渭北旱塬长期施肥试验中氨氧化细菌的多样性及群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氧化细菌(ammonia-oxidizing bacteria,AOB)是一类能够将氨氧化为亚硝酸盐的细菌,广泛分布于几乎所有土壤、淡水和海洋环境中。氨氧化细菌催化的亚硝化过程为硝化作用的限速步骤,在自然界氮素地球化学循环过程中起着重要的作用,因此在微生物生态学中,已经建议将其作为一种模式生物。近年来人们对黄土高原地区农业土壤的研究主要集中在长期施肥对土壤中含水量、土壤肥力、农作物产量等的影响。由于氨氧化细菌的数量和种类对土壤中氮素的转化有着重要的作用,本实验对陕西省长武县长期施肥定位试验的土壤样品进行研究,探讨长期施肥对土壤中氨氧化细菌的多样性和群落结构组成的影响,以揭示长期施肥作用下黄土高原地区农业土壤中氨氧化细菌的多样性及群落结构特点,为制定合理的施肥制度提供理论基础。
     本试验样品采集于中国科学院长武农业生态站长期定位施肥基地。试验采用完全随机区组设计方案,设置5个处理:LD(裸地);CK(种植不施肥);N(单施氮肥);P(单施磷肥);NP(氮磷配施)。各处理每种肥料的施入量为:N肥(尿素)120 kg/hm~2,P肥(过磷酸钙)60 kg/hm2。
     采用直接法提取土样中微生物总DNA,使用氨氧化细菌的功能基因氨单加氧酶基因(amoA)所设计的引物扩增基因片段,建立氨氧化细菌的克隆文库,用Rsa I和Hha I限制性内切酶对氨氧化细菌的克隆文库进行PCR-RFLP分析。
     通过对5种长期施肥处理氨氧化细菌amoA基因克隆文库的构建及群落多样性的系统发育分析表明:
     (1)从LD、CK、N、P和NP等5种施肥处理的土壤样品中分别得到38/154、48/150、65/152、45/152、46/152个RFLP酶切类型。库容值分别为86.36%、80.67%、73.68%、84.87%和81.57%。各处理均出现了明显的优势菌群。
     (2)α多样性指数表明不同施肥处理的多样性存在差异,N处理的土壤中氨氧化细菌的Shannon-Wiener(H′)和Margalef(d_(Ma))指数均最高,其次是CK、NP、P处理,而LD处理中最低,表明长期单施氮肥后增加了土壤中氨氧化细菌的多样性和丰富度;长期种植作物后也同样会增加土壤中氨氧化细菌的多样性和丰富度,但单施磷肥和氮磷共施后土壤中氨氧化细菌的多样性和丰富度都有所降低,长期施肥均改变了氨氧化细菌的多样性和丰富度。
     (3)基于amoA基因建立的系统进化树显示,所有来自于各处理条件下土壤中氨氧化细菌的优势种群都是属于Nitrosospira和Nitrosospira-like,与大部分与Nitrosospiracluster 3聚为一组,但优势菌种在克隆文库中所占的比例不同,表明不同的施肥处理下土壤中氨氧化细菌的群落结构发生了改变。
Ammonia-oxidizing bacteria (ammonia-oxidizing bacteria, AOB) are a type of bacteria which can oxidize ammonia to nitrite, and they are widely distributed in almost all soil, freshwater and marine environments. The process that ammonia-oxidizing bacteria catalyzed nitrosation is rate-limiting step of nitrification, and it plays an important role in natural geochemical cycling of nitrogen. Therefore in microbial ecology, AOB has been proposed as a model organism. In recent years, the agricultural soil study of the Loess Plateau is mainly focused on long-term fertilization effects on soil moisture, soil fertility, and crop yield. AOB’S number and types play an important role in nitrogen transformation. The study materials are on long-term fertilized soil samples from Changwu County, Shaanxi. The purpose is to explore the effects of long-term fertilization on the diversity of ammonia oxidizing bacteria and community structure composition and in order to reveal the characteristic of AOB’diversity and community structure in long-term fertilized agricultural soil in Loess Plateau, finally, provide a theoretical basis for reasonable fertilization.
