含酚废水在结构化固定床上的吸附动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的飞速发展,人们对环境要求日益提高。含酚废水是一种典型的量大面广的有机废水,广泛存在于炼油、化工、制药等行业中,对环境造成严重污染。含酚废水的治理逐渐成为人们十分关注的问题。目前含酚废水的处理方法有吸附法、溶剂萃取法、化学法、膜分离法以及生物法。其中吸附法是最常用的高效分离方法之一,经吸附法处理后的水可以直接达到排放标准。采用活性炭作为吸附剂的固定床吸附器是工业上最常用的处理含酚废水吸附装置,但其存在吸附速率较慢,床层阻力较大,床层利用率较低等问题。因此开发一种新型吸附材料及基于这类新型吸附材料应用和设计的结构化固定床吸附器以用于提高吸附速率,强化固定床吸附器传质传热过程,是一项既有理论意义又具有实际应用价值的前沿性课题。本文制备了微纤包覆活性炭复合材料,研究了苯酚、对硝基苯酚在两种不同活性炭上的搅拌槽吸附动力学,建立苯酚、对硝基苯酚在颗粒椰壳活性炭固定床上和基于微纤包覆活性炭复合材料的结构化固定床上的吸附动力学模型,探讨了苯酚、对硝基苯酚在结构化固定床上的吸附行为。
     首先,本文以不锈钢纤维、针叶木纤维和颗粒活性炭(150-200μm)为原料,通过湿法造纸和烧结工艺制备了微纤包覆活性炭复合材料。通过氮气吸附法以及压汞法对活性炭进行了孔结构分析,采用扫描电子显微镜(SEM)观测制备微纤包覆活性炭复合材料烧结前后的显微结果。结果表明,不锈钢纤维的连接处被很好地烧结在一起,形成具有大的空隙率的三维网状结构,微米尺度的颗粒活性炭被较好地包覆其中。根据压汞法测得椰壳活性炭表观密度为718.6kg/m~3,煤质活性炭表观密度为852.4kg/m~3。椰壳活性炭的比表面积,微孔体积都比煤质活性炭大,说明椰壳活性炭相对于煤质活性炭具有更多的吸附位点,有利于吸附的进行。两种活性炭的微孔体积均占总孔体积的3/4,说明苯酚及对硝基苯酚在活性炭上的吸附是以表面扩散为主的颗粒内扩散过程。
     其次,本文分别研究了苯酚、对硝基苯酚在椰壳活性炭和煤质活性炭上的吸附平衡。分别采用Langmuir模型、Freundlich模型对苯酚、对硝基苯酚在两种活性炭上的吸附等温曲线进行了拟合。结果表明,Langmuir模型更适合描述苯酚在活性炭上的吸附平衡,Freundlich经验模型更适合描述对硝基苯酚在活性炭上的吸附平衡。因此,采用Langmuir模型作为苯酚在椰壳活性炭和煤质活性炭固液界面吸附平衡模型;采用Freundlich模型作为对硝基苯酚在椰壳活性炭和煤质活性炭固液界面吸附平衡模型,以研究苯酚、对硝基苯酚在活性炭上的吸附动力学。
     再次,本文分别研究了苯酚、对硝基苯酚在椰壳活性炭和煤质活性炭上的搅拌槽吸附动力学。通过改变苯酚、对硝基苯酚初始浓度以及活性炭添加量,研究了不同实验条件下实验吸附衰减曲线的变化;在非线性吸附等温条件下,建立了苯酚、对硝基苯酚在活性炭上的吸附动力学模型--包含液膜传质阻力和表面扩散阻力的均相扩散模型(HSDM),分别根据每组理论实验吸附衰减曲线和多组理论实验吸附衰减曲线对计算得到的动力学参数置信区间进行分析;讨论了表面扩散系数分别为常数和吸附量的函数时对实验吸附衰减曲线以及动力学参数的影响;通过Biot数(液膜传质速率和固相扩散速率之比)分析吸附过程中的速率控制步骤。结果表明,当D_s为常数时,根据单组实验吸附衰减曲线和多组实验吸附衰减曲线得到的理论吸附衰减曲线和实验吸附衰减曲线有较好的吻合;根据多组实验数据计算得到的动力学参数,其置信区间较小,说明引入较多实验数据计算得到的动力学参数更为准确;经计算得到的苯酚和对硝基苯酚k_f和D_s值数量级均分别为10~(-5)和10~(-12);当D_s为变量时,根据多组实验数据得到的理论吸附衰减曲线和实验吸附衰减曲线的吻合度较差,参数的置信区间较大,说明在本体系中D_s应为常数;根据动力学参数,求解得到的苯酚、对硝基苯酚在椰壳活性炭和煤质活性炭上吸附的Biot数,得到苯酚在煤质活性炭上的吸附过程主要由表面扩散控制,苯酚在椰壳活性炭上的吸附过程、对硝基苯酚分别在椰壳活性炭和在煤质活性炭上的吸附过程均由表面扩散和液膜传质共同控制。根据Biot数可知,由球形均相扩散模型计算得到的表面扩散系数可用于固定床吸附动力学模型计算中。
     然后,本文研究了苯酚、对硝基苯酚在颗粒椰壳活性炭固定床上的吸附动力学。在不同进口浓度,不同流速条件下,分别进行了苯酚、对硝基苯酚在颗粒椰壳活性炭固定床上的吸附动力学实验;建立了苯酚、对硝基苯酚在颗粒椰壳活性炭固定床上的吸附动力学模型,计算理论吸附透过曲线;通过模型计算得到在颗粒椰壳活性炭固定床内,不同时间和床层位置的苯酚、对硝基苯酚浓度变化的三维立体图,以及传质区移动关系图和传质区长度的变化情况;通过灵敏度分析讨论吸附过程中的速率控制步骤。结果表明,在不同进口浓度,不同流速条件下,根据颗粒椰壳活性炭固定床吸附动力学模型计算出的理论吸附透过曲线和实验吸附透过曲线有较好的吻合;根据苯酚、对硝基苯酚溶液浓度在颗粒椰壳活性炭固定床内传质区和传质区长度的变化情况,得到随着进口浓度的升高以及溶液流速的增大,传质区移动速度变快,传质区长度变小的规律;通过对模型进行灵敏度分析结果,得到当k_f和D_s增大或减小10倍时,对模型计算结果有较大的影响,当D_L增大或减小10倍时,对模型计算结果影响较小,说明苯酚、对硝基苯酚在颗粒椰壳活性炭固定床上的吸附行为是由固相扩散和液膜传质共同控制的。
     最后,本文研究了苯酚、对硝基苯酚在结构化固定床上的吸附动力学。通过在床层的进口端和出口端分别装填颗粒活性炭和微纤包覆活性炭复合材料构成结构化固定床,在不同床层比例,不同进口浓度以及不同流速条件下,分别进行了苯酚、对硝基苯酚在结构化固定床上的吸附动力学实验,对比分析了颗粒椰壳活性炭固定床和结构化固定床的无效层厚度;建立了苯酚、对硝基苯酚在结构化固定床上的吸附动力学模型,通过模型计算得到在不同时间和床层位置上的苯酚、对硝基苯酚浓度变化的三维立体图,以及传质区移动关系图和传质区长度的变化情况;根据动力学参数计算,对比分析了结构化固定床内颗粒活性炭层以及微纤包覆活性炭复合材料层传质阻力。结果表明,苯酚、对硝基苯酚在结构化固定床的吸附透过曲线斜率相对于颗粒椰壳活性炭固定床增大;苯酚、对硝基苯酚在结构化固定床上的无效层厚度相对于颗粒椰壳活性炭固定床减小;在不同进口浓度,不同流速条件下,根据结构化固定床吸附动力学模型计算出的理论吸附透过曲线和实验吸附透过曲线有较好的吻合;根据苯酚、对硝基苯酚溶液浓度在结构化固定床内传质区和传质区长度的变化情况,得到随着进口浓度的升高以及溶液流速的增大,传质区移动速度变快,传质区长度变小的规律;结构化固定床中微纤包覆活性炭复合材料层的固定相扩散阻力、液膜传质阻力以及轴向扩散阻力均小于颗粒活性炭层。
