超高密度磁记录用薄膜的微磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微磁学理论作为应用磁学的基本理论,在磁学与磁性材料特别是硬盘工业的发展中起到重要的指导作用。本论文通过建立含有微结构的微磁学模型,对超高密度磁记录用的磁性薄膜进行了微磁学研究。研究内容涵盖了写磁头用FeCo软磁薄膜,作为存储介质的COPt-TiO2,硬磁薄膜、CoPt-TiO2/Pt/Co-TiO薄膜和CoPt-TiO2/CO-TiO2薄膜四个方面:
     一、写磁头用FeCo软磁薄膜的微磁学研究
     对薄膜界面的磁弹性能结合织构进行了理论分析,论证了磁弹性场有主项Hma和交叉项Hmb基于此,改善了含有微结构的FeCO薄膜微磁学模型。
     FeCO的立方各向异性决定了回线的对称性,磁弹性场的主项Hma对易轴的矫顽力有巨大的影响。交叉项Hmb对难轴回线的影响较大,难轴回线的倾斜程度主要由磁弹性场的交叉项Hmb决定。薄膜的矫顽力是由主项和交叉项共同决定的,良好的软磁性对应于Hma和Hmb比较小的衬底,如Cu.NiFe.CoFe等。
     FeCO多晶薄膜晶界处的饱和磁化强度4πMs降低时,会使薄膜的软磁性变差。此外,因为界面各向异性的重要性,薄膜的厚度对磁性也有一定的影响。
     二、COPt-TiO2硬磁介质的微磁学研究
     我们建立了两种微磁学模型来计算COPt-TiO,薄膜的磁滞回线。在第一种不含多晶微结构的简单模型中,一个磁性颗粒就是一个微磁学单元。此时,虽然垂直膜面方向的易轴回线跟实验的回线比较接近,但反向磁化时回线有比较长的“尾巴”,而平行膜面的难轴方向的回线跟实验回线差距很大,这反映出微结构对模拟回线有重要的影响。
     第二种微磁学模型引入了薄膜的多晶微结构、考虑了晶粒的对称性、包含了与衬底有关的应力。回线的矩形度为0.98,易轴的矫顽力为6.1kOe,难轴的饱和场为20kOe,模拟结果跟实验结果符合的很好。此外,我们研究了薄膜的磁化反转过程,发现这是典型的以畴壁钉扎模式为主的磁化翻转机制。
     三、CoPt-TiO2/Pt/Co-TiO2薄膜的微磁学研究
     软磁层和硬磁层间的交换相互作用是影响超高记录密度ECC介质的性能的关键因素。我们建立了含有微结构的微磁学模型来研究CoPt-TiO2/Pt/Co-TiO2薄膜中中间层Pt层厚度变化、软磁层的本征磁性参数对薄膜磁性的影响。
     中间层Pt层的厚度对薄膜的磁性有综合的影响:当我们单独调节软磁层和硬磁层之间的交换相互作用常数A*3以及中间层Pt层的厚度δ时,介质的矫顽力和矩形度变化很小。模拟的结果与实验的结果符合得很好,要求当中间层Pt层的厚度δ很小(≤2nm)的时候,软磁层和硬磁层之间的交换相互作用常数A*3的值与晶粒内部的交换相互作用常数A*1的值相等,都等于0.2x10-6erg/cm;当中间层Pt层的厚度δ从2.2nm增加到2.8nm时,软磁层和硬磁层之间的交换相互作用常数A*3的值从与晶粒间的交换相互作用常数A*2的值相等(即0.1×10-7erg/cm),然后减小到0。同时我们发现:软磁层越软(软磁层的各向异性场Hks越小,饱和磁化强度Mss越大)时,整个薄膜的矫顽力也越小,同时,回线的矩形度也逐渐下降。
     四、CoPt-TiO2/Co-TiO2薄膜的微磁学研究
     我们建立了含有微结构的微磁学模型来研究CoPt-TiO2/Co-TiO2薄膜中软磁层厚度变化时,软磁层和硬磁层之间的交换相互作用常数A*3的变化规律以及软磁层的各向异性场Hks的变化对薄膜磁性的影响。
     我们发现:软磁层的厚度δ对硬磁层和软磁层之间的静磁相互作用以及硬磁层和软磁层之间的交换相互作用常数A*3都会产生影响。当保持软磁层和硬磁层之间的交换相互作用常数A*3不变,软磁层的厚度δ变化时,回线的矫顽力H。和矩形度S均未发生变化。当软磁层和硬磁层间的交换相互作用常数A*3减小时介质的矫顽力和矩形度都会下降。
     此外我们发现:软磁层的磁晶各向异性场Hks减小时,软磁层越容易在较低的外磁场下成核翻转。同时,介质的矩形度S随软磁层的各向异性场Hks的减小而减小。
As a basic theory in applied magnetism, the micromagnetic simulation has been playing an important role in the studies of magnetism and magnetic materials, especially in the research and development of hard disk drives. In this paper, micromagnetic models were built up to investigate the magnetic thin films of ultrahigh density magnetic recording. Four types of recording materials were included:the FeCo soft magnetic thin films of write head, the CoPt-TiO2hard magnetic films, the CoPt-TiO2/Pt/Co-TiO2thin films, the CoPt-TiO2/Co-TiO2thin films. The main results were:1. Micromagnetic Studies on FeCo soft magnetic thin films used in write heads
     The magneto-elastic energy of FeCo thin film with texture is carefully analyzed, and it is proved that, under different texture, the magneto-elastic field has a main term Hma and a cross term Hmb. Based on these theoretical understanding of the magneto-elastic field on the interface, the micromagnetic model of FeCo thin film is improved. We founded:
     The cubic anisotropy of FeCo determines the symmetry of the loops. The main term of magneto-elastic field Hma has significant influence on the easy-axis coercivity. The cross term Hmb has great effects on the hard-axis M-H loop, and the slope of the hard-axis M-H loop is mainly controlled by Hmb. The strong correlation of the coercivity and the interfacial stress is contributed by both the main terHma and the cross term of magneto-elastic field Hmb. Well controlled soft magnetic properties of FeCo thin films can be obtained by using certain underlayers (such as Cu, NiFe, CoFe et al.) corresponding to low values of Hma and Hmb.
