解效率,并且循环反应三次后,其光催化活性仍然保持在95%以上。光催化效率和稳定性相对Ag3PO4得到很大提高。同时,AgBr/Ag3PO4/Fe3O4复合催化剂具有良好的磁分离能力,在外加磁场的作用下180s内就可以从反应液中分离。
Dye wastewater is among the largest groups of water pollutants in the world. With the rapid development of the dye industry, the removal of these non-biodegradable dye molecules from the environment is a crucial ecological problem due to their toxicity and potential carcinogenicity. It has drawn much attention to the vital need for ecologically clean chemical technologies. Over the past few decades, semiconductor-based photocatalysis for its high efficiency and promising economy has been extensively developed to treat dye wastewater. However, it should be noted that the traditional photocatalyst can only utilize the ultraviolet light (about4%solar spectrum). Moreover, due to its low quantum efficiency as well as the difficulty in separation and reuse of the powder catalysts, the practical application of the photocatalyst is greatly limited. Thus, it is urgently required to develop effective strategies to explore novel, highly efficient visible light driven photocatalysts to the environmental pollution control.
     In the present work, based on the two excellent photocatalyst of TiO2and Ag3PO4, we try to synthesize a series of visible light driven photocatalysts such as Ti-Cr-MCM-48、Ag3PO4/MWCNT. AgBr/Ag3PO4/Fe3O4with various structures and morphology. The morphology and photocatalytic activity of the as prepared photocatalysts were characterized through a variety of characterization methods and the degradation of methyl orange dye under visible light.The main results of the present work were summarized as follows:
     1. Ti-Cr-MCM-48photocatalyst was successfully synthesized via a facile and rapid one-step approach at room temperature, which takes CTAB as a template, Cr(NO3)3·9H2O and titanium isopropoxide as metallic precursors, and TEOS as source of silicon. The results shows that the Ti-Cr-MCM-48exhibits good visible light activity. The degradation of MO over Ti-Cr-MCM-48was reached to81%in5h, which is much higher than that of Cr-MCM-48(45%in5h). The high activity of Ti-Cr-MCM-48was closely associated with the formation of Ti-O-Cr structure.
     2. A high-performance Ag3PO4photocatalyst was prepared with different phosphate salts (Na3PO4, Na2HPO4, and NaH2PO4) through a precipitation method. Due to the different pH in preparation system, the type of phosphate salt used as a precipitating agent can affect the purity, morphology, particle size, and photocatalytic activity of the prepared Ag3PO4powder. The results indicate that the Ag3PO4sampled prepared from NaH2PO4showed better photocatalytic efficiency of MO under visible light (100%in40min), compared with those prepared from Na2HPO4andNa3PO4. The degradation rate of MO over the Ag3PO4sampled prepared from NaH2PO4was about5.2times faster than that of the Ag3PO4sampled prepared from Na3PO4.
     3. Ag3PO4/MWCNT composite was successfully synthesized via in-situ precipitation method. The MWCNTs play a key role for the enhanced pho-tocatalytic activity and stability of Ag3PO4. The Ag3PO4/1.4wt%MWCNT sample shows optimal photocatalytic ability over MO (100%in12min), which improved by nearly55%compared with pure Ag3PO4. The rate constant of MO degradation over Ag3PO4/1.4wt%MWCNT is5.84times that of pure Ag3PO4. Moreover, The photocatalytic activity of Ag3PO4/MWCNT sample decreased slowly in three successive experimental runs.
     4. A novel magnetically recoverable AgBr/Ag3PO4/Fe3O4hybrid was successfully synthesized via in-situ precipitation method. Because of the magnetism of Fe3O4and the matching band between AgBr and Ag3pO4, the as-synthesized AgBr/Ag3PO4/Fe3O4nanoparticles exhibited efficient photocatalytic activity, good stability and recyclability toward decomposition of methyl orange (MO) dye under visible light irradiation. The AgBr-80/Ag3PO4/Fe3O4sample shows optimal photocatalytic ability over MO (100%in15min), which is much higher than that of pure Ag3PO4(50%in15min). Moreover, after three successive experimental runs, the photocatalytic activity of AgBr/Ag3PO4/Fe3O4still reached to95%of the initial efficiency. Besides, the as-prepared AgBr/Ag3PO4/Fe3O4can be conveniently collected from the solution by applying an external magnetic field within3min.
引文
[1]李家珍.染料染色工业废水处理,北京:化学工业出版社,2001.
    [2]Nidheesh P.V., Gandhimathi R., and Ramesh S.T.. Degradation of dyes from aqueous solution by Fenton processes:a review. Environmental science and pollution research international,2013,20(4):2099-2132.
    [3]任南琪,周显娇,郭婉茜,杨珊珊.染料废水处理技术研究进展.化工学报,2013,64(1):84-94.
    [4]Tanka K., Padermpole K., and Hisanaga T.. Photocatalytic degradation of commercial azo dyes. Water Research,2000,34(1):327-333.
    [5]Khan R., Bhawana P., and Fulekar M.H.. Microbial decolorization and degradation of synthetic dyes:a review. Reviews in Environmental Science and Bio/Technology,2012,12(1):75-97.