     The test samples are collected from Changwu Agricultural Ecological Station, Chinese Academy of long-term fertilization base. The experiment using a completely random design method with 5 treatments: LD (bare land); CK (cultivation without fertilization); P(superphosphate); N(urea); NP(superphosphate+urea). Fertilizer amount in each treatment is: N fertilizer (urea) 120 kg/hm2, P fertilizer (superphosphate) 60 kg/hm~2.
     The total DNA of soil microorganisms was directly extracted from soil samples. Primers which were designed according to the functional gene, ammonia monooxygenase gene (amoA) were used to establish five clone libraries of ammonia-oxidizing bacteria. The clone libraries was analyzed by PCR-RFLP with cleavaging of Rsa I and Hha I, two four-base restriction enzymes, respectively.
     Through construction of amoA gene library ammonia-oxidizing bacteria from five treatment soil samples and phylogenetic analysis of community diversity, it showed that:
     (1) Different RFLP types by enzyme digestion were obtained from five kinds of fertilized soils. They are 38/154(LD), 48/150(CK), 65/152(N), 45/152(P) and 46/152(NP), respectively. Storage capacity values were 86.36%, 80.67%, 73.68%, 84.87% and 81.57% , respectively. In all treatments, there is a clear advantage flora.
     (2)αdiversity index showed that the diversity of different treated soils was various. In N treatment soil, Shannon-Wiener (H’) and Margalef (d_(Ma)) index of ammonia-oxidizing bacteria was the highest, then followed by CK, NP, P treatment, and the lowest was the LD treatment. These indicated that after long-term N fertilizer’s treatment, the diversity and richness of ammonia oxidizing bacteria had been increased. At the same time, long-term cultivation of crops can also increase ammonia oxidizing bacterial diversity and richness. However, in single P and N and N, P mixed treated soil, the diversity and richness were reduced. These indicated that long-term fertilization changed the diversity and richness of ammonia-oxidizing bacteria.
     (3) Phylogenetic tree based on amoA gene showed that the dominant ammonia oxidizing bacteria in all treated solids, belongs to Nitrosospira and Nitrosospira-like, and most of dominant bacteria are grouped with Nitrosospira cluster 3. But the dominant strain’s proportion in clone library was different, indicating that in the soils under different fertilization treatments, the structure of ammonia oxidizing bacterial community had been changed.
引文
岑剑.过量施肥下不同氮肥对土壤细菌多样性影响的RFLP分析. [硕士].陕西杨凌:西北农林科技学生命学院.
    辜运富,云翔,张小平,涂仕华,孙锡发, Kristina Lindstr?m. 2008.不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响[J].中国农业科学, 41(12):4119~4126.
    郝永俊,吴松维,吴伟祥,陈英旭. 2007.好氧氨氧化菌的种群生态学研究进展[J].生态学报, 27 (4): 1573~1582.
    张晶,林先贵,尹睿. 2009.参与土壤氮素循环的微生物功能基因多样性研究进展[J].中国生态农业学报, 17(5): 1029~1034.
    李献梅,王小芬,崔宗均. 2009.末端限制性片段长度多态性技术(T-RFLP)在微生物群体分析上的应用与技术优化[J].中国农业大学学报, 14 (4) :1~9.
    李振高,俞慎. 1997.土壤硝化一反硝化作用研究进展.土壤, (6): 281~285.
    李光伟,刘和,张峰,堵国成,陈坚. 2007.荧光定量PCR监测五氯酚对好氧颗粒污泥和活性污泥中氨氧化细菌数量的影响[J].微生物学报, 47(1): 136~140.
    马英,钱鲁闽,王永胜,吴成业. 2007.硝化细菌分子生态学研究进展[J].中国水产科学, 14 (5): 872~879.
    莫旭华,史荣久,李慧,郑佳,王元芬,徐慧. 2009.华北典型旱地小麦土amoA基因的PCR-RFLP分析[J].生态科学, 28(1): 49~55.
    马悦欣, Holmstrom C, Webb J, Kjelleberg S. 2003.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报, 23(8): 1526~1569.
    单国彬,金文标,林佶侃,邢新会. 2006.变性梯度凝胶电泳在环境微生物生态学中的应用[J].生态学杂志, 25(10): 1257~1264.
    袁飞,冉炜,胡江,沈其荣. 2005.变性梯度凝胶电泳法研究我国不同土壤氨氧化细菌群落组成及活性[J].生态学报, 25(6): 1318~1324.
