径向色谱技术分离黑木耳抗氧化活性多糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑木耳是我国珍贵的药食两用胶质真菌,具有极其丰富的营养价值和药用价值,其生物活性的有效成分主要为黑木耳多糖。据大量研究表明,黑木耳多糖具有调节免疫功能、降血脂、抗衰老、抗氧化、抗肿瘤、抗凝血、抗血栓等药理生物活性。径向色谱技术是复杂样品快速分离、制备最有效的工具之一。其采用了径向流动技术,样品和流动相是从柱的圆周围流向柱圆心或从圆心流向圆周围,具有速度快、压降低、操作方便、便于线性放大等优点,解决了传统的轴向色谱技术所存在的问题,在分离纯化生物大分子方面具有很大的优势。为了更有效地分离纯化黑木耳多糖,得到高抗氧化活性和高纯度的黑木耳多糖,因此本课题对应用径向色谱技术分离纯化黑木耳多糖进行了研究。
     通过黑木耳多糖脱色方法的比较实验,得出树脂吸附法是一种较理想的黑木耳粗多糖脱色方法,既能取得良好的脱色效果,又不会造成多糖的大量损失。多糖保留率为68.6%,脱蛋白质率为55.8%。树脂脱色工艺为:AB-8大孔树脂中加入质量分数5.0%的多糖在pH 4.5、40℃下,以100 r/min的转速恒温振荡2小时后过滤。
     确定了DEAE树脂对黑木耳多糖吸附的最佳pH值为7.0,多糖吸附量为5.69 mg/mL;在pH值保持不变的情况下,树脂对黑木耳多糖的吸附量随初始浓度的增加而增大,当多糖浓度大于2.5 mg/mL时,多糖吸附量的增幅的趋势变缓。通过动态解吸实验,确定了最佳的洗脱液浓度范围为0.1-0.5 mol/L NaCl。
     使用柱规格(i.d.=2.3 cm,h=50 cm)的DEAE轴向色谱柱对黑木耳多糖进行分离,得到两个色谱峰,分别命名为AAPⅠ和AAPⅡ。采用DPPH法和H2O2/Fe2+体系测定了AAPⅠ和AAPⅡ的抗氧化活性,得出AAPⅡ纯度较高、具有较强的抗氧化活性。
     通过单因素实验的综合分析可以得出,确定了采用Toyopearl DEAE-650 M 500 mL径向色谱柱分离黑木耳抗氧化活性多糖AAPⅡ的最适条件为:上样体积200 mL、上样量2000 mg、上样液和洗脱液pH 7.0、洗脱流速45 mL/min、操作温度20℃。线性放大径向色谱柱,黑木耳多糖的上样量也可提高到512 g,分离可得116.8 g的AAPⅡ样品,达到近公斤级的制备规模。
     对径向色谱技术与轴向色技术分离黑木耳多糖进行了比较,得出:径向色谱柱压降低,可以进行大流量操作,分离速度比轴向色谱柱大大提高;且径向色谱技术更易于线性放大,可用于大规模的生产分离和纯化。
     以上研究结果可以为径向色谱技术分离纯化黑木耳多糖的规模化生产提供技术支持,也能为其它多糖的分离纯化提供科学依据。
Auricularia auricula is the precious medicinal and edible gelatinous fungi, and extremely rich in nutritional and medicinal value. Polysaccharides in Auricularia auricula are potential biological ingredients. According to a large number of studies, polysaccharides in Auricularia auricula possess bioactivities in regulating immunity, reducing blood lipids, anti-aging, anti-oxidation, anti-tumor, anti-coagulation and anti-thrombotic. Radial chromatography is one of the most effective instruments of rapid separation and preparation of complex samples. Because it adopts the radial flow technology, samples and mobile phase flow from the surrounding of the column to the center of a circle or from the center of a circle to the surrounding, with rapid speed, low pressure, easy to operate, easy to linear amplification, etc., which solves the problems of the traditional axial chromatographic technique, and has a great advantage of the separation and purification of biological macromolecules. In order to more effectively purify polysaccharides in Auricularia auricula and get higher antioxidant activity and higher purity polysaccharides in Auricularia auricula, this paper studied on the application of radial chromatography on the separation and purification of polysaccharides in Auricularia auricula.