With the high-speed development of society, the increasing demands of environmentare required by people. More and more attentation has been paid on the the treatment oforganic wastewaters containing phenolic compounds. The removal of phenolic compoundsis of prime importance due to their widely resource, toxicity and carcinogenicity.Adsorption method, solvent extraction method, chemical method, membrance separationmethod and bioanalysis as useful methods have been widely applied to deal with wastewater.Adsorption by activated carbon has been recognized as one of the most used methods forremoving emissions of phenolic compounds from wastewater. Fixed bed adsorber is onekind of efficient arrangements for conducting adsorption operation. However, conventionalfixed bed adsorber filled with granular activated carbons offers disadvantage of lowadsorption efficiency, high mass/heat transfer resistance and low bed utilization. Therefore,the development and application of a novel material, which can improve adsorption rate andenhance mass/heat transfer, have been recognized as a cutting-edge research topic. In thispaper, the microfibrous composite was prepared and characterized by using SEM, N2adsorption, and mercury intrusion method. The adsorption kinetics of phenol andp-nitrophenol (PNP) in stirred batch was investigated and the adsorption dynamicsparameters were obtained. The adsorption dynamics in fixed bed filled with individualgranular activated carbons and structured fixed bed filled with microfibrous composite weresimulated by models.
     First, the microfibrous entrapped activated carbon composites were fabricated throughthe wet lay-up papermaking process and sintering process. The properties of coconut shellactivated carbon (CSAC) and coal based activated carbon (CBAC) were tested by nitrogenadsorption method and mercury intrusion method. The microstructure of microfibrouscomposites before and after sintering under the optimized condition was measured by usingSEM. The results show that the activated carbon particles were well entrapped into a threedimensional network of stainless steel fibers with cellulose as binder, and the junctures of stainless steel fibers were sintered together to form a sinter-locked three dimensionalnetwork with large voidages. The apparent desity of coconut shell activated carbon and coalbased activated carbon are718.6kg/m~3and852.4kg/m~3, respectively. The BET surfacearea of coconut shell activated carbon is larger than that of coal based activated carbon. Thelarger surface area with more adsorption location is good for adsorption. For these twokinds of carbon, the micropore volume is three-forth of total pore volume, which isaccordance with the necessary happened conditon of surface diffusion.