    周娟,李君文,郑金来. 2001.亚硝酸细菌研究进展[J].环境科学与技术, 24(增刊):8~10.
    钟文辉,王薇,林先贵,尹睿. 2009.核酸分析方法在土壤微生物多样性研究中的应用[J].土壤学报, 46(2): 334~341.
    翟振华,李艳双. 2009.变性梯度凝胶电泳技术在微生物分子生态学研究中的应用[J].生物技术报, (5): 55~59.
    钟文辉,蔡祖聪,尹力初,张鹤.2008.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响[J].土壤学报,45(1):105-111.
    张丽娜,曹慧,崔中利,孙波,李大力,李顺鹏. 2006.红壤荒草地氨氧化细菌富集液16S rDNA文库的RFLP分析[J].土壤学报, 43(4): 635~640.
    Aakra A, Utaker J B, Nes I F. 2001. Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria[J]. FEMS Microbiology Letters, 205: 237~242.
    Arp D J, Sayavedra - Soto L A, Hommes N G. 2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea[J]. Archives of Microbiology,178(4): 250~255.
    Avrahami S, Conrad R, Braker G. 2002. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers[J]. Appl Environ Microbiol, 68(11): 5685~5692.
    Avrahami S, Liesack W, Conrad R. 2003a. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers[J]. Environmental Microbiology, 5(8): 691~705.
    Avrahami S, Conrad R. 2003b. Patterns of Community Change among Ammonia Oxidizers in Meadow Soils upon Long-Term Incubation at Different Temperatures[J]. Appl Environ Microbiol, 69(10): 6152~6144.
    Bemhard A E, Donn T, Giblin A E,Stahl D A. 2005. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system[J]. Environmental Microbiology, 7(9): 1289~1297.
    Briones A M, Okabe S, Umemiya Y, Ramsing N B, Reichardt W, Okuyama H. 2003. Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars[J]. Plant and Soil, 250(2): 335-348.
    Belser L W, Schmidt E L. 1978. Diversity in the ammonia-oxidizing population of a soil[J]. Applied and Environmental Microbiolog, 36(4): 584~588.
    Bruns M A, Stephen J R, Kowalchuk G A, Prosser J I, Paul E A. 1999. Comparative diversity of ammonia oxidizer 16S rRNA gene sequencesin native, tilled, and successional soils[J]. Appl Environ Microbiol, 65(7):2994~3000.
    BéjàO, Koonin E V, Aravind L, Taylor L T, Seitz H, Stein J L, Bensen D C, Feldman R A, Swanson R V, DeLong E F. 2002. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces[J]. Appl Environ Microbiol, 68(1):335~345.
    Buchanan R E , Gibbons N E. 1974. Bergey’s Manual of Determinative Bacteriology. 8th Ed[M]. Baltimore : The Williams and Wilkins Company.
    Castignetti D, Hollocher T C.1984. Heterotrophic nitrification among denitrifiers[J]. Applied Environmental microbiology, 47(4):620~623.
    Chu H Y, Takeshi F, Sho Morimoto, Lin X G, Kazuyuki Yagi, Hu J L, Zhang J B. 2007. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil[J]. Applied and Environmental Microbiology, 73(2): 485~491.
    Dorador C, Busekow A, Vila I, Imhoff J F, Witzel K P. 2008. Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile[J]. Extremophiles, 12(3): 405~14
    Deni J, Penninckx M J. 1999. Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil[J]. Applied and Environmental Microbiology, 65(9): 4008~4013.
    Dubey S K, Tripathi A K, Upadhyay S N. 2006. Exploration of soil bacterial communities for their potential as bioresource[J]. Bioresource Technology, 97(17): 2217~2224.
    Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenstrom J, Hallin S L. 2007. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil[J]. Soil Biology and Biochemistry, 39(1): 106~115.
    Hermansson A, Lindgren P E. 2001. Quantification of Ammonia-Oxidizing Bacteria in Arable Soil by Real-Time PCR[J]. Appl Environ Microbiol, 67(2): 972~976.
    Holt J G, Krieg N R, Sneath P H A, Stalely J T, Williams S T. 1994. Bergey’s Manual of Determinative Bacteriology.9th Ed[M]. Baltimore: The Williams and Wilkins Company, 447~450.