    [6]邱木清.偶氮染料废水的植物-微生物复合净化系统的研究[博士学位论文].浙江:浙江大学,2007.
    [7]Quan X., Yang S., Ruan X., and Zhao H.. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science & Technology, 2005,39:3770-3775.
    [8]Sun Q., and Yang L.. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research,2003,37(7):1535-1544.
    [9]Wang A., Guo W., Hao F., Yue X., and Leng Y.. Degradation of Acid Orange 7 in aqueous solution by zero-valent aluminum under ultrasonic irradiation. Ultrason Sonochem,2014,21(2):572-575.
    [10]Li H., Gong Y., Huang Q., and Zhang H.. Degradation of Orange Ⅱ by UV-assisted advanced fenton process:response surface approach, degradation pathway, and biodegradability. Industrial & Engineering Chemistry Research, 2013,52(44):15560-15567.
    [11]Tran P.D., Wong L., Barber J., and Loo J.. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science,2012,5(3): 5902-5918.
    [12]方旭,付振强,韩宏大.复合式好氧生物法处理印染废水.环境保护科学,2004,123(30):20-23.
    [13]Mondal P.K., Ahmad R., and Usmani S.Q.. Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation. Biodegradation,2010,21(6):1041-7.
    [14]Fu J., Wen T., Wang Q., Zhang X., Zeng Q., An S.,and Zhu H.. Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon. Environmental Technology,2010,31(7):771-779.
    [15]Gao M., Sun Y., Yang L., and Wang Y. Decolorization of Reactive Red K-2BP wastewater with sponge iron.3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China,2009.
    [16]Gurses A., Dogar C., Yalcin M., Acikyildiz M., Bayrak R., and Karaca S.. The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials,2006,131(1-3):217-228.
    [17]Janos P., Michalek P., and Turek L.. Sorption of ionic dyes onto untreated low-rank coal-oxihumolite:A kinetic study. Dyes and Pigments,2007,74(2):363-370.
    [18]Jain A.K., Gupta V.K., Bhatnagar A., and Suhas.Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials,2003, 101(1):31-42.
    [19]Wesenberg D., Kyriakides I., and Agathos S.. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances,2003,22(1-2): 161-187.
    [20]Koyuncu I.. Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes:Effects of feed concentration and cross flow velocity. Desalination,2002,143:243-253.
    [21]范莉莉,陆人武,陈炜鹏.反渗透技术处理染料废水的试验研究.环境科技,2009,22:20-29.
    [22]Tehrani-Bagha A.R., Mahmoodi N.M., and Menger F.M.. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 2010,260:34-38.
    [23]Sun S.P., Li C., Sun J., Shi S., Fan M., and Zhou Q.. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process:effect of system parameters and kinetic study. Journal of Hazardous Materials,2009,161(2-3): 1052-1057.
    [24]王爱民,曲久辉,姜桂兰.电化学方法降解酸性红B研究.环境科学,2003,245(2):108-111.
    [25]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [26]Li X.Z., and Zhang M..Decolorization and biodegradability of dyeing wastewater treated by a TiO2-sensitized photo-oxidation process. Water Science and Technology, 1996,34(9):49-55.
    [27]Li X.Z., and Zhao Y.G..Advanced treatment of dyeing wastewater for reuse. Water Science and Technology,1999,39(10-11):249-255
    [28]范山湖,孙振范,邬泉周,李玉光.偶氮染料吸附和光催化氧化动力学.物理化学学报,2003,19(1):25-29.
    [29]余长林,陈建钗,操芳芳,李鑫,樊启哲,Y.Jimmy,魏龙福.Pt/BiOCl纳米片的制备、表征及其光催化性能.催化学报,2014,34(2):385-390.
    [30]Sun J.H., Dong S., Wang Y., and Sun S..Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. Journal of Hazardous Materials,2009,172(2-3):1520-1526.
    [31]Joshi U.A., Darwent J., Yiu H.,and Rosseinsky M.The effect of platinum on the performance of WO3 nanocrystal photocatalysts for the oxidation of Methyl Orange and iso-propanol. Journal of Chemical Technology & Biotechnology,2011,86(8): 1018-1023.
    [32]Erdemoglu S., Aksu S.K., Sayilkan F., Izgi B., Asilturk M., Sayilka H., Frimmel F., and Gucer S.. Photocatalytic degradation of Congo Red by hydro thermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS. Journal of Hazardous Materials,2008,155(3):469-476.
    [33]Fujishima A.. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [34]Carey J.H., Lawrence J., and Tosine H.M.. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology,16(6):697-701.
    [35]Frank S.N., and Bard A.J.. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of The American Chemical Society,1977,99 (1):303-304.
    [36]Ollis D.F.. Contaminant degradation in water. Environmental Science & Technology,1985,1985,19 (6):480-484.
    [37]Ollis D.F., Pelizzetti E., and Serpone N.. Photocatalyzed destruction of water contaminants.Environmental Science & Technology,1991,25 (9):1522-1529.
    [38]Hoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W.. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95 (1):69-96.
    [39]Bhatkhandel D., Pangarkarl V., and.Beenackers A. Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology and Biotechnology,2002,77(1):102-116.