     Second, the adsorption equilibriums of phenol and PNP on activated carbon wereinvestigated. The results indicate that the adsorption equilibrium of phenol on activatedcarbon could be described by by Langmuir model, and the adsorption equilibrium of PNP onactivated carbon could be well described by Freundlich model. The Langmuir model valuesfor phenol and the Freundlich equilibrium values for PNP are used afterwards as input datafor the computer simulations of stirred batch adsorption kinetics and fixed bed adsorptiondynamics.
     Thirdly, the adsorption kinetics of phenol and PNP on CBAC and CSAC in stirred batchadsorber were also investigated. The effects of initial concentration of phenol/PNP andactivated carbon doages on concentration decay curves were investigated. The homogeneoussurface diffusion model (HSDM) based on external mass transfer and intraparticle surfacediffusion was used to describe the adsorption kinetics for phenol and PNP in stirred batchadsorber. The confidence interval analysis of every parameters and the effect of surfaceadsorption coverage on the surface diffusivity were investigated. The confidence intervals ofkfand Dswere also analyzed, when kinetic parameters calculated through single experimentand several experiments together. The adsorption control process was obtained by Biotnumber which represents the ratio of the rate of transport across the liquid film to the rate ofintraparticle mass transfer. The results show that the decay curves with the different initialsolution concentrations and adsorbent dosages can be well represented with identical constantfilm mass transfer coefficient and surface diffusivity. Confidence intervals calculated fromsingle decay curve are larger, and the more decay curves are involved, the smaller confidence interval is obtained, which means that more precise estimates of the parameters from moredecay curves. The values of the film mass transfer coefficient and surface diffusivity are in theorder of magnitude10~(-5)and10~(-12), respectively. The decay curves had bad fitting results withadsorbed phase concentration-dependent surface diffusivity, proving that the surfacediffusivity should be considered as a constant. According to the Biot number, the adsorptionprocess of phenol on coal based activated carbon is controlled by surface diffusion. Theadsorption process of phenol on coconut shell activated carbon, and that of PNP on two kindsof activated carbon are controlled by both surface diffusion and film mass transfer. The valuesof Biot number also proved that the caculated kintic parameter is suitable for applying intofixed bed adsorption system.
     Then, the adsorption dynamics was measured under different inlet concentrations andflow rates, and simulated by fixed bed model. The adsorption dynamics experiments ofphenol and PNP in fixed bed were carried out under the conditions of different flow ratesand inlet concentrations. The fixed bed model considering external/internal mass transferresistances as well as axial dispersion with non-linear isotherm was utilized to predict thebreakthrough curves of phenol and PNP adsorption in fixed bed. The three dimension mapand mass transfer zone of phenol and PNP adsorption in fixed bed was obtained. And thethe controlling mass transfer mechanism is obtained through sensitivity analysis. The resultsshow that the predicted breakthrough curves fit well with the experimental breakthroughcurves, indicating that the proposed model for fixed bed is suitable for describing theadsorption dynamics of phenol and PNP in fixed bed. And the increasing flow rate and inletconcentration resulted in faster movement of mass transfer zone and smaller length of masstransfer. The sensitivity analysis and Biot number both confirm that intraparticle diffusionand film mass transfer are the controlling mass transfer mechanism in fixed bed adsorptionsystem. And the model is sensitive to both k_f and D_s, but insensitive to D_L.
     Finally, adsorption dynamics of phenol and PNP in the structured fixed bed filled withgranular activated carbon in the inlet of bed and microfibrous entrapped activated carboncomposites in the outlet of bed at various flow rates and inlet concentrations were studied. The adsorption dynamics phenol and PNP in the structured fixed bed were measured underdifferent bed height ratio, inlet concentrations and flow rates. The length of unused bed(LUB) theory was used to analyze the breakthrough curves of phenol and PNP in thestructured fixed bed. The mathematical model involving surface diffusion, film masstransfer and axial dispersion was proposed to simulate the adsorption dynamics of phenoland PNP in the structured fixed bed. The three dimension map and mass transfer zone ofphenol and PNP adsorption in structured fixed bed was obtained. The mass transferresistances of phenol and PNP in structured fixed bed was analyzed by by using dynamicparameters. All the results show that the breakthrough curve of PNP in the structured fixedbed is steeper than that of the individual activated carbon fixed bed under the same bedheight. The length of unused bed of the structured fixed bed decreased, comparing with thatof the individual activated carbon fixed bed. The predicted breakthrough curves of phenoland PNP in structured fixed bed fit well with the experimental breakthrough curves. Theresults also show that the increasing flow rate and inlet concentration leads to fastermovement of mass transfer zone and smaller length of mass transfer. The mass transferresistances of phenol and PNP adsorption in structured fixed bed was also investigated,indicating that the intraparticle diffusion resistance, film mass transfer resistance, and theresistance attributed to axial dispersion in microfibrous entrapped activated carbon layer areall smaller than that of activated carbon particles layer.