     Decolorization of polysaccharides in Auricularia auricula was studied. The results showed that the resin adsorption was an excellent decolorating method. After decolorization, polysaccharides retention rate was 68.6%, protein removal rate was 55.8%.
     The effects of adsorption and desorption of polysaccharides in Auricularia auricula on DEAE anion-exchange resin were studied based on experiments of static adsorption, dynamic adsorption and desorption. The results showed that the concentration and pH value of the sample solution were the key factors of the resin exchange capacity, and the concentration of the eluent influenced the elution curve. The optimum sample concentration was 2.5 mg/mL, the optimum pH was 7.0. Under the optimum condition adsorption capacity of the polysaccharides was 5.69 mg/mL. The concentration of eluent from 0.1 mol/L to 0.5 mol/L gave a good separation result.
     AAPII, a polysaccharide component with a higher antioxidant activity from a separation by Toyopearl DEAE-650 M, was selected as the target product of polysaccharides in Auricularia auricula of radial column chromatography with Toyopearl DEAE-650 M.
     Through comprehensive analysis of single factor experiments, the optimum operating conditions were obtained as fllow:sample volume, 200 mL; sample amount,2000 mg; pH value,7.0; flow rate of sample load and elution,45 mL/min; and temperature,20℃.
     The seperation of polysaccharides in Auricularia auricula were compared bewteen radial and axial chromatographic technique. The results indicated that radial chromatography column had lower pressure with large flow operation, and the seperation efficiency improved markedly, much faster than axial chromatography column. Radial chromatographic technique was much easier to linear amplification, which can be used for the separation and purification of large-scale production.
     The above research results will be able to provide technical support for the large-scale purification of polysaccharide AAPⅡfrom Auricularia auricula with radial chromatography, and also provide scientific basis for other polysaccharides.
引文
[1]杨庆尧.食用菌生物学基础[J].上海科学技术出版社,1982:1-7.
    [2]熊艳,车振明.黑木耳多糖的研究进展[J].食品研究与开发,2007,28(1):181-183.
    [3]李公斌.黑木耳多糖分子修饰及功能与应用研究[D].黑龙江:东北林业大学,2006,26.
    [4]樊黎生.黑木耳多糖AAP-Ⅱa级分的制备及其生物活性的研究[D].武汉:华中农业大学,2006:7-8.
    [5]《全国中草药汇编》编写组.全国中草药汇编(下册)[M].人民卫生出版社,1996年第二版:101.
    [6]顾观光,杨鹏举.神农本草经[M].学苑出版社,2007年第三版.
    [7]吴宪瑞.黑木耳的质量标准及其营养成分[J].中国林副特产,1996,36(1):21-22.
    [8]周国华.黑木耳多糖抗衰老及降血脂生物功效的研究[D].黑龙江:东北林业大学,2005,
    [9]陈艳秋,陈丽萍.黑木耳子实体水溶性多糖提取工艺的研究[J].吉林农业大学学报,2003,25(4):470-472.
    [10]朱兰宝.中国黑木耳生产[M].中国农业出版社,2000年第一版:4-6.
    [11]HAMMERSCHMIDT D E. Szechwan purpura[J]. New England Journal of Medcine,1980, 302:1191.
    [12]MAKHEJA A N, BAILEY J M. Identification of the antiplatelet substance in Chinese black tree fungus[J]. New England Journal of Medcine,1981,304:175.
    [13]STEFANOVICH V, Baklouti O I. Role of adenosine in cerebral metabolism and blood flow[M]. Utrecht:VSP BV,1988:113.
    [14]AGARWAL K C, RUSSO F X, PARKSJR R E. Inhibition of human and rat platelet aggregation by extracts of Mo-er (Auricularia auricula)[J]. Thrombosis and haemostasis, 1982,48(2):162.