    [40]丁建军.可见光响应型光催化剂的制备-结构和性能研究[博士学位论文].安徽:中国科学技术大学,2009.
    [41]Martin S.T., Herrmann H., and Hoffmann M.R.. Time-resolved microwave conductivity. Part 2.-Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics. Journal of the Chemical Society, Faraday Transactions,1994,90:3323-3330.
    [42]Mills G., and Hoffmann M.R.. Photocatalytic degradation of pentachlorophenol on titanium dioxide particles:identification of intermediates and mechanism of reaction. Environmental Science & Technology,1993,27 (8):1681-1689
    [43]Horikoshi S., Hidaka H., and Serpone N.. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chemical Physics Letters,2003,376(3-4):475-480.
    [44]Turchia C.S., and Ollisa D.F.. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 1990,122(1):178-192.
    [45]Cunningham J., and Srijaranai S.. Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension. Journal of Photochemistry and Photobiology,1988,43(3):329-335.
    [46]Ishibashi K., Fujishima A., Watanabe T., and Hashimoto K.. Quantum yields of active oxidative species formed on TiO2 photocatalyst. Journal of Photochemistry and Photobiology A:Chemistry,2000,134:139-142.
    [47]Mao Y., Schoeneich C., and Asmus K.D.. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en route to mineralization:a combined photocatalytic and radiation chemical study. Journal of Physical Chemistry,1991,95 (24):10080-10089.
    [48]Sun Y., and Pignatello J.J.. Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. Environmental Science & Technology,1995,29 (8):2065-2072.
    [49]Cheng S., Tsai S., and Lee Y. Photocatalytic decomposition of phenol over titanium oxide of various structures. Catalysis Today,1995,26:87-96.
    [50]Zhuang J., Rusu C.N., and Yates J.T.. Adsorption and Photooxidation of CH3CN on TiO2. Journal of Physical Chemistry B,1999,103:6957-6967
    [51]Salvador P., Gonzalez M., and Munoz F.. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(Ⅳ) oxide rutile. Journal of Physical Chemistry,1992,96 (25):10349-10353.
    [52]Lakshminarasimhan N., Bae E., and Choi W.. Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method:role of interparticle charge transfer. Journal of Physical Chemistry C,2007, 111:15244-15250.
    [53]Yu J.C., Li G., Wang X., Hu X., Leung C., and Zhang Z.. An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst. Chemical Communications,2006(25): 2717-2719.
    [54]Li H., Bian Z., Zhu J., Huo Y., Li H., and Lu Y.. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. Journal of the American Chemical Society,2007,129:4538-4539.
    [55]Li G., Zhang D., and Yu J.. Ordered mesoporous BiVO4 through nanocasting:a superior visible light-driven photocatalyst. Chemistry of Materials,2008,20: 3983-3992.
    [56]Wei W., Yu C., Zhao Q., Qian X., Li G., and Wan Y. Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon based titania catalyst. Applied Catalysis B:Environmental,2014,146:151-161.
    [57]Ismail A.A., and Bahnemann D.W.. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry,2011,21(32):11686-11707.
    [58]Perathoner S., Lanzafame P., Passalacqua R., Centi G., Schlogl R., and Su D.S.. Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Microporous and Mesoporous Materials,2006,90(1-3):347-361.
    [59]Woan K., Pyrgiotakis G., and Sigmund W.. Photocatalytic carbon-nanotube-TiO2 composites. Advanced Materials,2009,21(21):2233-2239.
    [60]Tayade R.J., Kulkarni R.,and Jasra R.. Enhanced photocatalytic activity of TiO2 coated NaY and HY zeolites for the degradation of methylene blue in Water. Industrial & Engineering Chemistry Research,2007,46:369-376.
    [61]Chen X., Wang X., and Fu X.. Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. Energy & Environmental Science,2009,2(8):872-877.
    [62]Wang W.Y., and Ku Y. Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302(1-3):261-268.
    [63]Aarthi T., and Madras G. Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2. Catalysis Communications,2008,9(5):630-634.
    [64]Bahnemann D., Bockelmann D., and Goslich R.. Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Solar Energy Materials,1991,24(1-4): 564-583.
    [65]Maeda K., and Domen K.. Photocatalytic water splitting:recent progress and future challenges. The Journal of Physical Chemistry Letters,2010,1:2655-2661.
    [66]Peng R., Zhao D., Dimitrijevic N., Rajh T., and Koodali R.T.. Room temperature synthesis of Ti-MCM-48 and Ti-MCM-41 mesoporous materials and their performance on photocatalytic splitting of water. Journal of Physical Chemistry C, 2012,116(1):1605-1613.
    [67]Cherchi C., and Gu A.Z.. Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in anabaena variabilis. Environmental Science & Technology,2010,44 (21):8302-8307.
    [68]Zhao W., Zhang J., Zhu X., Zhang M., Tang J., Tan M., and Wang Y.. Enhanced nitrogen photo fixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B:Environmental,2014,144: 468-477.
    [69]Liu Q., Zhou Y., Kou J., Chen X., Tian Z., Gao J., Yan S., and Zou Z.. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. Journal of the American Chemical Society,2010,132 (41):14385-14387.