     In the polycrystalline FeCo thin film, lower magnetization4πMs at amorphous grain boundary makes the soft magnetic properties much worse. Meanwhile, the thickness of the thin film has great effects on the magnetic properties of the thin films, due to the interfacial stress.2. Micromagnetic studies on the CoPt-TiO2hard magnetic media
     Two classes of micromagnetic models were introduced to simulate the M-H loops of the CoPt-TiO2thin films. In the first simple model, the polycrystalline microstructure is not included, and one magnetic grain is modeled as a micromagnetic cell. The perpendicular loop is close to the experiment, except that the tail is longer. However, the in-plane longitudinal hard axis loop is quite different from measurement, this reveals the weakness of the microstructure description in this simple model.
     In the second model, the polycrystalline structure is simulated, the symmetries in the crystal grains are considered, and the magneto-elastic field related to the underlayer is included. The squareness of easy axis is0.98, the coercivity of easy axis is6.1kOe, and the saturated field of hard axis is20kOe, the simulated results agree well with the experimental results. Besides, we studied the magnetization reversal mechanism and found this has a typical characteristic of the domain-wall-pinning mode as a dominant magnetization reversal mechanism.3. Micromagnetic studies on the CoPt-TiO2/Pt/Co-TiO2thin films
     The exchange A*3between the hard and soft layer in the exchange coupled composite (ECC) medium is crucial for the ultrahigh density recording performance. An accurate micromagnetic model based on microstructure is built for Co-Ti02/Pt/CoPt-TiO2thin films to investigate the effects of the thickness8of Pt interlayer and the intrinsic magnetic parameters of the soft layer on the magnetic properties of the thin films.
     In the thin films, the thickness8of interlayer Pt has comprehensive effects on magnetic properties. When we just vary A*3or δ, the coercivity and squareness change little. The simulation agrees well with experiment if we let A*3equals the intra-grain exchange constant A*t, when δis thinner than grain boundary (≤2nm); and A*3should decrease from the inter-grain exchange constant.A*2to0when δ increases from2.2nm to2.8nm. We also found that the coercivity and squareness are decreased when the anisotropy is lower and the saturation magnetization is larger in the soft layer.4. Micromagnetic studies on the CoPt-TiO/Co-TiO2thin films
     A micromagnetic model based on microstructure is built for Co-TiO2/CoPt-TiO2thin films to investigate the effects of the thickness8and the anisotropy field of the soft layer on the magnetic properties of the thin films.
     The thickness of the soft layer has comprehensive effects on magnetic properties:it affects the magnetostatic interaction and exchange interaction constant A*3between the soft layer and hard layer. The coercivity and squareness change little when we just vary δ, whereas, the coercivity and squareness decrease when the A*3decreases from1.Ox10-6erg/cm to0. The magnetization of the soft layer is easier to be nucleated and reversed, and the squareness of the M-H loop decreases, when the anisotropy field of the soft layer is decreased.
引文
[1]王素梅博士学位论文,清华大学,2011.
    [2]王颖博士学位论文,兰州大学,2009.
    [3]马云贵博士学位论文,兰州大学,2005.
    [4]H.N.Bertram, M.Williams, SNR and density limit estimates:A comparison of longitudinal and perpendicular recording, IEEE Transactions on Magnetics,36(1):4-9,2000.
    [5]S.Iwasaki, J. Magn. And Magn. Mater.320,2845-2849,2008.
    [6]S.Iwasaki, Development of perpendicular magnetic recording conference. Journal of Magnetism and Magnetic Materials,287:1-8,2005.
    [7]S.Iwasaki, Ouchi K. Co-Cr Recording Films with Perpendicular Magnetic-Anisotropy. IEEE Transactions on Magnetics,14(5):849-851,1978.
    [8]Honda N, Ariake J, Ouchi K, et al. High Coercivity in Co-Cr Films for Perpendicular Recording Prepared by Low-Temperature Sputter-Deposition. IEEE Transactions on Magnetics,1994,30(6):4023-4025.
    [9]Hirayama Y, Futamoto M, Ito K, et al. Development of high resolution and low noise single-layered perpendicular recording media for high density recording. IEEE Transactions on Magnetics,1997,33(1):996-1001.
    [10]Hirayama Y, Futamoto M, Kimoto K, et al. Compositional microstructures of CoCr-alloy perpendicular magnetic recording media. IEEE Transactions on Magnetics,1996,32(5): 3807-3809.
