有机蓝色荧光材料和磷光主体材料的合成及电致发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计并合成了一系列有机小分子类、聚合物类蓝色荧光材料,以及具有不同特点的磷光主体材料,详细地研究了它们的电致发光性能。所合成的材料类型和具体工作如下:
     (1)聚芴衍生物类蓝色荧光材料:将具有不同吸电子能力的三氟甲基苯基和二氟苯基通过Suzuki缩聚反应引入到聚芴主链上,同时调节了它们在主链上的比例,合成了两个系列聚芴衍生物蓝色荧光材料。与聚芴相比,所得聚合物不仅具有高的荧光量子效率,而且在光谱的色纯度和稳定性方面得到了较大的改善。以聚合物为发光层,通过溶液旋涂方法制备的有机电致发光器件均表现出纯正的蓝光发射。其中基于PF-33F的器件性能明显优于聚芴,最大外量子效率和色坐标分别为1.14%和(0.16,0.13)。
     (2)含有芴或咔唑中心的小分子蓝色荧光材料:通过Suzuki偶联反应,分别以芴、联芴或咔唑为分子中心,在其2,7位引入9-(2-萘基)蒽,设计并合成了两个系列小分子蓝色荧光材料。这些化合物均具有良好的热稳定性、形态稳定性以及高的荧光量子效率。将它们作为发光层,利用真空蒸镀技术制备的非掺杂型器件均获得深蓝光,色坐标非常接近于标准蓝光(0.14,0.08)。其中,基于NAECz的器件性能最优,最大电流效率和外量子效率分别达到了6.91cdA-1和7.60%,是目前报道的色坐标y<0.10的非掺杂型深蓝色荧光器件中的最高效率。此外,将NAECz与橙色荧光材料DCJTB组合作为发光层,制备的二元白光器件最大亮度可以达到36250cdm-2,最大电流效率和色坐标分别为17.75cdA-1和(0.35,0.36),也是目前文献报道的基于荧光材料的二元白光器件中的最高效率。
     (3)双极性小分子磷光主体材料:在CBP咔唑环的3-位碳上引入强吸电子性的氰基,合成了一种新型的CBP衍生物CBP-CN。单电子器件的电流-电压性质研究证实了CBP-CN具有既传输空穴又传输电子的双极性特征。与CBP相比,CBP-CN具有更高的Tg值(162℃)和更低的HOMO和LUMO能级,但是其能隙值和三线态能级(2.69eV)却没有发生明显改变。将其作为主体材料制备了绿色和红色电致磷光器件,最大电流效率分别为80.61cd A-1(23.13%)和10.67cd A-1(15.54%),与基于CBP的器件相比,分别提高了25%和33%。其中,绿光器件的效率接近于目前文献报道的磷光器件中的最好数据(92.2cd A-1和26.8%)。
     (4)树枝状磷光主体材料:以联苯为核心,通过Ullmann偶联反应在其两端引入具有空穴传输功能的不同代数的低聚咔唑类树枝,合成了一系列树枝状分子:G1、G2和G3。与传统的小分子磷光主体材料CBP相比,所得化合物具有类似的三线态能级(2.60-2.62eV),但其树枝状的结构使这些材料具有良好的无定型态的特点,玻璃化转变温度最高可达到376℃,且适合溶液加工方法制备器件。与常用的磷光主体材料PVK相比,这些树枝状分子具有更高的HOMO能级(-5.51eV到-5.37eV)。以G2为主体,铱配合物为客体,制备的绿色和橙红色电致磷光器件最大效率分别为38.71cd A-1和32.22cd A-1,明显优于基于PVK的器件,是目前报道的通过溶液加工制备磷光器件中的较好数据。
     (5)可溶液加工的小分子磷光主体材料:以三杜烯硼烷为核心,通过Suzuki偶联在其三个对位引入芴或联芴,合成了两种小分子磷光主体材料:DBF1和DBF2。这些材料具有良好的溶解性和热稳定性。其中,DBF1具有较高的三线态能级,将其作为主体,通过溶液旋涂方法制备的绿色电致磷光器件表现出较好的性能,器件的最大效率分别为36.77cd A-1、23.09lm W-1和10.81%。
A series of blue organic fluorescent materials and phosphorescent host materials were designed and synthesized. The electroluminescent properties of these materials were studied. The material types and their specific works are as follows:
     (1) Polyfluorene (PF)-type of blue fluorescent materials:A group of fluorene-based copolymers were synthesized by introduction of different content ratios of electron-withdrawing groups, such as trifiuoromethylphenylene or p-difluorophenylene, to the polymer backbone through Suzuki polycondensation reactions. In contrast to the pristine polyfluorene, these copolymers possess increased fluorescent quantum yields and improved spectra purity and stability of the blue fluorescence. Organic light-emitting diodes were fabricated by spin coating method using them as emitting layer and pure blue electroluminescence was obtained. A maximum external quantum efficiency of1.14%and the CIE (0.16,0.13) were achieved for PF-33F device, which far exceed those of the control device base on the parent polyfluorene.