    [70]Hamdy M.S., Amrollahi R., Sinev I., Mei B., and Mul G. Strategies to design efficient silica-supported photocatalysts for reduction of CO2. Journal of the American Chemical Society,2014,136(2):594-597.
    [71]Ma B., Wang L., Dong H., Gao R., Geng Y, Zhu Y, and Qiu Y. Photocatalysis of PbS quantum dots in a quantum dot-sensitized solar cell:photovoltaic performance and characteristics. Phys Chem Chem Phys,2011,13(7):2656-2658.
    [72]Ibhadon A., and Fitzpatrick P.. Heterogeneous photocatalysis:recent advances and applications. Catalysts,2013,3(1):189-218.
    [73]Maeda K., Takata T., Hara M., Saito N., Inoue Y., Kobayashi H., and Domen K..GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. Journal of the American Chemical Society,2005,127 (23):8286-8287.
    [74]Li G., Zhang D., and Yu J.. A new visible-light photocatalyst:CdS quantum dots embedded mesoporous TiO2. Environmental Science & Technology,2009,43: 7079-7085.
    [75]Moriya Y, Takata T., and Domen K.. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coordination Chemistry Reviews,2013,257(13-14):1957-1969.
    [76]Saison T., Gras P., Chemin N., Chaneac C., Durupthy O., Brezova V., Colbeau-Justin C., and Jolivet J.. New insights into Bi2WO6 properties as a visible-light photocatalyst. Journal of Physical Chemistry C,2013.117(44): 22656-22666.
    [77]Liu Z., and Miyauchi M.. Visible-light induced superhydrophilicity on a WO3/ITO/CaFe2O4 heterojunction thin film. Chemical Communications,2009(15): 2002-2004.
    [78]Wang Y, Wang Q., Zhan X., Wang F., Safdar M., and He J.. Visible light driven type II heterostructures and their enhanced photocatalysis properties:a review. Nanoscale,2013,5(18):8326-8339.
    [79]Pelaez M., Nolan N., Pillai S., Seery M., Falaras P., Kontos A., Dunlop P.S.M., Hamilton J., Byrne J., Shea K., Entezari M., Dionysiou D.. A review on the visible light active titanium dioxide photocatalysts for environmental applications.Applied Catalysis B:Environmental,2012,125:331-349.
    [80]Zhang L.Z., Djerdj I., Cao M., Antonietti M., and Niederberger M.. Nonaqueous sol-gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst. Advanced Materials,2007,19(16):2083-2086.
    [81]Zhang Q., Lima D. Q., Lee I., Zaera F., Chi M., and Yin Y. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed Engl,2011,50(31):7088-7092.
    [82]Anpo M., and Takeuchi M.. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis,2003,216(1-2):505-516.
    [83]Fuerte A., Hernandez-Alonso M. D., Maira A. J., Mart inez-Arias A., Fernandez-Garcia M., Conesa J.C., and Soria J.. Visible light-activated nanosized doped-TiO2 photocatalysts. Chemical Communications,2001,24:2718-2719.
    [84]Xu A., Gao Y., and Liu H.. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis, 2002,207(2):151-157.
    [85]Asahi R., Morikawa T., Ohwaki T., Aoki K., and Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528):269-271.
    [86]Modugno G., Roati G., Riboli F., Ferlaino F., Brecha R., Inguscio M.. Collapse of a degenerate Fermi gas. Science,2002,297(5590):2240-2243.
    [87]Yu C., Zhou W., Yang K., Rong G. Hydrothermal synthesis of hemisphere-like F-doped anatase TiO2 with visible light photocatalytic activity. Journal of Materials Science,2010,45(21):5756-5761.
    [88]Song S., Tu J., He Z., Hong F., Liu W., and Chen J.. Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Applied Catalysis A:General,2010,378(2):169-174.
    [89]Iwase M., Yamada K., Kurisaki T., Prieto-Mahaney O., Ohtani B., Wakita H.. Visible-light photocatalysis with phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound. Applied Catalysis B:Environmental,2013, 132-133:39-44.
    [90]Wang Y., Li J., Peng P., Lu T., and Wang L.. Preparation of S-TiO2 photocatalyst and photodegradation of L-acid under visible light. Applied Surface Science,2008, 254(16):5276-5280.
    [91]Zhao W., Ma W., Chen C., Zhao J., and Shuai Z.. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBOx under visible irradiation. Journal of the American Chemical Society,2004,126:4782-4783.
    [92]Xu J., Ao Y., Fu D., and Yuan C. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Applied Surface Science,2008, 254(10):3033-3038.
    [93]Xiang Q., Yu J., and Jaroniec M.. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed{001} facets:synthesis, characterization and visible-light photocatalytic activity. Physical Chemistry Chemical Physics,2011,13(11):4853-4861.
    [94]Yu C, and Yu J.C.. A simple way to prepare C-N-codoped TiO2 photocatalyst with visible-light activity. Catalysis Letters,2009,129(3-4):462-470.
    [95]Liu G., Zhao Y, Sun C., Lu F.G, and Cheng H.. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition,2008,47(24):4516-4520.
    [96]Khan R., Kim S., Kim T., Nam C. Comparative study of the photocatalytic performance of boron-iron Co-doped and boron-doped TiO2 nanoparticles. Materials Chemistry and Physics,2008,112(1):167-172.