    [11]Hirayama Y, Honda Y, Takeuchi T, et al. Recording single-layer perpendicular characteristics of media using ring-shaped heads. IEEE Transactions on Magnetics,1999,35(5):2766-2768.
    [12]Ariake J, Honda N, Ouchi K, et al. Preparation of double-layered perpendicular media for fine magnetic structure. IEEE Transactions on Magnetics,2000,36(5):2411-2413.
    [13]Honda N, Ariake J, Ouchi K, et al. Low noise Co-Cr-Nb perpendicular recording media with high squareness. IEEE Transactions on Magnetics,1998,34(4):1651-1653.
    [14]Bertero G A, Wachenschwanz D, Malhotra S, et al. Optimization of granular double-layer perpendicular media. IEEE Transactions on Magnetics,2002,38(4):1627-1631.
    [15]Morisako A, Matsumoto M, Naoe M. Sputtered hexagonal Ba-ferrite films for high-density magnetic recording media. Journal of Applied Physics,1996,79(8):4881-4883.
    [16]HikosakaT, Komai T, Tanaka Y. Oxygen Effect on the Microstructure and Magnetic-Properties of Binary Copt Thin-Films for Perpendicular Recording. IEEE Transactions on Magnetics,1994,30(6):4026-4028.
    [17]Zheng M, Choe G, Chekanov A, et al. SNR improvement of granular perpendicular recording media. IEEE Transactions on Magnetics,2003,39(4):1919-1924.
    [18]Oikawa S, Takeo A, HikosakaT, et al. High performance CoPtCrO single layered perpendicular media with no recording demagnetization. IEEE Transactions on Magnetics, 2000,36(5):2393-2395.
    [19]Piramanayagam S N, Shi J Z, Zhao H B, et al. Stacked CoCrPt:SiO2 layers for perpendicular recording media. IEEE Transactions on Magnetics,2005,41 (10):3190-3192.
    [20]J. H. Judy, J. Magn. Magn. Mater.235,235 (2001).
    [21]H. Takano, et a., AD-06, Intermag 2000.
    [22]Iwasaki S. Past and present of perpendicular magnetic recording. Journal of Magnetism and Magnetic Materials,2008,320(22):2845-2849.
    [23]Litvinov D, Khizroev S. Perpendicular magnetic recording:Playback. Journal of Applied Physics,2005,97(7).
    [24]S. Iwasaki and K. Takemura, An analysis for the circular mode of magnetization in short wavelength recording. IEEE Trans. Magn.11,1173 (1975).
    [25]S.N.Piramanayagam, T.C. Chong, Developments in data storage:Materials Perspective, IEEE Press,2012
    [26]S. Iwasaki, Y. Nakamura, and K. Ouchi, Perpendicular magnetic recording with a composite anisotropy film. IEEE Trans. Magn. MAG-61,1456 (1979).
    [27]S. Khizroev, R. M. Chomko, Y. Liu, K. Mountfield, M. H. Kryder, and D. Litvinov,Perpendicular systems above 100 Gbits/in2 density, No. CB-07, Intermag,2000.
    [28]Y. Honda, A. Kikukawa, Y. Hirayama, and M. Futamoto, IEEE Trans.Magn.36,2399 (2000).
    [29]J. Ariake, N. Honda, K. Ouchi, and S. Iwasaki, IEEE Trans. Magn.36,2399(2000).
    [30]J. Ariake, N. Honda, K. Ouchi, and S. Iwasaki, IEEE Trans. Magn.36,2411(2000).
    [31]C. Chang et al., IEEE Trans. Magn.38,1637 (2002).
    [32]M. Zheng, G. Choe, A. Chekanov, B. G. Demczyk, B. R. Acharya, and K. E.Johnson, IEEE Trans. Magn.39,1919 (2003).
    [33]M. Miura, H. Katahashi, K. Muramori, and M. Kajiyama, IEEE Trans. Magn.24,2215 (1988).
    [34]C.-H. Lai and R.-F. Jiang, J. Appl. Phys.93,8155 (2003).
    [35]S. N. Piramanayagam, J. Appl. Phys.102,011301 (2007).
    [36]M. D. Stiles, Interlayer exchange coupling. J. Magn. Magn. Mater.200,322 (1999).
    [37]A. M. Shukh, E. W. Singleton, S. Khizroev, and D. Litvinov, Perpendicular recording medium with antiferromagnetic exchange coupling in soft magnetic underlayer. U.S. Patent US2002/0028357 A1 (2002).
    [38]Y. Kawato, M. Futamo, and K. Nakamoto, Perpendicular magnetic recording medium and magnetic storage apparatus. U.S. Patent US2002/0028356 A1 (2002).
    [39]M. J. Carey, Y. Ikeda, N. Smith, and K. Takano, Dual-layer perpendicular recording media with laminated underlayer formed with antiferromagnetically coupled films. U.S. Patent US2003/0022023 Al (2003).
    [40]B. R. Acharya, J. N. Zhou, M. Zheng, G. Choe, E. N. Abarra, and K. E. Johnson, Anti-parallel coupled soft under layers for high-density perpendicular recording. IEEE Trans. Magn.40,2383 (2004).
    [41]B. R. Acharya, J. N. Zhou, M. Zheng, G. Choe, E. N. Abarra, and K. E. Johnson, IEEE Trans. Magn.40,2383 (2004).