    Hovanec T A, Taylor L T, Blakis A, Delong E F. 1998. Nitrospira-Like bacteria associated with nitrite oxidation in fresh water aquaria[J]. Appl Environ Microbiol, 64(1): 258~264.
    He J Z, Shen J P, Zhang L M, Zhu Y G, Zheng Y M, Xu M G, Di H J . 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a
    Chinese up land red soil under long-term fertilization practices[J]. Environmental Microbiology, 9(9): 2364~2374.
    Kowalchuk G A, Stienstra A W, Heilig G H, Stephen J R, Woldendorp J W. 2000. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands[J]. Environmental Microbiology, 2(1): 99~110
    Kowalchuk G A, Stephen J R. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annu. Rev. Microbiol, 55: 485-529.
    Kirk J L, Beaudette L A, Hart M, Moutoglis P, Khironomos J N, Lee H, Trevors J T. 2004. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 58(2): 169~188.
    Mccaig A E, Phillips C J, Stephen J R, Kowalchuk G A, Harvey S M, Herbert R A, Embley T M, Prosser J I. 1999. Nitrogen Cycling and Community Structure of Proteobacterialβ-Subgroup Ammonia-Oxidizing Bacteria within Polluted Marine Fish Farm Sediments[J]. Applied and Environmental Microbiology, 65 (1): 213~220.
    Nicolaisen M H, Ramsing N B. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria[J]. Journal of Microbiological Methods, 50(2):189~203.
    Okano Y, Hristova K R, Leutenegger C M, Jackson L E, Denison R F, Gebreyesus B, Lebauer D,Scow K M. 2004. Application of Real-Time PCR To Study Effects of Ammonium on Population Size of Ammonia-Oxidizing Bacteria in Soil[J]. Appl Environ Microbiol, 70(2): 1008~1016.
    Phillips C J, Smith Z, Embley T M, Prosser J I. 1999. Phylogenetic differences between particle associated and planktonic ammonia2oxidizing bacteria of theβsubdivision of the class Proteobacteria in the northwestern Mediterranean Sea[J]. Applied and Environmental Microbiology, 65(2): 779~786.
    Park H D, Noguera D R.2002. Effect of dissolved oxygen on ammonia-oxidizing bacterial communities[J]. Water Environment Federation, 21 - 30(15): 130-144.
    Purkhold U, Pommerening-R?ser A, Juretschko S, Schmid M C, Koops H P, Wagne M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 66(12):5368-5382.
    Rosselló-Mora R, Amann R. 2001. The species concept for prokaryotes[J]. FEMS Microbiol Rev, 25:39~67.
    Rotthauwe J H, Witzel KP, Liesack W. 1997. The ammonia monooxy-genase structural gene amoA as a functional marker, molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Appl EnvironMicrobiol, 63(12): 4704~4712.
    Shen J P, Zhang L M, Zhu Y G, Zhang J B, He J Z . 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia -oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 10(11): 1601~1611.
    Stephen J R, McCaig A E, Smith Z, Prosser J I, Embley T M. 1996. Molecular diversity of soil and marine 16S rRNA gene sequences related toβ-subgroup ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 62(11): 4147-4154.
    Stephen J R., Kowalchuk G A, Bruns M V, McCaig A E, Phillips C J, Embley T M, Prosser J I. 1998. Analysis ofβ-subgroup proteobacterial ammonia oxidizer populations in Soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing[J]. Applied and Environmental Microbiology, 64(8): 2958-2965.
    Stephen J R, Chang Y J, Macnaughton S J, Kowalchuk G A, Leung K T, Flemming C A, White D C, Chang Y J. 1999. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria[J]. Applied and Environmental Microbiology, 65(1): 95~101.
    Ward B B, Martino D P, Diaz M C, Joye S B. 2000. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences[J]. Appl Environ Microbiol, 66(7): 2873~2881.
    Webster G, Embley M, Prosser J I. 2002. Grassland management regimens reduce small-scale heterogeneity and species diversity ofβ-Proteobacterial ammonia oxidizer populations[J]. Applied and Environmental Microbiology, 68(1): 20~30.
    Zhu J Z, Bruns M A, Tiedjie J M. 1996. DNA recovery from soil of diverse composition[J]. Applied and Environmental Microbiology, 62(2): 316-322.
    Zhong W H, Cai Z C. 2007. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied soil ecology, 36(2-3): 84~91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700