    [97]Gu D.E., Yang B.C., and Hu YD.. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catalysis Communications,2008,9(6):1472-1476.
    [98]Qian S., Wang C., Liu W., Zhu Y, Yao W., and Lu X., An enhanced CdS/TiO2 photocatalyst with high stability and activity:Effect of mesoporous substrate and bifunctional linking molecule. Journal of Materials Chemistry,2011,21(13): 4945-4952.
    [99]Yang L., Luo S., Li Y, Xiao Y., Kang Q., and Cai Q.. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environmental Science & Technology,2010,44 (19):7641-7646.
    [100]Pan J., and Lee W.. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chemistry of Materials,2006,18 (3):847-853.
    [101]Ratanatawanate C., Tao Y, and Balkus K.J.. Photocatalytic Activity of PbS Quantum Dot/TiO2 Nanotube Composites. Journal of Physical Chemistry C,2009, 113(24)L10755-10760.
    [102]Wang W., Serp P., Kalck P., and Faria J.. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Applied Catalysis B:Environmental,2005,56(4):305-312.
    [103]Xiao G., Wang X., Li D., and Fu X.. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. Journal of Photochemistry and Photobiology A:Chemistry,2008,193(2-3):213-221.
    [104]Gao C., Li J., Shan Z., Huang F., and Shen H.. Preparation and visible-light photocatalytic activity of In2S3/Ti02 composite. Materials Chemistry and Physics, 2010,122(1):183-187.
    [105]董帆.非金属掺杂TiO2纳米材料的制备新方法、结构表征及可见光催化降解气相甲苯性能[博士学位论文].浙江:浙江大学,2010.
    [106]Kisch H., Zang L., Lange C., Maier W.F., Antonius C., and Meissner D.. Modified, amorphous titania-a hybrid semiconductor for detoxification and current generation by visible light. Angewandte Chemie International Edition,1998, 37(21):3034-3036.
    [107]Cho Y., Choi W., Lee C, Hyeon T., and Lee H.. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology,2001,35 (5):966-970.
    [108]Zhao J., Wu K., Wu T., Hidaka H., and Serpone N.. Photodegradation of dyes with poor solubility in an aqueous surfactant/TiO2 dispersion under visible light irradiation. Journal of the Chemical Society, Faraday Transactions,1998,94:673-676.
    [109]Zhao J., Wu T., Wu K,, Oikawa K., Hidaka H., and Serpone N.. Photoassisted degradation of dye pollutants.3. degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:evidence for the need of substrate adsorption on TiO2 particles. Environmental Science & Technology,1998,32 (16):2394-2400.
    [110]Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., and Sheppard E.W.. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society,1992,114 (27):10834-10843.
    [111]Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., and Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359(22):710-712.
    [112]Reddy E.P., Davydov L., and Smirniotis P..Characterization of titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV-vis, Raman, and XPS techniques. Journal of Physical Chemistry B,2002,106 (13):3394-3401.
    [113]Zheng S., Gao L., Zhang Q., and Guo J.. Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41. Journal of Materials Chemistry,2000,10(3):723-727.
    [114]Anpo M., Kim T. H., and Matsuoka M.. The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules-The role of their excited states and reaction mechanisms. Catalysis Today,2009,142(3-4):114-124.
    [115]Shiraishi Y., Morishita M., Teshima Y., and Hirai T.. Vanadium-containing mesoporous silica of high photocatalytic activity and stability even in water. Journal of Physical Chemistry B,2006,110:6587-6594.
    [116]Aboul-Gheit A., Abdel-Hamid S., Mahmoud S., El-Salamony R., Valyon J., Mihalyi M., and Szegedi A.. Mesoporous Ti-MCM-41 materials as photodegradation catalysts of 2,4,6-trichlorophenol in water. Journal of Materials Science,2011,46(10): 3319-3329.
    [117]Elias V.R., Vaschetto E., Sapag K., Crivello M., Casuscelli S., and Eimer G.. Synthesis and photocatalytic activity of titania-loaded transition metal-modified MCM-41 molecular sieves. Topics in Catalysis,2011,54(1-4):277-286.
    [118]Wang X., Lian W., Fu X., Basse J.,and Lefebvre F.. Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface. Journal of Catalysis, 2006,238(1):13-20.
    [119]Zhang J., Minagawa M., Matsuoka M., Yamashita H., and Anpo M.. Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts. Catalysis Letters,2000,66:241-243.
    [120]Davydov L., Reddy E., France P., and Smirniotis P.. Transition metal-substituted titania loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. Journal of Catalysis,2001,203(1):157-167.
    [121]Shen S., and Guo L.. Structural, textural and photocatalytic properties of quantum-sized In2S3-sensitized Ti-MCM-41 prepared by ion-exchange and sulfidation methods. Journal of Solid State Chemistry,2006,179(8):2629-2635.
    [122]Awate S.V., Jacob N.E., Deshpande S.S., Gaydhankar T.R., and Belhekar A.A.. Synthesis, characterization and photo catalytic degradation of aqueous eosin over Cr containing Ti/MCM-41 and SiO2-TiO2 catalysts using visible light. Journal of Molecular Catalysis A:Chemical,2005,226(2):149-154.