     (2) Fluroene-or carbazole-cored small molecular blue fluorescent materials:By introducing9-naphthylanthracene endcaps into oligofluorene or carbazole core through Suzuki coupling reactions, two series of blue fluorescent molecules have been designed and synthesized. These materials exhibit excellent thermal and amorphous stabilities, and high fluorescence quantum yield. Vacumn deposited organic light-emitting devices (OLEDs) using these materials as non-doped emitter exhibited bright deep blue electroluminescence, and the CIE coordinates are quite close to the National Television System Committee (NTSC) standard blue of (0.14,0.08). The devices based on NAECz exhibit excellent device performances with maximum r efficiencies of6.91cd A"1and7.60%, which are among the best performance ever reported for deep-blue OLEDs with a low CIE coordinate y<0.1. In addition, the white OLEDs using NAECz as blue host and a traditional fluorophore DCJTB as yellow dopant realized a high luminance of36250cd m"2and an efficiency of17.75cd A-with an almost standard white light coordinates of (0.35,0.36), which is also among the best results ever reported for two-emitting-component white OLEDs based on fluorescent materials.
     (3) Small molecular bipolar phosphorescent host material:We report the synthesis and properties of one novel CBP derivative, CBP-CN, with two cyano groups (CN) at the3-sites of both carbazole rings. The strong electron-withdrawing CN was introduced with expectation to promote electron-injecting/-transporting abilities and to achieve bipolar feature for CBP-CN. In comparison with the parent CBP, CBP-CN possesses lowered HOMO and LUMO levels and dramatically increased Tg(162℃), but unaltered HOMO-LUMO band gap and triplet energy (2.69eV). Green and red PhOLEDs were fabricated with CBP-CN as hosts for traditional iridium phosphors. The maximum luminance efficiency (ηL) of80.61cd A-1(23.13%) was achieved for green PhOLED, and10.67cd A-1(15.54%) for red one, respectively, which represent a efficiency increase by25-33%than those of the best devices with CBP host. The efficiencies of the present green PhOLEDs are even close to the best data for phosphorescent OLEDs reported so far (92.2cd A-1and26.8%).
     (4) Dendritic phosphorescent host materials:A group of dendrimers with oligo-carbazole dendrons appended at4,4'-positions of biphenyl core, namely G1, G2and G3, were synthesized by Ullmann coupling reaction. In comparison with the traditional small molecular phosphorescent host CBP, the dendritic conformation affords these materials with extra merits of being inherent amorphous with extremely high glass transition temperatures of e.g.376℃and being suitable for solution-processing techniques to make devices, in addition to the similarly high triplet energies (2.60-2.62eV). In comparison with the widely-used phosphorescent polymer host polyvinylcarbazole (PVK), these dendrimers possess much higher HOMO levels (-5.51eV to-5.37eV). These dendrimers were used as host materials for iridium phosphors to fabricate OLEDs by spin coating method and excellent performance were achieved. The green and orange PHOLED containing G2host exhibited high luminance efficiencies of38.71cd A-1and32.22cd A-1, respectively, which far exceed those of the control device with PVK host and are among the best results for solution-processed PHOLEDs reported so far.
     (5) Solution-processible small molecular phosphorescent host materials:A group of small molecular phosphorescent hosts based on a tridurylboranes core and oligofluorene endcaps, namely DBF1DBF2, were synthesized via Suzuki coupling reactions. These materials show good solubility and excellent thermal stability. DBF1has high triplet energy. Green phosphorescent OLEDs were fabricated by partially solution-processing technique with DBF1as host and exhibited good device performances with high efficiencies of36.77cd A-1,23.09lm W-1and10.81%.
引文
[1]Kido J, Nagai K, Okamoto Y. Bright organic electroluminescent devices with double-layer cathode [J]. IEEE Trans. Electr. Dev.,1993,40:1342-1344.
    [2]Cao Y, Yu G, Zhang C, et al. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode [J]. Synth. Met.,1997,87:171-174.
    [3]黄春辉,李富友,黄岩谊。光电功能超薄膜[M].北京:北京大学出版社,2001.
    [4]Colaneri N F, Bradley D D C, Friend R H, et al. Photoexcited states in poly(p-phenylene vinylene): Comparison with trans,trans-distyrylbenzene, a model oligomer [J]. Phys. Rev. B,1990,42: 11670-11681.
    [5]Pope M, Magnante P, Kallmann H P. Electroluminescence in organic crystals [J]. J. Chem. Phys.,1963, 38:2042-2043.
    [6]Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett.,1987,51:913-915.
    [7]Burroughes J H, Bradley D D C. Brown A R. et al. Light-emitting diodes based on conjugated polymer [J]. Nature,1990,347:539-542.
    [8]Gu G, Shen Z, Burrows P E, et al. Effect of the anion on level and aging of the conducting state of electropolymerized 3-methylthiophene thin films [J]. Adv. Mater.,1997,9:725-728.