    [15]吴梧桐,陈琼华,徐碧如等.银耳孢子多糖的分离和分析[J].真菌学报,1982,1(2):119-124.
    [16]KENICHI K.. Plysaccharides and preparation thereof[P]. United States:5,756,318, 1998-05-26.
    [17]周鹏,谢明勇.多糖的生物活性[J].食品研究与开发,2001,22(2):6-8.
    [18]MISAKI A, KAKUTA M. Studies on interrelation of structure andanti tumor effects of polysaccharides:antitumor action of periodatemodified, branched (1→3)—β—D—glucanof AuriculariaAuricula-judae, and polysaccharides confaining (1→3) glycosidiclinkages[J]. Carbohydr. Res.,1981,92,115-120.
    [19]夏尔宁,陈琼华.黑木耳多糖的生物活性[J].中国药科大学学报,1989,20(4):227-230.
    [20]张秀娟,于慧茹,耿丹等.黑木耳多糖对荷瘤小鼠细胞免疫功能的影响研究[J].中成药,2005,27(6):691-693.
    [21]于颖,徐桂花.黑木耳多糖生物活性研究进展[J].中国食物与营养,2009,2:55-56.
    [22]蔡小玲,章佩芬,何有明等.黑木耳多糖、红菇多糖的降胆固醇作用研究[J].深圳中西医结合杂志,2002,12(3):137-139.
    [23]郭素芬,曾光.木耳多糖对实验性动脉粥样硬化斑块消退作用的影响[J].牡丹江医学院 学报,2004,25(1):1-4.
    [24]韩春然,徐丽萍.黑木耳多糖的提取、纯化及降血脂作用的研究[J].中国食品学报,2007,7(1):54-58.
    [25]周慧萍,王寿如.黑木耳多糖的抗衰老作用[J].中国药科大学学报,1989,20(5):303-306.
    [26]陈依军,夏尔宁,王淑如,陈琼华.黑木耳、银耳及银耳孢子多糖延缓衰老作用[J].现代应用药学,1989,6(2):9-10.
    [27]夏尔宁,陈琼华.黑木耳和银耳孢子两种多糖对小鼠肝脏药物氧化代谢的影响[J].生化药物杂志,1991,4:37-38.
    [28]吴宪瑞,孔令员.黑木耳多糖的医疗保健价值[J].林业科技,1996,21(3):32-33.
    [29]周国华.黑木耳多糖抗衰老及降血脂生物功效的研究[D].黑龙江:东北林业大学,2005,21-31.
    [30]黄滨南,张秀娟,邹翔等.黑木耳多糖抗肿瘤作用的研究[J].哈尔滨商业大学学报(自然科学版),2004,20(6):648-651.
    [31]李兴泰,高明波.黑木耳多糖清除活性氧及保护线粒体[J].食品科学,2004,25(1):171-173.
    [32]于颖,徐桂花.黑木耳多糖生物活性研究进展[J].中国食物与营养,2009,2:55-56.
    [33]齐德胜,于炎湖.黑木耳多糖抗肿瘤作用的实验研究[J].华中农业大学学报,1994,13(2):160-163.
    [34]宗灿华,于国萍.黑木耳多糖抑制肿瘤作用的研究[J].中国医疗前沿,2007,2(12):37-38.
    [35]申建和,陈琼华.黑木耳多糖的抗凝血栓活性[J].中国药科大学学报,1987,18(2):137-140.
    [36]曾雪瑜,李友娣.木耳菌丝及其醇提物的药理作用[J].中国药科杂志,1994,19(7):430--432.
    [37]YOONA S J, YUB M.A, PYUNB Y R, et al. The non-toxic mushroom Auricularia Auricula contains a polysaccharide with anti coagulant activity mediated by anti thrombin[J]. Thrombo Res,2003,112:151-158.
    [38]申建和,陈琼华.黑木耳多糖的抗血栓作用[J].中国药科大学学报,1990,21(1):3942.