    [42]S. N. Piramanayagam, J. Z. Shi, H. B. Zhao, C. S. Mah, J. R. Shi, J. M. Zhao, J.Zhang, and Y. S. Kay, J. Magn. Magn. Mater.303,287 (2006).
    [43]S. N. Piramanayagam, H. B. Zhao, J. Z. Shi, and C. S. Mah, Appl. Phys. Lett.88,092501 (2006).
    [44]Y. Honda, K. Tanahashi, Y. Hirayama, A. Kikukawa, and M. Futamoto, IEEE Trans. Magn. 37,1315(2001).
    [45]S.N. Piramanayagam, J.Appl.Phys.102,011301(2007)
    [46]N. Honda, J. Ariake, K. Ouchi, and S. Iwasaki, IEEE Trans. Magn.30,4023(1994).
    [47]G. Choe, M. Zheng, E. N. Abarra, B. G. Demczyk, J. N. Zhou, B. R. Acharya,and K. E. Johnson, J. Magn. Magn. Mater.287,159 (2004).
    [48]Y. Inaba, T. Shimatsu, T. Oikawa, H. Sato, H. Aoi, H. Muraoka, and Y.Nakamura, IEEE Trans. Magn.40,2486 (2004).
    [49]S. N. Piramanayagam, H. B. Zhao, J. Z. Shi, and C. S. Mah, Advanced perpendicular recording media structure with a magnetic intermediate layer. Appl. Phys. Lett.88,092501 (2006).
    [50]S. H. Park, S. O. Kim, T. D. Lee, H. S. Oh, Y. S. Kim, N. Y. Par, and D. H. Hong, Effect of top Ru deposition pressure on magnetic and microstructural properties of CoCrPt-SiO2 media in two-step Ru layer. J. Appl. Phys.99,08E701 (2006).
    [51]J. Z. Shi, S. N. Piramanayagam, C. S. Mah, and J. M. Zhao, Influence of gas pressures on the magnetic properties and recording performance of CoCrPt-SiO2 perpendicular media. J.Magn. Magn. Mater.303, E145 (2006).
    [52]S. N. Piramanayagam, C. K. Pock, L. Lu, C. Y. Ong, J. Z. Shi, and C. S. Mah, Grain size reduction in CoCrPta:a·SiO2 perpendicular recording media with oxide-based intermediate layers. Appl. Phys. Lett.89,162504 (2006).
    [53]Y. Hirayama, M. Futamoto, K. Kimoto, and K. Usami, IEEE Trans. Magn.32,3807 (1996).
    [54]H. Uwazumi, T. Shimatsu, Y. Sakai, A. Otsuki, I. Watanabe, H. Muraoka, and Y.Nakamura, IEEE Trans. Magn.37,1595 (2001).
    [55]Y. Hirayama, Y. Honda, T. Takeuchi, and M. Futamoto, IEEE Trans. Magn.35,2766 (1999).
    [56]G. A. Bertero et al., IEEE Trans. Magn.38,1627 (2002).
    [57]N. Honda, J. Ariake, and K. Ouchi, IEEE Trans. Magn.34,1651 (1998).
    [58]Y. F. Xu, J. P. Wang, C. K. Pock, X. Cheng, Z. S. Shan, and T. C. Chong, IEEE Trans. Magn. 37,1491 (2001).
    [59]Y. Hirayama, M. Futamoto, K. Ito, Y. Honda, and Y. Maruyama, IEEE Trans. Magn.33,996 (1997).
    [60]T. Shimatsu, H. Uwazumi, Y. Sakai, A. Otsuki, I. Watanabe, H. Muraoka, and Y. Nakamura, Thermal agitation of magnetization in CoCrPt perpendicular recording media. IEEE Trans. Magn.37,1567(2001).
    [61]L. Wu, T. Kita, N. Honda, and K. Ouchi, Medium noise properties of Co/Pd multilayer films for perpendicular magnetic recording. J. Magn. Magn. Mater.193,89 (1999).
    [62]S. N. Piramanayagam, M. Matsumoto, A. Morisako, and D. Kadowaki, Controlling the magnetization reversal mechanism in Co/Pd multilayers by underlayer processing. IEEE Trans. Magn.33,3247 (1997).
    [63]A. Morisako, M. Matsumoto, and M. Naoe, J. Appl. Phys.79,4881 (1996).
    [64]S. Oikawa, A. Takeo, T. Hikosaka, and Y. Tanaka, IEEE Trans. Magn.36,2393(2000).
    [65]T. Hikosaka, T. Komai, and Y. Tanaka, IEEE Trans. Magn.30,4026 (1994).
    [66]S. N. Piramanayagam, C. K. Pock, L. Li, C. Y. Ong, C. S. Mah, and J. Z. Sh, Appl. Phys. Lett. 89,162504(2006).
    [67]Oikawa, T., Nakamura, M., Uwazumi, H., Shimatsu, T., Muraoka, H., Nakamura, Y.: Microstructure andmagnetic properties of CoPtCr-SiO2 perpendicular recordingmedia. IEEE. Trans. Magn.38(5),1976-1978 (2002)
    [68]Chiu,A., Croll, I.,Heim, D.E., Jones, Jr, R.E., Kasiraj, P.Klaassen, K.B.,Mee, C.D., Simmons,R.G.:Thin-film inductive heads. IBM J. Res. Dev.40(3),283-300 (1996)
    [69]Iwasaki S I. Perpendicular Magnetic Recording-Evolution and Future. IEEE Trans. Magn., 1984,20(5):657-662.