引文
[1] Ahmaruzzaman M, Sharma D K. Adsorption of phenols from wastewater [J]. Journal ofColloid and Interface Science,2005,287(1):14-24
    [2]于秀娟,高铭晶. MnOx/AC的制备及电催化氧化降解苯酚[J].材料科学与工程学报,2011,29(6):864-868
    [3]朱江涛,黄正宏,康飞宇.活性竹炭对苯酚的吸附动力学[J].新型炭材料,2008,23(4):326-330
    [4]岳钦艳,杨晶,高宝玉,等.活性炭纤维对水中酚类化合物的吸附特性[J].环境科学,2008,29(10):2862-2867
    [5] Mathews A P. Effect of adsorbent particle layering on performance of conventional andtapered fixed-bed adsorbers [J]. Journal of environmental Engineering,2005,131(11):1488-1494
    [6] Sze M F F, McKay G. Enhanced mitigation of para-chlorophenol using stratified activatedcarbon adsorption columns [J]. Water Research,2012,46(3):700-710
    [7] Cooney D O. Adsorption design for wastewater treatment [M].5th ed., CRC Press LLC,New York,1999, pp.178
    [8] Tatarchuk B J, Rose M F, Krishnagopalan G A. Preparation of mixed fiber compositestructure [P]. US: No.5304330,1994
    [9] Tatarchuk B J, Yong L. Microfibrous entrapment of small reactive particulates and fiberfor high contacting efficiency removal of contaminants from gaseous or liquid streams[P]. US: No.0169820,2005
    [10] Tatarchuk B J. Method of Optimizing Composite Preparation for Electrical Properties:Maximum Capacitance Electrodes [P]. US: No.5096663,1992
    [11] Tatarchuk B J, Rose M F, Krishnagopalan A. Mixed fiber composite structure [P]. US:No.510274,1992
    [12] Tatarchuk B J, Rose M F, Krishnagopalan G A, Zabasajja J N. Preparation ofmicrofibrous composite [P]. US: No.5304330,1994
    [13]杨著,吸附法气体分离[M].北京:化学工业出版社,1991
    [14] Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenolfrom fluid streams: A short review of recent developments [J]. Journal of HazardousMaterials,2008,160:265-288
    [15]于萍,姚琳,罗运柏.高浓度含酚废水处理的新工艺[J].工业水处理,2002,22(9):5-8
    [16]叶桂足.竹炭-T102复合材料对苯酚的吸附及光催化降解性能研究[D].福建:福建师范大学,2006
    [17] Callahan M A, Slimak M W, Gabel N W, et al. Water-related environmental fate of129priority pollutants [M]. University of Michigan Library,1979, I:83
    [18]刘剑.微纤复合材料的制备与应用研究[D].广州:华南理工大学,2012
    [19]陈男.天然及合成多孔性粘土材料对地下水中氟化物的吸附性能研究[D].北京:中国地质大学,2012
    [20]杜二玲.新型炭黑材料对水中有机污染物吸附性能研究[D].合肥:合肥工业大学,2010
    [21] Tompkins C J, Michaels A S, Peretti S W. Removal of p-nitrophenol from aqueoussolution by membrane supported solvent extraction [J]. Journal of Membrane Science,1992,75(3):277-292
    [22]戴酞元,张瑾.有机废水的萃取处理技术[M].化学工业出版社,2001
    [23]李玉标.含酚废水的处理方法[J].净水技术,2005,24(2):51-54
    [24]戴猷元,杨义燕,杨天雪.络合萃取法处理含酚废水技术[J].化工进展,1991,6:40-46
    [25]王晓军.用萃取法处理含酚废水[J].甘肃化工,2004,18(1):432-441
    [26]冒爱荣.络合萃取一吸附组合工艺处理含酚废水的研究[D].南京理工大学,2009
    [27] Hoigne J. Organic micropollutants and treatment processes: kinetics and final effects ofozone and chlorine dioxide, Science of the total environment [J].1985,47:169-185
    [28] Bandara J, Kiwi J, Pulgarin C, Pajonk G. Catalytic oxidation and photo-oxidation ofnitrophenols by strong oxidants generated in situ via Cuo-aerogel [J]. Journal ofmolecular catalysis A: chemical,1996,111(3):333-339
    [29] Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E. Pesticide chemical oxidation:state-of-the-art [J]. Water Research, l999,34(2):366-377
    [30]贾太轩,冯世宏,杜慧玲.含酚废水的氧化法处理[J].天津化工,2005,9(2):12-14
    [31] Rzeszutek K, Chow A. Extraction of phenols using polyurethane membrane [J]. Talanta,1998,46(4):507-519
    [32] Tarakranjan G, Pradhan N. C, Adhikari B. Separation of phenol from aqueous solution bypervaporation using HTPB-based polyurethaneurea membrane [J]. Journal of MembraneScience,2003,217(1-2):43-53
    [33]李健生,王连军.中空纤维膜萃取法处理含酚废水的试验研究[J].防染防治技术,2001,14(4):4-6
    [34]邓桂春,刘国杰,蒋克旭,等.乳状液膜法处理含酚废水[J].辽宁大学学报,2005,32(3):210-214
    [35] Chen K C, Lin Y H, Chen W H, et al. Degradation of phenol by PAA-immobilizedCandida tropicalis [J]. Enzyme and Microbial Technology,2002,31(4):490-497
    [36]刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水[J].中国给水排水,2003,19(5):53-55
    [37] Banat F A, Bashir B A, Asheh S A, et al. Adsorption of phenol by bentonite [J].Environmental Pollution,2000,107(3):391-398
    [38] Srivastava S K, Tyagi R. Competitive adsorption of substituted phenols by activatedcarbon developed from the fertilizer waste slurry [J]. Water Research,1995,29(2):483-488
    [39] Namane A, Hellal A. The dynamic adsorption characteristics of phenol by granularactivated carbon [J]. Journal of Hazardous Materials,2006,137(1):618-625