    [123]Rodrigues S., Ranjit K., Uma S., Martyanov I.,and Klabunde K.. Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant:acetaldehyde. Advanced Materials,2005,17(20):2467-2471.
    [124]Portela R., Canela M., Sancheza B., Marques F., Stumbo A., Tessinari R., Coronado J., and Suarez S.. H2S photodegradation by TiO2/M-MCM-41 (M=Cr or Ce):Deactivation and by-product generation under UV-A and visible light. Applied Catalysis B:Environmental,2008,84(3-4):643-650.
    [125]Dunkle S., Helmich R., and Suslick K.. BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. Journal of Physical Chemistry C,2009, 113:11980-11983.
    [126]Wang D., Kako T., and Ye J.. New series of solid-solution semiconductors (AgNbO3)1--x (SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity. Journal of Physical Chemistry C,2009,113:3785-3792.
    [127]Hitoki G., Takata T., Kondo J., Hara M., Kobayashi H.,and Domen K.. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500nm). Chemical Communications,2002,16:1698-1699.
    [128]Ding J., Sun S., Bao J., Luo Z., and Gao C..Synthesis of CaIn2O4 rods and its photocatalytic performance under visible-light irradiation. Catalysis Letters,2009, 130(1-2):147-153.
    [129]Yi Z., Ye J., Kikugawa N., Kako T., Ouyang S., Williams H., Yang H., Cao J., Luo W., Li Z., Liu Y, and Withers R.. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials,2010, 9:559-564.
    [130]Ge M., Zhu N., Zhao Y, Li J., andLiu L.. Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension. Industrial & Engineering Chemistry Research,2012, 51(14):5167-5173.
    [131]Ma X., Lu B., Li D., Shi R., Pan C, and Zhu Y. Origin of photocatalytic activation of silver orthophosphate from first-principles. Journal of Physical Chemistry C,2011.115(11):4680-4687.
    [132]Bi Y, Ouyang S., Umezawa N., Cao J., andYe J.. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. Journal of the American Chemical Society,2011,133(17):6490-6492.
    [133]Bi Y., Hu H., Jiao Z., Yu H., Lu G., and Ye J.. Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. Physical Chemistry Chemical Physics,2012,14(42):14486-14488.
    [134]Wang J., Teng F., Chen M., Xu J., Song Y., and Zhou X.. Facile synthesis of novel Ag3PO4 tetrapods and the{110} facets-dominated photocatalytic activity. CrystEngComm,2013,15(1):39-41.
    [135]Liang Q., Ma W., Shi Y., Li Z., and Yang X.. Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm,2012,14(8):2966-2973.
    [136]Dong P., Wang Y, Li H., Li H., Ma X., and Han L.. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals. Journal of Materials Chemistry A,2013.1(15):4651-4656.
    [137]Bi Y., Ouyang S., Cao J., and Ye J.. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X= Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Physical Chemistry Chemical Physics,2011,13(21):10071-10075.
    [138]Bi Y., Hu H., Ouyang S., Jiao Z., Lu G.X.,and Ye J.. Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications. Chemistry,2012,18(45):14272-14275.
    [139]Bi Y., Hu H., Ouyang S., Jiao Z., Lu G.X.,and Ye J.. Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications. Journal of Materials Chemistry,2012,22(30): 14847-14850.
    [140]Dong P., Wang Y, Cao B., Xin S., Guo L., Zhang J., and Li F.. Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Applied Catalysis B:Environmental,2013, 132-133:45-53.
    [141]Zhang H., Huang H., Ming H., Li H., Zhang L., Liu Y, and Kang Z.. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. Journal of Materials Chemistry,2012,22(21): 10501-10506.
    [142]Liu L., Liu J., and Sun D.D.. Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Catalysis Science & Technology,2012,2(12):2525-2532.
    [143]Cui H., Yang X., Gao Q., Liu H., Li Y., Tang H., Zhang R., Qin J., and Yan X.. Facile synthesis of graphene oxide-enwrapped Ag3PO4 composites with highly efficient visible light photocatalytic performance. Materials Letters,2013,93:28-31.
    [144]Yao W., Zhang B., Huang C., Ma C., Song X., and Xu Q.. Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. Journal of Materials Chemistry,2012,22(9):4050-4055.
    [145]Zhang L., Zhang H., Huang H., Liu Y, and Kang Z.. Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability. New Journal of Chemistry,2012,36(8):1541-1544.
    [146]Li G., and Mao L.. Magnetically separable Fe34-Ag3PO4 sub-micrometre composite:facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability. RSC Advances,2012,2(12):5108-5111.
    [147]Xu Y.S., and Zhang W.D.. Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance. Dalton Transactions,2013,42(4):1094-1110.
    [148]Pelaeza M., Nolanb N.T., Pillaib S.C., Seeryc M.K., Falarasd P., Kontosd A.G., Dunlope P.S.M., Hamiltone J.W.J., Byrnee J.A., O'Sheaf K., Entezarig M.H., and Dionysiou D.D.. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B:Environmental,2012, 125:331-349.
    [149]Irie H., Watanabe Y., and Hashimoto K.. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. Journal of Physical Chemistry B,2003, 107(23):5483-5486.