    [39]薛惟建,鞠彪,王淑如等.银耳多糖和木耳多糖对四氧啼咙糖尿病小鼠高血糖的防治[J].中国药科大学学报,1989,20(3):181-183.
    [40]韩春然,马永强,唐娟.黑木耳多糖的提取及降血糖作用[J].食品与生物技术学报,2006,25(5):111-114.
    [41]宗灿华,于国萍.黑木耳多糖对糖尿病小鼠降血糖作用[J].食用菌,2007(4):60-61.
    [42]宗灿华.黑木耳多糖降血糖作用的研究[J].中华实用中西医杂志,2007,20(14):1237-1237,1239.
    [43]TANIGUCH N. Separation and identification of glycosaminoglycans[J]. Separation & Purification Reviews,1976,5(2):247-299.
    [44]郭振楚.糖类化学[M].化学工业出版社,2005,59-61.
    [45]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学工业出版社,2004,58-59.
    [46]孙彦.生物分离工程[M].化学工业出版社,2005,37-44.
    [47]张翼伸.有关糖复合物的分级纯化结构确定、生物活性的几个问题[M].生命的化学,1994,14(6):42-44.
    [48]陈来同,唐运.生物化学产品制备技术[M].北京:科学技术文献出版社,2003,29-31.
    [49]李公斌.黑木耳多糖分子修饰及功能与应用研究[D].黑龙江:东北林业大学,2006,4-5.
    [50]王卫国,赵永亮,韩山宝.香菇多糖分离纯化技术研究[J].中国食用菌,2001,21(2):30-32.
    [51]何伟珍,吴丽仙.银耳多糖的提取分离与纯化[J].海峡药学,2008,20(7):33-35.
    [52]何江川,韩永萍.超滤膜分离法在多糖分离提取中的应用.食用菌,2005(1):5-7.
    [53]盛家荣,曾令辉,翟春,陈超球.多糖的提取、分离及结构分析[J].广西师范学报,1999,16(4):49-53.
    [54]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学工业出版社,2004,69-73.
    [55]FRANKLIN L. Chromatography[P]. United States:4257884,1981-03-24.
    [56]GORDON L, CHU C K, NILS L D. Chromatography column[P]. United States:4496461, 1985-01-29.
    [57]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学工业出版社,2004.100-111.
    [58]王元凤,金征宇.D315树脂分离茶多糖工艺的研究[J].农业工程学报,2005,21(10):147-150
    [59]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学工业出版社,2004,86-92.
    [60]JIRI C, OTAKAR M, PETR S, et al. Method for preparation of hydrophilic polymeric ion exchanging gels[P]. United States:4 139 684,1979-02-13.
    [61]TAKEUCHI, SEI J. Method of exchange chromatography [P]. United States:4 133 753, 1979-01-09.
    [62]CHRISTENSEN S B, SCHULZ G J, KLING S. Removal of undesirable material from water-soluble polysaccharide ethers [P]. United States:4 988 807,1991-04-09.
    [63]江邦和,胡晓忠,邬行彦.离子交换与吸附树脂在中药有效成分提取中的应用[J].离子交换与吸附,2001,17(4):379-384.
    [64]樊黎生.黑木耳多糖AAP-Ⅱa级分的制备及其生物活性的研究[D].武汉:华中农业大学,2006:26-39.
    [65]叶凯贞,黎碧娜,王奎兰,谭志伟.多糖的提取、分离与纯化[J].广州食品工业科技,2004,20(3):144-145.
    [66]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学工业出版社,2004,93-100.
    [67]OSHIMA Y, SATO K, HIKINO H. Isolation and Hypoglycemic Activity of Quinquefolans A,B, and C, Glycans of Panax quinquefolium Roots[J]. Journal of Natural Products,1987, 50(2):188-190.
    [68]HIKINO H, TAKAHASHI M. Isolation and Hypoglycemic Activity of Eleutherans A, B, C, D, E, F, and G:Glycans of Eleutherococcus senticosus Roots[J]. Journal of Nature Products, 1986,49(2):293-297.