    [40] H·B·凯里泽夫.吸附技术基础[M].山西:国营新华化工厂设计研究所,1983
    [41]Hassler, John W. Purification with activated carbon industrial, commercial, environmental[M]. New York: Chemical Publishing Co.,1974
    [42] Ding L, Snoeyink V L, Marinas B J, et al. Effects of powdered activated carbon poresize distribution on the competitive adsorption of aqueous Atrazine and natural organicmatter [J]. Environmental Science Technolnology,2008,42(4):1227-1231
    [43]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1997:113-116
    [44] Juang R S, Wu F C, Tseng R L. Adsorption Isotherms of Phenolic Compounds fromAqueous Solutions onto Activated Carbon Fibers [J]. Journal of Chemical andEngineering Data,1996,41(3):487-492
    [45] Chakraborty A, Deva D, Sharma A, et al. Adsorbents based on carbon microfibers andcarbon nanofibers for the removal of phenol and lead from water [J]. Journal ofColloid and Interface Science,2011,359(1):228-239
    [46] Li L, Quinlivan P A, Kuappe D R U. Effects of activated carbon surface chemistry andpore structure on the adsorption of organic contaminants from aqueous solution [J].Carbon,2002,40(12):2085-100
    [47]申大志.流化床煤气化技术工业化过程的优化与模拟[D].天津大学,2009
    [48]王智.流化床燃煤固硫渣特性及其建材资源化研究[D].重庆大学,2002
    [49]陈平.生物质流化床气化机理与工业应用研究[D].中国科学技术大学,2006
    [50]杨玲.旋转床内苯烃化催化剂表面传质特性及润湿程度的研究[D].北京化工大学,2001
    [51]谢冠伦.新型结构旋转床吸收混合气中二氧化碳的研究[D].北京化工大学,2010
    [52]陈华辉,邓金海,李明.现代复合材料[M].北京:中国物资出版社,1997
    [53] Tatarchuk B J, Rose M F, Krishnagopalan G A. Preparation of mixed fiber compositestructures [P]. US:5304330,1994
    [54] Nickell R A, Tatarchuk B J. High surface area, supported precious metal cathodesutilizing metal microfbrous collectors for application in chlor-alkali cells[J].Journal ofApplied Electrochemistry,2005,35(6):581-587
    [55] Kalluri R R, Cahela D R, Tatarchuk B J. Microfibrous entrapped small particleadsorbents for high efficiency heterogeneous contacting [J]. Separation and PurificationTechnology,2008,62(2):304-316
    [56] Zhu W H, Durben P J, Tatarchuk B J. Microfibrous nickel substrates and electrodes forbattery system applications [J]. Journal of Power Sources,2002,111(2):221-231
    [57] Zhu W H, Flanzer M E, Tatarchuk B J. Nickel-zinc accordion-fold batteries withmicrofibrous electrodes using a papermaking process [J].Journal of Power Sources,2002,112(2):353-366
    [58] Chang B K, Tatarchuk B J. Microfibrous entrapment of small catalyst particulates forhigh contacting efficiency removal of trace CO from practical reformates for PEM H2-O2fuel cells [J].Journal of Materials Engineering and Performance,2006,15(4):453-456
    [59] Duggirala R K, Roy C J, Saeidi S M, et al. Pressure drop predictions in microfibrousmaterials using computational fluid dynamics [J]. Journal of Fluids Engineering,2008,130(7):0713021-07130213
    [60] Chang B K, Lu Y, Tatarchuk B J. Microfibrous entrapment of small catalyst or sorbentparticulates for high contacting-efficiency removal of trace contaminants including COand H2S from practical reformates for PEM H2-O2fuel cells [J]. Chemical Engineeringjournal,2006,115(3):195-202
    [61] Sathitsuksanoh N, Yang H Y, Cahela D R, et al. Immobilization of CO2by aqueousK2CO3using microfibrous media entrapped small particulates for battery and fuel cellapplications [J]. Journal of Power Sources,2007,173(1):478-486
    [62] Yang H Y, Cahela D R, Tatarchuk B J. A study of kinetic effects due to usingmicrofibrous entrapped zinc oxide sorbents for hydrogen sulfide removal [J].ChemicalEngineering Science,2008,63(10):2707-2716
    [63] Chang B K, Lu Y, Yang H Y, Tattarchuk B J. Facile regeneration vitreous microfibrousentrapped supported ZnO sorbent with high contacting efficiency for bulk H2S removalfrom reformate streams in fuel cell applications [J]. Journal of Materials Engineering andPerformance,2006,15(4):439-441
    [64] Harris D K, Cahela D R, Tatarchuk B J. Wet layup and sintering of metal-containingmicrofibrous composites for chemical processing opportunities [J]. Composites: Part A:Applied Science and Manufacturing,2001,32(8):1117-1126
    [65] Cahela D R, Tatarchuk B J. Permeability of sintered microfibrous composites forheterogeneous catalysis and other chemical processing opportunities [J]. Catalysis Today,2001,69(1-4):33-39
    [66]路勇,薛青松,陈金春,等.一种烧结微纤结构化微米尺度颗粒的多孔复合材料及制造方法[P].中国:200610025844.7,2006-09-27
