hASH1在肺神经内分泌肿瘤中的表达及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     hASHl (human achaete-scute homolog 1)基因是一个bHLH (basic helix-loop-helix)转录因子,首先从甲状腺髓样癌的cDNA文库中克隆出来,位于12q22-q23。在脊椎动物的发育过程中,ASH1基因通常只暂时性的表达于胚胎肺神经内分泌细胞的早期分化阶段,在终末分化标记物出现后其表达趋于沉默。已有研究表明在具有神经内分泌分化的前列腺癌、甲状腺髓样癌、胃肠道神经内分泌癌中有hASHl基因的表达。目前临床常用的非激素类神经内分泌肿瘤标志物有嗜铬粒蛋白A (chromogranin A, CgA)、突触素(synaptophysin, Syn)和CD56等。本实验通过免疫组织化学方法、Western blot和RT-PCR方法检测正常肺组织和各型肺肿瘤中hASHl基因的表达情况,分析其表达与神经内分泌标志物的相关性,探讨其成为更为特异和敏感的临床病理诊断肺神经内分泌肿瘤的标志物的可能性。
     材料和方法
     一、材料
     收集166例肺癌组织蜡块(鳞癌30例,腺癌30例,大细胞癌20例,典型类癌16例,非典型类癌20例,大细胞神经内分泌癌10例,小细胞癌40例),其中35例取自辽宁省肿瘤医院,其余取自中国医科大学附属一院,49例肺炎性假瘤及10例癌旁正常肺组织蜡块取自中国医科大学附属一院。
     23例肺癌新鲜组织标本(有相应的蜡块标本),9例鳞癌,9例腺癌和5例小细胞癌新鲜组织均取自中国医科大学附属一院2008年5月-2009年5月手术切除
     二、主要试剂和来源
     浓缩型兔抗人ASH1多克隆抗体(ab38557)购自Abcam公司,即用型鼠抗人chromogranin A单克隆抗体(MAB-0202)、鼠抗人synaptophysin单克隆抗体(MAB-0078)、鼠抗人CD56单克隆抗体(RAB-0256)均购自福州迈新生物技术公司。
     三、方法
     (一)免疫组织化学染色
     蜡块标本切片后按照链菌素抗生物素蛋白-过氧化物酶免疫组化法(SP法)检测,所有标本均检测hASHl(1:100)蛋白,所有肺神经内分泌癌标本均检测CgA、Syn和CD56的表达情况,以磷酸缓冲液PBS代替一抗作为阴性对照。
     (二)Western blot
     从组织内提取细胞全蛋白,SDS-PAGE电泳,hASHl蛋白40V恒压4℃湿转100min,TBS/0.3%Tween-20/5%小牛血清室温封闭2hrs,一抗(1:500)4℃孵育过夜,辣根酶标记山羊抗兔二抗(1:5000)37℃孵育2h。内参β-actin在电泳后以切胶方式与hASHl蛋白所在部位分开转印。ECL显色,X线胶片曝光成像。
     (三)RT-PCR
     利用Trizol提取组织中总的RNA,经反转录成cDNA,hASHl的引物上游序列5’-TCCCCCAACTACTCCAACGAC-3',下游序列是5’CCCTCCCAACGCCACTG-3',以β-actin为内参照,循环条件为:94"C预变性5min,94℃变性30s,55℃退火30s,72℃延伸30s,30个循环后于72℃延伸5min,最后经琼脂糖凝胶电泳后保存图像。
     (四)统计学分析
     应用SPSS 17.0统计软件进行数据处理,对hASHl在各种肺组织中表达的差异采用x2检验(n>40)或Fisher确切概率法(n<40)分析,采用Spearman等级相关分析hASHl与CgA、Syn、CD56表达的相关性,P<0.05为差异有统计学意义。
     结果
     一、免疫组织化学结果
     hASH1蛋白表达定位于细胞核,在正常肺组织、肺炎性假瘤、肺鳞癌、肺腺癌和肺大细胞癌中不表达;在典型类癌中的表达阳性率为12.5%(2/16),在非典型类癌中的表达阳性率为75%(15/20),差别有统计学意义(P<0.01);在大细胞神经内分泌癌中的表达阳性率为60%(6/10),在小细胞癌中的表达阳性率为77.5%(31/40),差别无统计学意义(P>0.05);CgA、Syn在细胞浆呈现棕黄色细小颗粒者为阳性染色,CD56在细胞膜和细胞浆呈现棕黄色细小颗粒者为阳性染色,36例类癌中,27例(75.0%)CgA阳性,26例(72.2%)Syn阳性,29例(80.6%)CD56阳性,在50例大细胞神经内分泌癌和小细胞癌中,24例(48.0%)CgA阳性,38例(76.0%)Syn阳,42例(84.0%)CD56阳性;hASH1的表达与CgA、Syn、CD56的表达存在相关性(P<0.05)。
     二、Western blot结果
     hASHl蛋白在肺鳞癌和腺癌组织中不表达,在小细胞肺癌组织中高表达。
     三、RT-PCR结果
     hASH1 mRNA在肺鳞癌和腺癌组织中不表达,在小细胞肺癌组织中高表达。
     结论
     hASHl基因的表达仅限于肺神经内分泌肿瘤中,对肺神经内分泌肿瘤具有高度的特异性和较高的敏感性,可能成为肺神经分泌肿瘤尤其是肺小细胞癌的临床病理诊断标志物。
Introduction
     Human achaete-scute homologue 1 (hASHl) gene is a basic-helix-loop-helix transcription factor, cloned from a MTC cDNA library firstly, located in 12q22-q23. During development in vertebrates, ASH1 gene is usually temporary and expressed in embryonic pulmonary neuroendocrine cells in early differentiation stage, the emergence of terminal differentiation markers its expression tended to silence. Some studies showed the expression of hASH1 gene in prostate cancer with neuroendocrine differentiation, medullary thyroid cancer, gastrointestinal neuroendocrine tumors. Now commonly used