    [69]KONNO C, HIKINO H. Isolation and Hypoglycemic Activity of Panaxans M, N, O and P, Glycans of Panax ginseng Roots[J]. Pharmaceutical Biology,1987,25(1):53-56.
    [70]孙彦.生物分离工程[M].化学工业出版社,2005,312-357.
    [71]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].化学工业出版社,2004,112-121.
    [72]ITO Y, BOWMAN R L. Countercurrent chromtography:liquid-liquid partition chromatography without solid support[J]. Science,1970,167:281.
    [73]ITO Y. Countercurrent chromtography:theory and practice[M], New York:Marcel Dekker, 1988.
    [74]ITO Y. Efficient preparative countercurrent chromatography with a coil planet centrifuge[J]. J Chromatography,1981,214:122.
    [75]SHIBUSAWA Y, ITO Y. Protein separation with aqueous-aqueous polymer systems by two type of counter-current chromatographs[J]. J Chromatography,1991,550:95.
    [76]LEE Y W. Cross-axis countercurrent chromatography:a versatile technique for biotech purification. Countercurrent Chromatography[M]. New York:Marcel Dekker,1999:149-169.
    [77]张天佑.逆流色谱技术[M].北京:科学技术出版社,1991.
    [78]蒋志国,杜琪珍,盛利益.制备型高速逆流色谱分离纯化香菇多糖[J].分析化学研究简报,2009,37(3):412-416.
    [79]张拥军,蒋家新,杜琪珍.逆流色谱技术进展及其在生物多糖分离中的应用[J].食品工业科技,2008,29(3):309-311.
    [80]台桂花,张翼伸,梁忠岩.人参茎中水溶性多糖的研究[J].生物化学与生物物理,1988,20(2):119.
    [81]林森炜.径向色谱动力学过程的数值模拟研究[D].福建:福州大学,2006.
    [82]GU T, TSAIG J, TSAO G T. Multicomponent radial flow chromatography[M]. Chromatography[M]. Heidelberg:Springer Berlin,1993:73-95.
    [83]PETER P, HOPF P. Radial Chromatography in Industry[J]. Ind. Eng. Chem.,1947,39 (8): 938-940.
    [84]SAXENA V, DUNN M. Solving Scale-Up:Radial Flow Chromatography[J]. Bio Technology, 1989,7:250.
    [85]ERICH H, JOHN M K, DANIEL F, et al. The chromatofuge, an apparatus for preparative rapid radial column chromatography [J]. Journal of Chromatography A,1972,66(2):365-369.
    [86]SAXENA V, BRIAN D A. Radial thin layer chromatography[P]. United States:4,865,729, 1989-09-12.
    [87]中国科学院大连化学物理研究所.径向色谱柱用金属螯合亲和膜色谱介质的合成方法[P].中国专利:97105052.X,1998-07-29.
    [88]中国科学院大连化学物理研究所.径向色谱柱用弱阳离子型介质的合成[P].中国专利:91 106299.8,1993-05-26.
    [89]中国科学院大连化学物理研究所.径向色谱柱用离子交换介质的合成[P].中国专利:91110 952.8,1993-05-26.
    [90]RICHARD G R, BATON B R, LA. Radial flow chromatography[P]. United States:5 484 532, 1996-02-16.
    [91]RICHARD G R, HEFT B K. Separations via radial flow chromatography in compacted particle beds[J]. AIChE Journal,1991,37(4):629-632.
    [92]RICHARD G R. Radial flow chromatography[P]. United States:5 433 847,1995-07-18.
    [93]RICHARD G R. Radial flow chromatography[P]. United States:5 589 062,1996.
    [94]RICHARD G R, Heft B K. Radial flow chromatography in compressed Pancake-Shaped Beds. Chemical Engineefing Communications,1990,98:231-242.
    [95]PETER R L. Large-scale ion-exchange column chromatography of proteins Comparison of different formats[J]. Journal of Chromatography B,2003,790:17-33.