    [67]唐林志.微纤包覆活性炭复合材料的制备及应用研究[D].广州:华南理工大学,2010
    [68] Tatarchuk B. J. Microfibrous entrapment of small reactive particulates and fiber for highcontacting efficiency removal of contaminants from gaseous or liquid streams [P]. US:No.0169820,2005
    [69] Zhu W H, Payne R U, Tatarchuk B J. Critical flow rate of anode fuel exhaust in a PEMfuel cell system [J]. Journal of Power Sources,2006,156(2):512-519
    [70] Karanjikar M R. Low Temperature Oxidation of carbon monoxide using microfibrousentrapped catalysts for fire escape mask application[D]. US: Aubrn University,2005
    [71] Cahela D R., Tatarchuk B J. Design of polishing filter adsorbents using sinteredmicrofibrous metallic networks as carriers for high effectiveness sorbent particulates [R].San Francisco: AIChE Annual National Meeting. November,2003
    [72] Yang H Y, Lu Y, Tatarchuk B J. Glass fiber entrapped sorbent for reformatesdesulfurization for logistic PEM fuel cell power systems [J]. Journal of Power Sources,2007,174(1):302-311
    [73] Kalluri R R, Cahela D R, Tatarchuk B J. Comparative heterogeneous contactingefficiency in fixed bed reactors: Opportunities for new microstructured systems[J].Applied Catalysis B: Environmental,2009,90(34):507-515
    [74] Lu Y, Xue Q S, Tang Y, et al. Microfibrous entrapped particulates using high corrosionresistance glass fibers [J]. Materials Letters,2006,60(19):2349-2351
    [75] Tang Y, Chen L, Wang M M, et al. Microfibrous entrapped ZnO-CaO/Al2O3for highefficiency hydrogen production via methanol steam reforming [J]. Particuology,2010,8(3):225-230
    [76] Zhang H P, Gao L L, Hu X J. Preparation of microfibrous entrapped activated carboncomposite [J]. Separation and Purification Technology,2009,67(2):149-151
    [77] Liu J, Yan Y, Zhang H P. Adsorption dynamics of toluene in composite bed withmicrofibrous entrapped activated carbon [J]. Chemical Engineering Journal,2011,173(2):456-462
    [78] Do D D. Adsorption Analysis: Equilibria and Kinetics,9th ed., Imperial College Press,London,1998
    [79]叶振华,化工吸附分离过程[M].北京:中国石化出版社,1992
    [80] Chen J P, Wang L. Characterization of metal adsorption kinetic properties in batch andfixed-bed reactors [J]. Chemosphere,2004,54(3):397-404
    [81] Lee V K C, Porter J F, et al. Application of solid-phase concentration-dependent HSDMto the acid dye adsorption system [J]. AICHE Journal,2005,51(1):323-332
    [82] Pan B C, Meng F W, Chen X Q, et al. Application of an effective method in predictingbreakthrough curves of fixed-bed adsorption onto resin adsorbent [J]. Journal ofHazardous materials,2005,124(1-3):74-80
    [83] Crini G, Badot P M. Application of chitosan, a natural aminopolysaccharide, for dyeremoval from aqueous solutions by adsorption processes using batch studies: a review ofrecent literature [J]. Progress in Polymer Science,2008,33(4):399-447
    [84] Kilic M, Varol E A, Putun A. E. Adsorptive removal of phenol from aqueous solutionson activated carbon prepared from tobacco residues: Equilibrium, kinetics andthermodynamics [J]. Journal of Hazardous materials,2011,189(1-2):397-403
    [85]王斐,邵晓红,汪文川,等. CH4和CO2在活性炭微球内扩散系数的测定[J].化工学报,2006,57(8):1891-1896
    [86] Ruthven D M. Principles of Adsorption and Adsorption Processes [M]. New York: JohnWiley&Sons,1984
    [87] Crank J. The mathmatics of diffusion [M]. London: Oxford at the Clarendon Press,1956
    [88] Fil B A, lu R B, Yilmaz A E, et al. Adsorption of Ni(II) on ion exchange resin: kinetics,equilibrium and thermodynamic studies [J]. Korean Journal Chemical Engineering,2012,29(9):1232-1238
    [89] Cotoruelo L M, Marques M D, Rodr guez-Mirasol J, et al. Adsorption of aromaticcompounds on activated carbons from Lignin: kinetic study [J]. Industry EngineeringChemical Research,2007,46(9):2853-2860
    [90] Lee V K C, Porter J F, McKay G. Application of solid-phase concentration-dependentHSDM to the acid dye adsorption system [J]. AIChE Journal,2005,51(1):323-332
    [91] Fujiki J, Sonetaka N, Ko K P, Furuya E. Experimental determination of intraparticlediffusivity and fluid film mass transfer coefficient using batch contactors [J]. ChemicalEngineering Journal,2010,160(2):683-690
    [92] Sonetaka N, Fan H J, Kobayashi S, Su Y C, Furuya E. Characterization of adsorptionuptake curves for both intraparticle diffusion and liquid film mass transfer controllingsystems [J]. Journal Hazardous Materials,2009,165(1-3):232-239