    [150]Konta R., Ishii T., Kato H., and Kudo A.. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. Journal of Physical Chemistry B,2004,108 (26):8992-8995.
    [151]Zhou X., Hu C, Hu X., Peng T.,and Qu J.. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation. Journal of Physical Chemistry B,2010,114,2746-2750.
    [152]Li Y., Wang J., Yao H., Dang L., and Li Z.. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. Journal of Molecular Catalysis A:Chemical,2011,334(1-2):116-122.
    [153]Yang Y, Zhang G., Yu S., and Shen X.. Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9. Chemical Engineering Journal,2010,162(1):171-177.
    [154]Kumar S., Surendar T., Baruah A., and Shanker V. Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. Journal of Materials Chemistry A,2013,1(17):5333-5340.
    [155]Ollis D.F.. Contaminant degradation in water. Environmental Science & Technology,1985,19 (6):480-484.
    [156]Daghrir R., Drogui P., and Robert D.. Modified TiO2 for environmental photocatalytic applications:a review. Industrial & Engineering Chemistry Research, 2013,52:3581-3599.
    [157]Fresno F., Portela R., Suarez S., and Coronado J.. Photocatalytic materials: recent achievements and near future trends. Journal of Materials Chemistry A,2014, 2(9):2863-2884.
    [158]Pan X., Yang M., Fu X., Zhang N., and Xu Y. Defective TiO2 with oxygen vacancies:synthesis, properties and photocatalytic applications. Nanoscale,2013,5(9): 3601-3614.
    [159]Matos J., Laine J., and Herrmann J.. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B:Environmental,1998,18:281-291.
    [160]Ding H., Hu X., Lu G., Yue P., and Greenfield P.. Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir,2000,16:6216-6222.
    [161]Liu S.X., Chen X.Y., and Chen X.. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials,2007,143(1-2):257-263.
    [162]Gao Y., Chen B., Li H., and Ma Y. Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Materials Chemistry and Physics,2003,80(1):348-355.
    [163]Aronson B., Blanford C., and Stein A.. Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates:synthesis and structural characterization. Chemistry of materials,1997,9:2842-2851.
    [164]Zheng S., Gao L., Zhang Q., Zhang W., and Guo J.. Preparation, characterization and photocatalytic properties of singlymand doubly titania-modi(?)ed mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry,2001,11:578-583.
    [165]Artkla S., Kim W., Choi W., andWittayakun J.. Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Applied Catalysis B:Environmental,2009,91(1-2): 157-164.
    [166]Anpo M., Takeuchi M., Ikeue K., and Dohshi S.. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Current Opinion in Solid State and Materials Science,2002, 6:381-388.
    [167]Reddy E., Sun B., and Smirniotis P.. Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organic pollutants. Journal of Physical Chemistry B,2004,108:17198-17205.
    [168]Sun B., Reddy E., and Smirniotis P.G.. Effect of the Cr6+ concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis. Applied Catalysis B:Environmental,2005,57(2):139-149.
    [169]Marques F.C., Canela M.C., and Stumbo A.M.. Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase. Catalysis Today,2008,133-135:594-599.
    [170]Yu J., Wang X., and Fu X.. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chemistry of Materials,2004,16: 1523-1530.
    [171]Zhao D., Budhi S., Rodriguez A., and Koodali R.. Rapid and facile synthesis of Ti-MCM-48 mesoporous material and the photocatalytic performance for hydrogen evolution. International Journal of Hydrogen Energy,2010,35(11):5276-5283.
    [172]Yates M., Faraldos M., and Goberna C..Tecnicas de analisisy caracterizacion de materiales, Biblioteca de Ciencias, CSIC, Madrid,2002, pp.221-246
    [173]Zhang S., Ariyuki M., Mishima H., Higashimoto S., Yamashita H., and Anpo M.. Photoluminescence property and photocatalytic reactivity of V-HMS mesoporous zeolites Effect of pore size of zeolites on photocatalytic reactivity. Microporous anti Mesoporous Materials,1998,21:621-627.
    [174]Weckhuysen B., Wachs I., and Schoonheydt R.. Surface chemistry and spectroscopy of chromium in inorganic oxides. Chemical Reviews,1996,96: 3327-3349.
    [175]Yamashita H., Kawasaki S., Ichihashi Y., Harada M., Takeuchi M., and Anpo M. Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-otanol. Journal of Physical Chemistry B,1998,102:5870-5875.
    [176]Marchese L., Maschmeyer T., Gianotti E., Coluccia S., and Thomas J.. Probing the titanium sites in Ti-MCM-41 by diffuse reflectance and photo luminescence UV-Vis spectroscopies. Journal of Physical Chemistry B,1997,101:8836-8838.
    [177]Thomas J., and Sankar G. The role of synchrotron-based studies in the elucidation and design of active sites in titanium-silica epoxidation catalysts. Accounts of chemical research,2001,34 (7):571-581.
    [178]Mcdaniel M.P.. The state of Cr(VI) on the Phillips polymerization catalyst:Ⅳ. Saturation coverage,1982,76(1):37-47.
    [179]Zang L., Lange C., Abraham I., Storck S., Maier W., and Kisch H.. Amorphous microporous titania modified with platinum(IV) chloride-a new type of hybrid photocatalyst for visible light detoxification. Journal of Physical Chemistry B,1998, 102:10765-10771.