non-hormonal type of clinical neuroendocrine tumor markers, chromogranin A (CgA), synaptophysin (Syn), CD56 and so on. This study is to determine the normal lung tissue and various types of lung tumors hASHl gene expression by Immunohistochemistry, Western blot and RT-PCR, to analyze whether its expression was correlated with pulmonary neuroendocrine markers, and to explore the possibility of hASH1 as clinical pathological markers in the neuroendocrine tumors compared with previous neuroendocrine tumor markers.
     Materials and Methods
     一、Samples
     166 lung cancer tissues samples (30 lung squamous carcinomas,30 lung adenocarcinomas,20 large cell carcinomas,16 typical carcinoids,20 atypical carcinoids,10 large cell neuroendocrine carcinomas,20 small cell lung carcinomas),35 cases obtained from the Liaoning Provincial Tumor Hospital, the others were obtained from the First Affiliated Hospital of China Medical University.49 pulmonary inflammatory pseudotumors and 10 corresponding normal lung specimens were obtained from the First Affiliated Hospital of China Medical University.
     23 fresh lung cancer tissue samples (there is a corresponding paraffin block of specimens),9 lung squamous carcinomas,9 lung adenocarcinomas,5 small cell lung carcinomas, were obtained from patients who had surgery in the First Affiliated Hospital of China Medical University during May,2008-May,2009.
     二、Regents
     The concentrated anti-human ASH1 rabbit polyclonal antibody (ab38557) were provided by Abcam company, the anti-human chromogranin A mouse monoclonal antibody (MAB-0202), anti-human synaptophysin mouse monoclonal antibody (MAB-0078), anti-human CD56 mouse monoclonal antibody (RAB-0256) were provided by Fuzhou Maxim biotechnology company.
     三、Methods
     (一) Immunohistochemistry
     Detect the hASHl protein (1:100) expression in all samples and detect CgA, Syn and CD56 expression in all lung neuroendocrine carcinoma by Immunohistochemistry S-P method in lung cancer samples, phosphate buffe solution was used as negative control.
     (二) Western blot
     Detect the expression of hASHl protein in lung cancer tissues①Electrophoresis;②transfer proteins from gel to PVDF membrane (40V, 100min,4℃);③blocking (TBS/0.3%Tween-20/5% CS RT 2hrs);④incubation with primary antibody (1:500);⑤incubation with secondary antibody (1:5000);⑥detection by ECL.
     (三) RT-PCR
     Extract the total RNA from various kinds of lung cancer tissue using Trizol, by reverse transcription, the upstream sequence of hASH1 primer is 5' -TCCCCCAACTACTCCAACGAC-3',the downstream sequence is 5' -CCCTCCCAACGCCACTG-3',β-actin served as an internal control, circulation conditions:94℃force-degeneration 5min,94℃degeneration 30s,55"C reannealing 30s, 72℃elongation 30s, after 30 cycles 72℃elongation 5min, agarose gel electrophoresis to preserve the image.