    [93] Baup S, Jaffre C, Wolbert D, Laplanche A. Adsorption of Pesticides onto GranularActivated Carbon: Determination of Surface Diffusivities Using Simple BatchExperiments [J]. Adsorption,2000,6(3):219-228
    [94] Neretniekst I. Adsorption in finite bath and countercurrent flow with systems having aconcentration dependant coefficient of diffusion [J]. Chemical Engineering Science,1976,31(6):465-471
    [95] Suzuki M, Fujii T. Concentration dependence of surface diffusion coefficient ofpropionic acid in activated carbon particles [J]. AlChE Journal,1982,28(3):380-385
    [96] Otero M, Zabkova M, Grande C A, et al. Fixed-Bed Adsorption of Salicylic Acid ontoPolymeric Adsorbents and Activated Charcoal [J]. Industry Engineer Chemical Research,2005,44(4):927-936
    [97] Lua A C, Jia Q. Adsorption of phenol by oil-palm-shell activated carbons in a fixedbed [J]. Chemical Engineering Journal,2009,150(2-3):455-461
    [98] Slaney A J, Bhamidimarri. Adsorption of pentachlorophenol by activated carbon in fixedbeds: application of homogeneous surface diffusion model [J]. Water ScienceTechnology,1998,38(7):227-235
    [99] Singh T S, Pant K K. Experimental and modeling studies on fixed bed adsorption ofAs(Ⅲ) ions from aqueous solution [J]. Separation and Purification Technology,2006,48(3):288-296
    [100] Kim S H, Shon H K, Ngo H H. Adsorption characteristics of antibiotics trimethoprimon powdered and granular activated carbon [J]. Journal of Industrial and EngineeringChemistry,2010,16(3):344-349
    [101] Sulaymon A H, Abid B A, Al-Najar J A, Removal of lead copper chromium and cobaltions onto granular activated carbon in batch and fixed-bed adsorbers [J]. ChemicalEngineering Journal,2009,155(3):647-653
    [102] Tailleur R G, Hernandez J, Rojas A. Selective hydrogenation of olefins with masstransfer control in a structured packed bed reactor[J]. Fuel,2008,87(17-18):3694-3705
    [103] Moura R B, Damianovic M H R Z, Foresti E. Nitrogen and carbon removal fromsynthetic wastewater in a vertical structured-bed reactor under intermittent aeration[J].Journal of Environmental Management,2012,98(15):163-167
    [104] Nikolajsen K, Kiwi-Minsker L, Renken A. Stuctured fixed-bed adsorber based onzeolite/sinered matal fibre for low concentration VOC removal[J]. Chemical EngineeringResearch and Design,84(A7):562-568
    [105] Pandey N K, Velavendan P, Gfetha R, et al. Adsorption kinetics and breakthroughbehaviour of tri-n-butyl phosphate on amberlite XAD-4resin [J]. Journal of nuclearscience and technology,1998,35(5):370-378
    [106]龙腾.改性花生壳在固定床中吸附镉的特性研究[D].广州:华南理工大学,2012
    [107] Naja G, Volesky B. Behavior of the mass transfer zone in a biosorption column [J].Environmental Science Technololgy,2006,40:3996-4003
    [108] Guo J, Lua A C. Adsorption of sulphur dioxide onto activated carbon prepared fromoil-palm shells with and without pre-impregnation [J]. Separation and PurificationTechnology [J],2003:30(3):265-273
    [109] Dou B, Chen B B, Gao J S, et al. HCl Removal and Chlorine Distribution in the MassTransfer Zone of a Fixed-Bed Reactor at High Temperature [J]. Energy&Fuels,2006,20(3):959-963
    [110] Vieira M G A, Almeida Neto A F, Gimenes M L, et al Removal of nickel on Bofebentonite calcined clay in porous bed [J]. Journal of Hazardous Materials,2010,176(1-3):109-118
    [111] Huanhao C, Zhang H, Yan Y. Preparation and characterization of a novel gradientporous ZSM-5zeolite membrane/PSSF composite and its application for tolueneadsorption [J].2012,209(15):372-378
    [112] Khan A R, Al-Bahri T A, Al-Haddad A. Adsorption of phenol based organic pollutantson activated carbon from multi-component dilute aqueous solutions [J]. Water Research,1997,31(8):2102-2112
    [113] Pacholczyk A, Terzyk A P, Wisniewski M, Gauden P A, et al. Phenol adsorption onclosed carbon nanotubes [J]. Journal of Colloid and Interface Science,2011,361(1):288-292
    [114] Ramakrishnan K. Zinc chloride-activated jatropha husk carbon for removal of phenolfrom water by adsorption: equilibrium and kinetic studies [J]. Toxicological&Environmental Chemistry,2011,93(6):1111-1122
    [115]杨骏,李永旺,秦张峰,等.液固体系颗粒活性炭固定床吸附器流出曲线预测模型—活性炭吸附水中酚的研究[J],化工学报,1996,47(2):179-183
    [116] Coeuret F. The percolating porous electrode. I-Mass transfer in fixed bed [J].Electrochimica Acta,1976,21:185-193.