    [96]GU T, TSAI G J, TSAO G T. Multicomponent radial flow chromatography[M]. Chromatography[M]. Heidelberg:Springer Berlin,1993:73-95.
    [97]RAEHINSKII V V. Basic principles of radial chromatography [J]. Journal of Chromatography, 1968,33:234-241.
    [98]INCHIN P A, BACHINSKII V V. Theory of radial-cylindrical dynamics of sorpfion Ⅵ: Action of longlmdinal molecular diffusion during fdtration to the axis of the sorber[J]. Zh Fiz Khim,1973,47(7):1891-1893.
    [99]HUANG S H, LEE W C, TSAO G T. Mathematical models Of radial chromatography [J]. Journal of Chemical Engineering,1988,38:179-186.
    [100]TSAUR Y., SHALLCROSS D.C. Comparison of simulated performance of fixed ion-exchange beds in linear and radial flow[J]. Solvent Extraction and Ion Exchange.1997, 15(4):689-708.
    [101]MUNSON-MCGEE S H. Fluid dynamics of radial-flow ion-exchange in partially filled columns[J]. Separation Science and Technology,2000,35(15):2415-2429.
    [102]ZHANG W B, SHAN Y C, ANDREAS S M, et al. Characteristics of elution profile in radial chromatography under linear conditions[J]. Science in China Ser. B Chemistry,2005,48(4): 352-360.
    [103]陈执中.径向流动色谱法在民族药研究开发中的应用.中国民族民间医药杂志,1998(30):1-3.
    [104]SAXENA V, WEIL A E. Radial flow columns:A new approach to scaling-up biopurifications[J]. Biochromatography 1987,2,90.
    [105]AHMED, SALAH H, SAXENA V, et al. Sequential separation of whey proteins and formulations thereof[P]. US Patent:5756680,1998-05-26.
    [106]FRANK C C, HERBERT C W. Rapid sulfopropyl-disk chromatographic purification of bovine and human thrombin[J]. Analytical Biochemistry,1986,157(1):77-83.
    [107]PER-ERIK G, PER-OLOF L. Continuous superporous agarose beds in radial flow colunms[J]. Journal of Chromatography A,2001,925:69-78.
    [108]SUN T, LIU Y P. Purification of prothrombin in Nitschmann fraction Ⅲ by membrane radial column ion-exchange liquid chromatography[J]. Journal of Chromatography B: Biomedical Sciences and Applications,2000,742(1):109-114.
    [109]SUN T, CHEN G. Isolation of human fibrinogen by axial and radial flow chromatography from Nitschmann fraction Ⅰ [J]. Biotechnology Techniques,1999,13:831-835.
    [110]张玉奎,姚志建,李彤.径向色谱柱的发展与应用[M].见:刘国诠主编.生物工程下游技术——细胞培养、分离纯化、分析检测.北京:化学工业出版社,1993:206-269.
    [111]杨利,贾凌云,邹汉法,周冬酶,汪海林,李彤,张玉奎.膜色谱技术及其在生化快速分离分析中的应用[J].生物工程进展,1999,19(1):48-53.
    [112]天津科技大学.径向色谱纯化天然可溶性多糖的方法[J].中国:200810151313.1,2009-03-18.
    [113]谢红旗,周春山.香菇多糖脱色工艺研究[J].离子交换与吸附,2007,23(2):158-165.
    [114]付学鹏,杨晓杰.植物多糖脱色技术的研究[J].食品研究与开发,2007,28(11):166-169.
    [115]姚文华,尹卓荣.大枣多糖脱色的工业化试验[J].食品工业,2006,5:41-43.
    [116]贾淑珍,王成忠,于功明.香菇多糖脱色方法的研究[J].食品科技,2007,6:113-115.
    [117]李丹丹,金征宇.牛蒡菊糖脱色工艺的研究[J].农业工程学报,2007,23(8):241-244.
    [118]高丽君,王汉忠.苯酚-硫酸法测定白首乌中多糖含量[J].2004,35(2):295-297.