    [70]Muraoka H, Sato K, Sugita Y, et al. Low inductance and high efficiency single-pole writing head for perpendicular double layer recording media. IEEE Trans. Magn.,1999, 35(2):643-648.
    [71]Muraoka H, Sato K, Nakamura Y, et al. Extremely low inductance thin-film single-pole head on flying slider. IEEE Trans. Magn.,1998,34(4):1474-1476.
    [72]Mao, S., Linville, E., Nowak, J., Zhang, Z., Chen, S., Karr, B., Anderson, P., Ostrowski, M.,Boonstra, T., Cho, H., Heinonen, O., Kief, M., Xue, S., Price, J., Shukh, A., Amin, N., Kolbo.P., Lu, P.L., Steiner, P., Feng, Y.C., Yeh, N.H., Swanson, B., Ryan, P.:IEEE. Trans. Magn.40(1),307 (2004)
    [73]Smith, N.:Micromagnetic analysis of a coupled thin-film self-biased magnetoresistive sensor.IEEE. Trans. Magn.23(1),259-272 (1987)
    [74]Tsang, C, Fontana, R.E., Lin, T., Heim, D.E., Seriosu, V.S., Gurney, B.A., Williams, M.L.:Design, fabrication and testing of spin-valve read heads for high density recording. IEEE.Trans. Magn.30(6),3801-3806 (1994)
    [75]Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.:Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett.74(16),3273-3276(1995)
    [76]Miyazaki, T., Tezuka, N.:Giant magnetic tunneling effect in Fe/A12O3/Fe junction. J. Magn.Magn. Mater.139, L231-L234 (1995)
    [77]Parkin, S.S.P., Kaiser, C, Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.H.: Giant tunnelling magnetoresistive at room temperature with MgO (100) tunnel barriers. Nat. Mater.3,862-867 (2004)
    [78]K. Watanabe, and H. Matsumoto, Trans. Jpn. Inst. Met., Vol.24 (1983)627.
    [79]M.H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys., Vol.84, No.8 (1998) 4403.
    [80]R. H. Victora, Xiao Shen, IEEE Trans.Magn.,41537 (2005).
    [81]J. P. Wang, W. K. She n, J. M. Bai, R. H. Victora, J. H. Judy, and W. L. Song, Appl. Phys. Lett. 86142504(2005).
    [82]W. K. Shen, J. M. Bai, R. H. Victora, et al., J. Appl. Phys.97,10N513 (2005).
    [83]E.F.Kneller, R.Hawig. The exchange spring magnet:a new material principle for permanent magnets[J]. IEEE Trans. Magn.,1991,27:3588-3560
    [84]E.E. Fullerton, J.S. Jiang, S.D. Bader. Hard/soft magnetic heterostructures:model exchange-spring magnets[J]. J. Magn. Magn. Mater.1999,200:392-404
    [85]D. Suess, T. Schrefl, S. Fahler, M. Kirschner, G. Hrkac, F. Dorfbauer, and J.Fidler, Appl. Phys. Lett.87,012504 (2005).
    [86]G.Asti, M.Ghidini, R.Pellicelli, C.Pernechele, M.Solzi, F.Albertini, F.Casoli, S.Fabbrici, L.Pareti. Magnetic phase diagram and demagnetization processes in perpendicular exchange-spring multilayers[J]. Phys. Rev. B.2006,73:094406.
    [87]F.B.Hagedom. Analysis of exchange-coupled magnetic thin films[J]. J.Appl.Phys. 1970,41:2491-2502.
    [88]D.Suess. Micromagnetics of exchange spring media:Optimization and Iimits[J]. J. Magn. Magn. Mater.2007,308:183-197.
    [89]F.Casoli, F.Albertini, L.Nasi, S.Fabbrici, R.Cabassi, F.Bolzoni, C.Bocchi, P.Luches. Role of interface morphology in the exchange-spring behavior of FePt/Fe perpendicular bilayers[J]. Acta Materialia 2010,58:3594-3601.
    [90]T. W. McDaniel, et al DIGEST Joint PMRC 2003 and 2nd North American Perpendicular Magnetic Recording Conference (No.03EX650) (2003)66.
    [91]Robert E. Rottmayer, Sharat Batra, IEEE TRANSACTIONS ON MAGNETICS, VOL.42, NO.10, OCTOBER 2006, pp 2417
    [92]Thiele J U, Maat S, Fullerton E E. [J]. Appl Phys Lett,2003,82(17):2859.
    [93]Guslienko K Yu, Chubykalo-Fesenko O, Mryasov O, et al. Phys Rev B,2004,70(10): 104405.
    [94]Garcia-Sanchez F, Chubykalo-Fesenko O, Mryasov O, et al. [J]. Appl Phys Lett,2005,87: 122501.
    [1]Brown W F, LaBonte A E. Structure and Energy of One-Dimensional Domain Walls in Ferromagnetic Thin Films. Journal of Applied Physics,1965,36:1380-1386.
    [2]Gerber R, Wright C D, Asti G. Applied Magnetism. Kluwer Academic Publishers,1994
    [3]Landau L, Lifshits E. On The Theory of The Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Zeitsch. der Sow.,1935,8:153-169.
    [4]Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn.,2004,40(6):3443-3449.