    [180]Konstantinou I.K., and Albanis T.A.. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations. Applied Catalysis B:Environmental,2004,49:1-14.
    [181]Katsumata H., Taniguchi M.O, Kaneco S., and Suzuki T.. Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light. Catalysis Communications, 2013,34:30-34.
    [182]Dinh C.T., Nguyen T., Kleitz F.,, and Do T.O.. Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chemical Communications,2011,47:7797-7799.
    [183]Yang Z., Tian Y., Huang G., Huang W., Liu Y, Jiao C., Wan Z., Yan X., and Pan A.. Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity. Materials Letters,2014,116:209-211.
    [184]Wu A., Tian C., Chang W., Hong Y, Zhang Q., Qu Y, and Fu H.. Morphology-controlled synthesis of Ag3PO4 nano/microcrystals and their antibacterial properties. Materials Research Bulletin,2013,48:3043-3048.
    [185]Wang H., Bai Y, Yang J., Lang X., Li J., and Guo L.. A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst. Chemistry,2012,18: 5524-5529.
    [186]Hatakeyama K., Okuda M., Kuki T., and Esaka T.. Removal of dissolved humic acid from water by photocatalytic oxidation using a silver orthophosphate semiconductor. Materials Research Bulletin,2012,47:4478-4482.
    [187]Yu J., Yu H., Cheng B., Zhao X., Yu J., and Ho W.. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B,2003, 107:13871-13879.
    [188]Yu J.,.Su Y, Cheng B., and Zhou M.. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. Journal of Molecular Catalysis A:Chemical,2006, 258:104-112.
    [189]Bate P.. The effect of deformation on grain growth in Zener pinned systems. Acta materialia,2001,49:1453-1461.
    [190]Butler M.A.. Photoelectrolysis and physical properties of the semiconducting electrode WO3. Journal of Applied Physics,1977,48(5):1914-1920.
    [191]Amornpitoksuk P., Intarasuwan K., Suwanboon S., and Baltrusaitis J.. Effect of phosphate salts (Na3PO4, Na2HPO4, and NaH2PO4) on Ag3PO4 morphology for photocatalytic dye degradation under visible light and toxicity of the degraded dye products. Industrial & Engineering Chemistry Research,2013,52:17369-17375.
    [192]Teng W., Li X., Zhao Q., Zhao J., and Zhang D.. In situ capture of active species and oxidation mechanism of RhB and MB dyes over sunlight-driven Ag/Ag3PO4 plasmonic nanocatalyst. Applied Catalysis B:Environmental,2012,125:538-545.
    [193]Li C., Zhang P., Lv R., Lu J., Wang T., Wang S., Wang H., and Gong J.. Selective deposition of Ag3PO4 on monoclinic BiVO4 (040) for highly efficient photocatalysis. Small,2013,9:3951-3956.
    [194]Iijima S.. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [195]Xu Y, Xu H., Yan J., Li H., Huang L., Zhang Q., Huang C., and Wan H.. A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties. Physical Chemistry Chemical Physics,2013, 15:5821-5830.
    [196]Jiang L., and Gao L.. Fabrication and characterization of ZnO-coated multiwalled carbon nanotubes with enhanced photocatalytic activity. Materials Chemistry and Physics,2005,91:313-316.
    [197]Amiri A., Shanbedi M., Eshghi H., Heris S.Z., and Baniadam M.. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. Journal of Physical Chemistry C,2012,116:3369-3375.
    [198]Liang Q., Shi Y, Ma W., Li Z., and Yang X.. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Physical Chemistry Chemical Physics,2012,14:15657-15665.
    [199]Zhu Y, Murali S., Cai W., Li X., Suk J.W., Potts J.R., and Ruoff R.. Graphene and graphene oxide:synthesis, properties, and applications. Advanced Materials, 2010,22:3906-3924.
    [200]Zhang H., and Banfield J.. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2. Journal of Physical Chemistry B,2000,104:3481-3487.
    [201]Fernandez A., Lassaletta G., Jimenez V.M., Justo A., Gonzalez-Elipe A.R., Herrmann J., Tahiri H., and Ait-Ichou Y. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B:Environmental,1995,7:49-63.
    [202]Yu H., Lee S.C., Yu J., and Ao C..Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. Journal of Molecular Catalysis A:Chemical,2006, 246:206-211.
    [203]Sabate J., Anderson M., Aguado M, Gimenez J., Cerveramarch S., and Hill C.. Comparison of TiO2 powder suspensions and TiO2 ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium(VI). Journal of Molecular Catalysis,1992,71:57-68.
    [204]Matthews R..Purification of water with near-UV illuminated suspensions of titanium dioxide. Water Research,1990,24:653-660.
    [205]Xi G, Yue B., Cao J., and Ye J.. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chemistry,2011,17: 5145-5154.
    [206]Wang W., Du H., Wang R., Wen T., and Xu A.. Heterostructured Ag3PO4/ AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. Nanoscale,2013,5:3315-3321.
    [207]Cao J., Luo B., Lin H., Xu B., and Chen S.. Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. Journal of hazardous materials,2012,217-218:107-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700