     (四) Statistical analysis
     All the data are analyzed with SPSS for Windows 17.0 software. We use x2test (n>40) or Fisher exact propability (n<40) to analyze expression diference between various lung tissues samples, the correlation between hASH1 and CgA, Syn, CD56 we use the permutation test for the Spearman correlation coefficient to analyze. The statiscal significance is defined as P<0.05.
     Results
     一、Immunohistochemistry
     hASH1 protein localized in the cell nucleus, was detected in 2/16 (12.5%) typical carcinoids,15/20 (75%) atypical carcinoids,6/10 (60%) large cell neuroendocrine carcinomas and 31/40 (77.5%) small cell lung carcinomas, respectively, but not in any normal lung tissue (0/10), lung inflammatory pseudotumor (0/49), squamous cell carcinoma (0/30), adenocarcinoma (0/30) or large cell carcinoma (0/20). There was a significant difference in hASH1 expression incidence between typical carcinoids and atypical carcinoids (P<0.01), but not in large cell neuroendocrine carcinoma and small cell lung carcinoma (P>0.05). CgA and Syn protein localized in the cytolymph, CD56 protein localized in the cellular membrane and cytolymph, we detected 27 (75.0%) CgA,26 (72.2%) Syn,29 (80.6%) CD56 of 36 carcinoids, detected 24 (48.0%) CgA, 38 (76.0%) Syn,42 (84.0%) CD56 of 50 large cell neuroendocrine carcinomas and small cell lung carcinomas, hASH1 expression correlated very closely with CgA, Syn and CD56 expression in pulmonary neuroendocrine tumors (P<0.05).
     二、Western blot
     There is no expression of hASHl protein in lung squamous cell carcinoma and adenocarcinoma, but in the small cell lung carcimoma the expression level is high.
     三、RT-PCR
     There is no expression of hASH1 mRNA in lung squamous cell carcinoma and adenocarcinoma, but in the small cell lung carcimoma the expression level is high.
     Conclusion
     hASH1 gene expression is limited to pulmonary neuroendocrine tumors, with a high degree of specificity and high sensitivity, may be applied to clinical pathology diagnosing of pulmonary neuroendocrine tumors.
引文
1 Ball DW, Azzoli CG, Baylin SB, et al. Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci.1993; 90(12):5648-5652.
    2 Renault B, Lieman J, Ward D, et al. Localization of the human achaete-scute homolog gene (ASCL1) distal to phenylalanine hydroxylase (PAH) and proximal to tumor rejection antigen (TRal) on chromosome 12q22-q23. Genomics.1995; 30(1): 81-83.
    3 Ball DW. Achaete-scute homolog-1 and development Notch in lung neuroendocrine and cancer. Cancer Lett.2004; 204(2):159-169.
    4 Chen H, Thiagalingam A, Chopra H, et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer:a hairy related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA.1997; 94(10):5355-5360.
    5 Ida Rapal, Paolo Ceppil, Enrico Bollitol, et al. Human ASH1 expression in prostate cancer with neuroendocrine differentiation. Modern Pathology.2008; 21(6): 700-707.
    6 Chen H, Kunnimalaiyaan M, Van Gompel J J. Medullary Thyroid Cancer:The Functions of raf-1 and Human Achaete-scute Homologue-1. Thyroid.2005; 15(6):511-521.
    7 Shida T, Furuya M, Nikaido T, et al. Aberrant Expression of Human Achaete-Scute Homologue Gene 1 in the Gastrointestinal Neuroendocrine Carcinomas. Clin Cancer Res.2005; 11(2ptl):450-458.
    8 Travis W D, Colby T V, Corrin B, et al. Histological typing of lung and pleural tumours. WHO international histological classification of tumours. Berlin: Springer.1999; 9-10.
    9 Pattyn A, Simp licio N, van Doorninck J H, et al. Ascl1/Mashl is required for the development of central serotonergic neurons. Nature Neurosci.2004; 7(6): 589-595.
    10 Guillemot F, Lo LC, Johnson JE, et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell.1993; 75(3):463-476.
    11 Huber K, Bruhl, B, Guillemot F, et al. Development of chromaffin cells depends on MASH1 function. Development,2002,129(20):4729-4738.
    12 Borges M, Linnoila R I, vande Velde H J, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature.1997; 386(6627):852-855.
    13 Linnoila R I, Zhao B, DeMayo, et al. Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res.2000; 60(15):4005-4009.
    14 Osada H, Tatematsu Y, Yatabe Y, et al. ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res.2005; 65(23): 10680-10685.