    [5]Urban R, Woltersdorf G, Heinrich B. Gilbert damping in single and multilayer ultrathin films: Role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett.,2001,8721 (21):217204.
    [6]Dobin A Y, Victora R H. Surface roughness induced extrinsic damping in thin magnetic films. Phys. Rev. Lett.,2004,92(25):257204.
    [7]Gilmore K, Stiles M D. Evaluating the locality of intrinsic precession damping in transition metals. Phys. Rev. B,2009,79(13):132407.
    [8]Gilmore K, Stiles M D, Seib J, et al. Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe. Phys. Rev. B,2010,81(17):174414.
    [9]Mallinson J C. On Damped Gyromagnetic Precession. IEEE Trans. Magn.,1987, 23(4):2003-2004.
    [10]Rave W, Ramstock K, Hubert A. Corners and nucleation in micromagnetics. J. Magn. Magn. Mater.,1998,183(3):329-333.
    [11]Kittel C. Physical Theory of Ferromagnetic Domains. Rev. Mod. Phys.,1949,21(4):541-583.
    [12]Dan Wei. Micromagnetics and Recording Materials. Springer,2012.
    [13]Dan Wei, Sumei Wang, Zijin Ding, Kai-Zhong Gao, Micromagnetics of Ferromagnetic Nano-devices Using the Fast Fourier Transform Method, IEEE Transactions on Magnetics, Vol.45, No.8,2009
    [14]Schabes M E, Aharoni A. Magnetostatic Interaction Fields for a 3-Dimensional Array of Ferromagnetic Cubes. IEEE Trans. Magn.,1987,23(6):3882-3888.
    [15]Fukushima H, Nakatani Y, Hayashi N. Volume average demagnetizing tensor of rectangular prisms. IEEE Trans. Magn.,1998,34(1):193-198.
    [16]Maicas M, Lopez E, Sanchez M C, et al. Magnetostatic energy calculations in two-and three-dimensional arrays of ferromagnetic prisms. IEEE Trans. Magn.,1998,34(3):601-607.
    [17]Chen D X, Pardo E, Sanchez A. Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn.,2002,38(4):1742-1752.
    [18]Chen D X, Pardo E, Sanchez A. Fluxmetric and magnetometric demagnetizing factors for cylinders. J. Magn. Magn. Mater.,2006,306(1):135-146.
    [19]Tandon S, Beleggia M, Zhu Y, et al. On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I:Analytical approach. J. Magn. Magn. Mater.,2004,271(l):9-26.
    [20]Zhu J G, Bertram H N. Micromagnetic Studies of Thin Metallic-Films. J. Appl. Phys.,1988, 63(8):3248-3253.
    [21]Mansuripur M. Magnetization Reversal Dynamics in the Media of Magneto-Optical Recording. J. Appl. Phys.,1988,63(12):5809-5823.
    [22]Zhu J G, Bertram H N. Magnetization Reversal in CoCr Perpendicular Thin-Films. J. Appl. Phys.,1989,66(3):1291-1307.
    [23]Victora R H. Quantitative Theory for Hysteretic Phenomena in CoNi Magnetic Thin-Films. Phys. Rev. Lett.,1987,58(17):1788-1791.
    [24]Hayashi N, Nakatani Y. Numerical Calculation of Magnetic-Bubble Domain Wall Motion Based on a Lumped-Constant Model of Vertical Bloch Lines. Jpn. J. Appl. Phys. Part 1,1986, 25(3):406-418.
    [25]Hayashi N, Inoue T, Nakatani Y, et al. Direct Solution of Landau-Lifshitz-Gilbert Equation for Domain Walls in Thin Permalloy Films. IEEE Trans. Magn.,1988,24(6):3111-3113.
    [26]姜俊本科毕业论文,清华大学,2010
    [27]Hughes G F. Magnetization Reversal in Cobalt-Phosphorus Films. J. Appl. Phys.,1983, 54(9):5306-5313.
    [28]Victora R H. Micromagnetic Predictions for Magnetization Reversal in CoNi Films. J. Appl. Phys.,1987,62(10):4220-4225.
    [29]http://math.nist.gov/oommf/
    [30]Fredkin D R, Koehler T R. Numerical Micromagnetics by the Finite-Element Method. IEEE Trans. Magn.,1987,23(5):3385-3387.
    [31]Fredkin D R, Koehler T R. Numerical Micromagnetics by the Finite-Element Method.II. J. Appl. Phys.,1988,63(8):3179-3181
    [32]Fredkin D R, Koehler T R. Hybrid Method for Computing Demagnetizing Fields. IEEE Trans. Magn.,1990,26(2):415-417.
    [33]Koehler T R, Fredkin D R. Finite-Element Methods for Micromagnetics. IEEE Trans. Magn., 1992,28(2):1239-1244
    [34]Yang B, Fredkin D R. Dynamical micromagnetics by the finite element method. IEEE Trans. Magn.,1998,34(6):3842-3852.
    [35]Schrefl T, Fidler J, Kronmuller H. Nucleation. Fields of Hard Magnetic Particles in 2D Micromagnetic and 3D Micromagnetic Calculations. J. Magn. Magn. Mater.,1994, 138(1-2):15-30.
    [36]Fidler J, Schrefl T. Micromagnetic modelling-the current state of the art. J. Phys. D. Appl. Phys.,2000,33(15):R135-R156.
    [37]Scholz W, Fidler J, Schrefl T, et al. Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci.,2003,28(2):366-383.