    [117] Wilson E J, Geankoplis C J, Liquid mass transfer at very low Reynolds number inpacked bed [J]. Industrial and Engineering Chemistry Research,1966,5(1):9-14
    [118] Kalluri R R, Microfibrous entrapped catalysts and sorbents: Microstructuredheterogeneous contacting systems with enhanced efficiency, Ph. D. Dissertation, AuburnUniversity, Auburn, AL,2008
    [119]夏启斌,黄思思,肖利民.气相三氯甲烷在三种活性炭颗粒活性炭固定床层上的吸附[J].华南理工大学学报:自然科学版,2009,37(9):128-132
    [120]王秀芳,张会平,肖新颜,等.苯酚在竹炭上的吸附平衡和动力学研究[J].功能材料,2005,36(5):746-749
    [121] Seber G A F, Wild C J. Nonlinear Regression, John Wiley&Sons, Hoboken,2003
    [122] Satoh K, Fan H J, Hattori H, et al. Simultaneous determination of intraparticlediffusivities from ternary component uptake curves using the shallow bed technique [J].Journal of Hazardous materials,2008,155(3):397-402
    [123] McKay G. Solution to the homogeneous surface diffusion model for batch adsorptionsystems using orthogonal collocation [J]. Chemical Engineering Journal,2001,81(1-3):231-221
    [124] McKay G. Application of surface diffusion model to the adsorption of dyes on bagassepith [J]. Adsorption,1998,4(3-4):361-372
    [125] Ash R, Barrer R M, Pope C G, Flow of adsorbable gases and vapours in amicroporous medium. I. single sorbates [J], Proceedings the Royal Society,1963,271(1344):1-18
    [126] Ralph T Y, John B F, Gary L H. Modification to the higashi model for surface diffusion[J]. AIChE Journal,1973,19(5):1052-1053
    [127] Wakao N, Funazkri T, Effect of fluid dispersion coefficients on particle-to-fluid masstransfer coefficients in packed beds: correlation of sherwood numbers [J]. ChemicalEngineering Science,1978,33(10):1375-1384
    [128] Hixson W, Baum S J, Agitation. Mass transfer coefficients in liquid-solid agitationsystems[J]. Industrial Engineering Chemistry,1941,33(4):478-485
    [129] Streat M, Patrick J W, Perez M J C. Sorption of phenol and para-chlorophenol fromwater using conventional and novel activated carbons[J]. Water Research,1995,29(2):467-472
    [130] Srivastava V C, Swamy M M, Mall I D, et al. Adsorptive removal of phenol by bagassefly ash and activated carbon: Equilibrium, kinetics and thermodynamics [J], Colloids andSurfaces A: Physicochemical and Engineering Aspects,2006, A272(1-2):89-104
    [131] Baup S, Wolbert D, Laplanche A. Importance of surface diffusivities in pesticideadsorption kinetics onto granular versus powdered activated carbon: experimentaldetermination and modeling [J]. Environmental Technology,2002,23(10):1107-1117
    [132] Sonetaka N, Fan H J, Kobayashi S, et al. Simultaneous determination of intraparticlediffusivity adsorption uptake curve [J]. Journal of Hazardous materials,2009,164(2-3):1447-1451
    [133] Zhang X P, Zhao X, Hu J Q, et al. Adsorption dynamics of trichlorofluoromethane inactivated carbon fiber bed [J]. Journal of Hazardous materials,2011,186(2-3):1816-1822
    [134] Koocheksarayi M K, Shams K, Liu Y Z. Sorption dynamics in fixed-beds of inert corespherical adsorbents including axial dispersion and langmuir Isotherm [J]. AIChEJournal,2009,55(7):1784-1792
    [135] Pota A A, Mathews A P. Adsorption dynamics in a stratified convergent tapered bed [J].Chemcial Engineer Science,2000,55(8):1399-1409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700