    15 Osada H.Tomida S, Yatabe Y, et al. Roles of Achaete-Scute Homologue 1 in DKK1 and E-cadherin Repression and Neuroendocrine Differentiation in Lung Cancer. Cancer Res.2008; 68(6):1647-1655.
    16 Nakakura E K, Sriuranpong V R, Kunnimalaiyaan M, et al. Regulation of Neuroendocrine Differentiation in Gastrointestinal Carcinoid Tumor Cells by Notch Signaling. J Clin Endocrinol Metab.2005; 90(7):4350-4356.
    17 Westerman B A, Nei jenhuis S, Poutsma A, et al. Quantitative reverse transcription polymerase chain reaction measurement of HASH1 (ASCL1),a marker for small cell lung carcinomas with neuroendocrine features. Clin Cancer Res.2002; 8(4): 1082-1086.
    1 Jiang S X, Kameya T, Asamura H, et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol.2004; 17(2):222-229.
    2 Ball D W, Azzoli C G, Baylin S B, et al. Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci USA.1993; 90(12):5648-5652.
    3 Renault B, Lieman J, Ward D, et al. Localization of the human achaete-scute homolog gene (ASCL1) distal to phenylalanine hydroxylase (PAH) and proximal to tumor rejection antigen (TRal) on chromosome 12q22-q23. Genomics.1995; 30(1): 81-83.
    4 Chen H, Kunnimalaiyaan M, Van Gompel J J. Medullary Thyroid Cancer:The Functions of raf-1 and Human Achaete-scute Homologue-1. Thyroid.2005; 15(6):511-521.
    5 Chen H, Thiagalingam A, Chopra H, et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer:a hairy related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA.1997; 94(10):5355-5360.
    6 Ball D W. Achaete-scute homolog-1 and development Notch in lung neuroendocrine and cancer. Cancer Lett.2004; 204(2):159-169.
    7 Guillemot F, Lo LC, Johnson JE, et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell.1993; 75(3):463-476.
    8 Huber K, Bruhl, B, Guillemot F, et al. Development of chromaffin cells depends on MASH1 function. Development.2002; 129(20):4729-4738.
    9 Borges M, Linnoila R I, vande Velde H J, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature.1997; 386(6627):852-855.
    10 Westerman B A, NeijenhuisS, Poutsma A, et al. Quantitative reverse transcription polymerase chain reaction measurement of HASH1 (ASCL1), a marker for small cell lung carcinomas with neuroendocrine features. Clin Cancer Res.2002; 8(4): 1082-1086.
    11 Linnoila R I, Zhao B, DeMayo, J L, et al. Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res.2000; 60(15):4005-4009.
    12 Osada H, Tatematsu Y, Yatabe Y, et al. ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res.2005; 65(23): 10680-10685.
    13 Artavanis-Tsakonas S, Rand M D, Lake R J. Notch signaling:cell fate control and signal integration in development. Science (Washington DC).1999; 284(5415): 770-776.
    14 dela Pompa J L, Wakeham A, Correia K M, et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development.1997; 124(6):1139-1148.
    15 Sriuranpong V, Borges M W, Ravi R K, et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res.2001; 61(7):3200-3205.
    16 Sriuranpong V, Borges M W, Strock C L, et al. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol Cell Biol.2002; 22(9):3129-3139.
    17 Nakakura E K, Sriuranpong V R, Kunnimalaiyaan M, et al. Regulation of Neuroendocrine Differentiation in Gastrointestinal Carcinoid Tumor Cells by Notch Signaling. J Clin Endocrinol Metab.2005; 90(7):4350-4356.
    18 Onuki N, Wistuba I I, Travis W D, et al. Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer.1999; 85(3):600-607.
    19 Ravi R K, Weber E, McMahon M, et al. Activated Raf-1 causes growth arrest in human small cell lung cancer cells. Clin Invest.1998; 101(1):153-159.
    20 Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med.2002; 8(9): 979-986.
    21 Osada H, Tomida S, Yatabe Y, et al. Roles of Achaete-Scute Homologue 1 in DKK1 and E-cadherin Repression and Neuroendocrine Differentiation in Lung Cancer. Can Res.2008; 68(6):1647-1655.
    22 Thiery J P, Sleeman J P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol.2006; 7(2):131-142.
    23 Li X, Deng W, Nail C D, B et al. Snail induction is an early response to Glil that determines the efficiency of epithelial transformation. Oncogene.2006; 25(4):609-621.
    24 Watkins D N, Berman D M, Burkholder S G, et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature.2003; 422(6929): 313-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700