    [38]Garcia-Cervera C J, Gimbutas Z, Weinan E. Accurate numerical methods for micromagnetics simulations with general geometries. J. Comput. Phys.,2003,184(l):37-52.
    [39]Stoner E C, Wohlfarth E P A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Phil. Trans. R. Soc. Lond. A,1948,240(826):599-642.
    [40]Z. Li, J. Cao, F. Wei, K. Piao, S. She, D. Wei, Micromagnetic analysis of L10 orded FePt perpendicular recording media prepared by magnetron sputtering, J. Appl. Phys,102,113918, 2007
    [41]S. Wang, D. Wei, K. Gao, Initial permeability and dynamic response of feco write pole, IEEE Trans. Magn., Vol.46, No.6,2010
    [42]H. Xie, K. Zhang, H. Li, Y. Wang, Z. Li, Y. Wang, J. Cao, J. Bai, F. Wei, D. Wei, The Role of Magnetoelastic Field Related to Underlayers on Magnetic Properties of FeCo Thin Films, IEEE Trans. Magn., Vol.48, No.11,2012
    [1]F.Roozeboom, P. J. H. Bloemen, W. Klaassens, E.G. J. Van De Riet, and J.J. T. M. Donkers, Philips J.Res.,51,59(1998).
    [2]李晓红博士学位论文,兰州大学(2003)。
    [3]R. L. Comstock, J. Mater. Sci.,13,509 (2002).
    [4]Neil Robertson, H.L.Hu, and ChingTsang, IEEE Trans. Magn.,33,2818(1997).
    [5]李国栋,信息记录材料,3(2),30(2002)。
    [6]T. Osaka, M. Takai, K. hayashi, K. Ohashi, Y. Yasue, M. Saito, and K.Yamada, Nature,392, 796(1998).
    [7]M. H. Kryder, S. X. Wang, and K. Rook, J. Appl. Phys.,73,6212 (1993).
    [8]陈国钧,吕键,陈殿金,王旭军,信息记录材料,3(1),25(2002)。
    [9]S.X.Wang, N.X.Sun, M.Yamaguchi, and S Yabukami, Nature (London),407,150,(2000).
    [10]K.Shintaku, K.Yamakawa and K.Ouchi, J.Appl.Phys.,93,6474 (2003).
    [11]大内一弘,中国讲演报告,兰州大学(2004)
    [12]B. Viala, M. K. Minor, and J. A. Bernard, J. Appl. Phys.,80,3941 (1996).
    [13]Y. J. Chen, C. Qian, C. Y. Hung, and M. Miller, J. Appl. Phys.,87,5864(2000).
    [14]O. Shimuzu, K. Nakanishi, and S. Yoshida, J. Appl. Phys.,70,6244 (1991).
    [15]T. Xie, D. S. Zheng, X. H. Li, Y. G. Ma, F. L. Wei, Z. Yang,7,725 (2002).
    [16]K. Ohashi, Y. Yasue, M. Saito, K. Yamada, T. Osaka, M. Takai, and K.Hayashi, IEEE Trans. Magn.,34,1462(1998).
    [17]X Liu, G. Zangcari and L. Shen, J. Appl. Phys.,87,5410 (2000).
    [18]T.Osaka, M. Takai, K. Hayashi, Y. Sogawa, K. Ohashi, Y. Yasue, M. Saito,and K. Yamada, IEEE Trans. Magn.,34,1432 (1998).
    [19]E. H. du Marchie van Voorthuysen, F. T. ten Broek, N. G. Chechenin, J.Magn. Magn. Mater. 266,251 (2003).
    [20]E. I. Cooper, C. Bonhote, J. Heidmann, Y. Hsu,P. Kern, J. W. Lam, et al,IBM J. Res.& Dev., 49,103(2005).
    [21]Bozorth R M. Ferromagnetism:D. Van Nostrand Company,1959:193-195.
    [22]Neumayer M, Fahnle M. Atomic defects in FeCo:Stabilization of the B2 structure by magnetism. Phys. Rev. B,2001,6413(13):132102.
    [23]Burkert T, Nordstrom L, Eriksson O, et al. Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett,2004,93(2):027203.
    [24]Poddar P, Wilson J L, Srikanth H, et al. Grain size influence on soft ferromagnetic properties in Fe-Co nanoparticles. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.,2004, 106(1):95-100.
    [25]Kortus J, Baruah T, Pederson M R, et al. Magnetic moment and anisotropy in FenCom clusters. Appl. Phys. Lett.,2002,80(22):4193-4195.
    [26]Winkelmann A, Przybylski M, Luo F, et al. Perpendicular magnetic anisotropy induced by tetragonal distortion of FeCo alloy films grown on Pd(001). Phys. Rev. Lett.,2006, 96(25):257205.
    [27]C. Kittel, Introduction to Solid State Physics, John Wiler& Sons, New York 1996.
    [28]Ohnuma I, Enoki H, Ikeda O, et al. Phase equilibria in the Fe-Co binary system. Acta Mater., 2002,50(2):379-393.
    [29]Orehotsky J, Schroder K. Order-Disorder Critical Phenomena in Feco. J. Phys. F-Metal Phys.,1974,4(2):196-201.
    [30]Hall R C. Magnetic Anisotropy and Magnetostriction of Ordered and Disordered Cobalt-Iron Alloys. J. Appl. Phys.,1960,31(5):S157-S158.