    [119]聂少平,谢明勇,罗珍.用清除有机自由基DPPH法评价茶叶多糖的抗氧化活性[J].食品科学,2006,27(3):34-36.
    [120]彭长连,陈少薇,林植芳等.用清除有机自由基DPPH法评价植物的清除率抗氧化能力[J].生物化学与生物物理进展,2000,27(6):658-661.
    [121]LARRAURI J A, SANCHEZ-MORENO C, SAURA-CALIXTO F. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. J Agric Food Chem,1998,46(7):2694-2697.
    [122]YOKOZAWA T, DONG E, NATAGAWA T, etal. In vitro and i n vivo studies on the radical-scavenging activity of tea. J Agric Food Chem,1998,46 (6):2 143-2150.
    [123]刘凌,孙慧等.提取纯化工艺对枸杞多糖抗氧化功能的影响[J].食品与发酵工业,2009,35(7):156-159.
    [124]SMINRNOFF N, CUMBES Q J. Hyroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry,1989,28(4):1057-1060.
    [125]蔡艳华.枳实中生物碱辛弗林的提取分离研究[D].四川大学,2005,23-44.
    [126]陈雪峰,贾士儒.发菜多糖的红外光谱分析与抗氧化活性的研究[J].食品与发酵工业,35(7):133-137.
    [127]郑荣梁主编.白由攀生命科学进展(第8集).北京:原子能出版社,2001:60-69.
    [128]BRENT J A, RUMARCK B H. Role of free radicals in toxic hepatic injury Ⅱ. Are free radicals the cause of toxin-induced liver injury? J. Toxicol. Clin. Toxicol.,1993,31:173-196.
    [129]周玉兰,徐瑞兴.中药抗氧化性能的研究[J].中国中药杂志,1992,17(6):368.
    [130]梁秋云.仙人掌果多糖抗高血压、高血脂和糖尿病及其机制的研究[D].广西医科大学,2008:69-71.
    [131]张名位.黑米抗氧化与降血脂的活性成分及其作用机理[D].华南师范大学,2003:6-8.
    [132]王辉,黄荣春,伍泽赓.香港海藻网胰藻中抗病毒活性多糖的分离与纯化[J].中国科学,2007,37(5):508-515.
    [133]鲍幸峰.1:赤灵芝多糖的化学、生物活性及构效关系研究;2:碳水化合物方法学研究[D].中国科学院上海生命科学研究院上海药物研究所,2002,138-159.
    [134]谭天伟.生物化学工程[M].北京:化学工业出版社,2008:284.
    [135]CABANNE C, MARCEL R. Evaluation of radial chromatography versus axial chromatography, practical approach[J]. Journal of Chromatography B,2007,845(2): 191-199.
    [136]SAXENA V, DUNN M. Solving Scale-Up:Radial Flow Chromatography[J]. Bio Technology,1989,7:250.
    [137]郭立安,阎哲,杨晓东等.促卵泡激素的径向色谱纯化工艺[J].色谱,2000,18(6):577-579.
    [138]ThARAKAN J, BELIZARIE M. Ligand efficiency in axial and radial flow immunoaffinity chromatography of factor IX[J]. Chromatography A,1995,702(1-2):191-196.
    [139]张正光,肖成祖,郭志霞.用国产径向色谱柱和羟基磷灰石纯化细胞工程尿激酶原[J].军事医学科学院院刊,1997,21(1):47-50.
    [140]VAN DUSSCHOTEN D, TALLAREK U, SCHEENEN T, et al. Spatially resolved transport properties in radially compressed bead packings studied by PFG NMR[J]. Mang Reson Imaging,1998,16:703.
    [141]AMBEDKAR S S, DESHPANDE B S. Exanded bed chromatography and radial flow column chromatograhy:the approaches for adsorption chromatography of biomolecules on industrial scale[J]. Hindustan Antibiot Bull,1994,36:164.
    [142]RAYMOND P, SCOTT W. Preparative Chromatography[M/OL]. http://www.library4science.com/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700