    [31]Jung H S, Doyle W D, Matsunuma S. Influence of underlayers on the soft properties of high magnetization FeCo films. J. Appl. Phys.,2003,93(10):6462-6464.
    [32]Berkowitz A E, Takano K. Exchange anisotropy-a review. J. Magn. Magn. Mater.,1999, 200(1-3):552-570.
    [33]Shimatsu T, Katada H, Watanabe I, et al. Effect of lattice strain on soft magnetic properties in FeCo/NiFe(Cr) thin films with 2.4 T. IEEE Trans. Magn.,2003,39(5):2365-2367.
    [34]C. Kittel, "Physcial theory of ferromagnetic domains," Modern Phys.,vol.21, no.4,1949.
    [35]S. Wang, D. Wei, K. Gao, and F. Wei, "Magnetic Properties of Write Head Material" TMRC-P3,2009.
    [36]Z. Li, J. Cao, F. Wei, K. Piao, S. She, and D. Wei, "Micromagnetic analysis of L10 ordered FePt perpendicular recording media prepared by magnetron sputtering," J. Appl. Phys., vol. 102, p.113918,2007.
    [37]R. Becker and W. DOring, Ferromagnetismus. Berlin, Germany:Springer-Verlag,1939.
    [38]M. Takahashi, H. Shoji, T. Shimatsu, H. Komaba, and T. Wakiyama,“Softmagnetic properties of Fe-Nand Fe-Si-Nthin films," IEEE Trans. Magn., vol.26, no.5, pp.1503-1505, Sep. 1990.
    [1]S.Iwasaki, Development of perpendicular magnetic recording conference. Journal of Magnetism and Magnetic Materials,287:1-8,2005.
    [2]J. Ariake, T. Chiba, S. Watanabe, N. Honda, and K. Ouchi, "Magnetic and structural properties of Co-Pt perpendicular recording media with large magnetic anisotropy," J. Magn. Magn. Mater., vol.287, pp.229-233,2005
    [3]N. Honda, K. Ouchi, and S. Iwasaki, "Design consideration of ultrahighdensity perpendicular magnetic recording media," IEEE Trans. Magn.,vol.38, no.4, pp.1615-1621, Jul.2002.
    [4]D. Treves, J. T. Jacobs, and E. Sawatzky, "Platinum-cobalt films for digital magneto-optic recording," J. Appl. Phys., vol.46, pp.2760-2765,1975.
    [5]J. B. Newkirk and R. J. Smoluchowski, Appl. Phys.22,290(1951).
    [6]Y. Yamada, T. Suzuki, and E. N. Abarra, "Magnetic properties of electron beam evaporated CoPt alloy thin films," IEEE Trans. Magn., vol.33, no.5, pp.3622-3624, Sep.1997.
    [7]T. Hikosaka, T.Komai, andY. Tanaka, "Oxygen effect on the microstructure and magnetic property of binary CoPt thin films for perpendicular recording," IEEE Trans. Magn., vol.30, no.6, pp.4026-4028,1994.
    [8]T. Chiba, J. Ariake, and N. Honda, "Structure and magnetic properties of Co-Pt-Ta O film for perpendicular magnetic recording media," J.Magn. Magn. Mater., vol.287, pp.167-171, 2005.
    [9]J.Ariake, N.Honda, Co-Pt-TiO2 Composite Film for Perpendicular Magnetic Recording Medium, IEEE Trans.Magn.Vol.41,No.10,2005.
    [10]Dan Wei, Micromagnetics and Recording Materials, Springer,2012
    [11]Z. Li, J. Cao, F. Wei, K. Piao, S. She, and D. Wei, "Micromagnetic analysis of L10 ordered FePt perpendicular recording media prepared by magnetron sputtering," J. Appl. Phys., vol. 102, p.113918,2007.
    [12]S.N.Piramanayagam, Tow C.Chong, Developments in Data Storage:Materials Perspective, IEEEPress,2012
    [1]W. K. Shen and J. P. Wang, J. Appl. Phys.100,096113 (2006).
    [2]Y. Inaba, T. Shimatsu,S. Watanabe, O. Kitakami, S. Okamoto, H. Muraoka, H.Aoi, N. Asakura, Y. Nakamura, J. Magn. Soc. Jpn.31,178-183 (2007).
    [3]Y. K. Takahashia, K. Hono, S. Okamoto and O. Kitakami, J. Appl. Phys.100,074305 (2006).
    [4]Z. Li, J. Cao, F. Wei, K. Piao, S. She, and D. Wei, "Micromagnetic analysis of L10 ordered FePt perpendicular recording media prepared by magnetron sputtering," J. Appl. Phys., vol. 102, p.113918,2007.
    [5]M. Mansuripur and R. Giles, IEEE Trans. Magn.24,2326 (1988).
    [6]S. W. Yuan and H. N. Bertram, IEEE Trans. Magn.28,2031(1992).
    [7]H.Kronmuller, H.R.Hilzinger. Incoherent nucleation of reversed domains in Co5Sm permanent magnets[J]. J.Magn.Magn.Mater.1976,154:3-10.
    [8]K.Y.Guslienko, O.Chubykalo-Fesenko, CMryasov, R.Chantrell, D.Weller. Magnetization reversal via perpendicular exchange spring in FePt/FeRh bilayer films[J]. Phys.Rev.B, 2004,70:104405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700