    [9]陈金鑫,黄孝文。OLED有机电致发光材料与器件[M].北京:清华大学出版社,2007.
    [10]Briegleb G, Czekalla J. Elektronenuberfuhrung durch Lichtabsorption und-emission in Elektronen-Donator-Acceptor-Komplexen [J]. Angew. Chem.,1960,72:401-413.
    [11]黄春辉,李富友,黄维。有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.
    [12]Forrest R, Bradley D C, Thompson E. Measuring the Efficiency of Organic Light-Emitting Devices [J]. Adv. Mater.,2003,15:1043-1048.
    [13]李亨。颜色技术原理及其应用[M].北京:科学出版社,1994.
    [14]Anderson J D, McDonald E M, Lee P A. Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes [J]. J. Am. Chem. Soc.,1998,120:9646-9655.
    [15]王建营,李银奎,胡文祥。聚合物电致发光器件的研究进展[J].半导体光电,1998,19:283-286.
    [16]Anderson M R, Yu G, Heeger A J. Photoluminescence and electroluminescence of films from soluble PPV-polymers [J]. Synth. Met.,1997,85:1275-1276.
    [17]Sato Y. Clinical application of the enhanced internal filtration dialyzer [J]. Semicond Semimet.,2000, 46:209.
    [18]VanSlyke S A. US 5151629.1992.
    [19]Mi B X, Gao Z Q, Lee C S, et al. Reduction of molecular aggregation and its application to the high-performance blue perylene-doped organic electroluminescent device [J]. Appl. Phys. Lett.,1999, 75:4055-4057.
    [20]Shi J M, Tang C W, Chen C H. US 5935721.1999.
    [21]Shi J M, Tang C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Appl. Phys. Lett.,2002,80:3201-3203.
    [22]Kim Y H, Shin D C, Kim S H, et al. Novel Blue Emitting Material with High Color Purity [J]. Adv. Mater.,2001,12:1690-1693.
    [23]Shen W J, Dodda R, Wu C C, et al. Spirobifluorene-Linked Bisanthracene:An Efficient Blue Emitter with Pronounced Thermal Stability [J]. Chem. Mater.,2004,16:930-934.
    [24]Wong K T, Chien Y Y, Chen R T, et al. Ter(9,9-diarylfluorene)s:Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability [J]. J. Am. Chem. Soc.,2002,124:11576-11577.
    [25]Saitoh A, Yamada N, Yashima M, et al. Novel Fluorene-Based Blue Emitters for High Performance OLEDs [J]. SID Int. Symp.,2004,35:150-153.
    [26]Hosokawa C, Sakamoto S, Kusumoto T. US 5389444.1995.
    [27]Hosokawa C, Tokailin H, Higashi H, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant [J]. J. Appl. Phys. Lett.,1995,67:3853-3855.
    [28]Son H J, Han W S, Lee K H, et al. Electrochemical Deposition of End-Capped Triarylamine and Carbazole Dendrimers:Alternate Technique for the Manufacture of Multilayer Films [J]. Chem. Mater.,2006,18:5811-5813.
    [29]Feng G L, Lai W Y, Jia S J. et al. Synthesis of novel star-shaped carbazole functionalized triazatruxenes [J]. Tetrahedron Lett.,2006,47:7089-7092.
    [30]Guan M, Bian Z Q, Zhou Y F. High-Performance Blue Electroluminescent Devices Based On 2-(4-biphenylyl)-5-(4-carbazole-9-yl)phenyl-1,3,4-oxadiazole [J]. Chem. Coramun.,2003.21: 2708-2709.
    [31]Kim S H, Cho I, Sim M K, et al. Highly efficient deep-blue emitting organic light emitting diode based on the multifunctional fluorescent molecule comprising covalently bonded carbazole and anthracene moieties [J]. J. Mater. Chem.,2011,21:9139-9148.
    [32]Shen J.-Y, Yang X.-L, Huang T.-H, et al. Ambipolar Conductive 2,7-Carbazole Derivatives for Electroluminescent Devices [J]. Adv. Funct. Mater.,2007,17:983-995.
    [33]Flamigni L, Barbieri A, Sabatini C, et al. Photochemistry and Photophysics of Coordination Compounds:Iridium [J]. Top. Curr. Chem.,2007,281:143-203.
    [34]Ma B, Djurovich P 1, Thompson M E, et al. Excimer and electron transfer quenching studies of a cyclometalated platinum complex [J]. Chem. Rev.,2005,249:1501-1510.
    [35]Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395:151-154.
    [36]Tao Y, Wang Q, Yang C, et al. A simple carbazole/oxadiazole hybrid molecule:an excellent bipolar host for green and red phosphorescent OLEDs [J]. Angew. Chem. Int. Ed.,2008,47:8104-8107.
    [37]Ye S. Liu Y, Di C, et al. Wide-Energy-Gap Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes [J]. Chem. Mater.,2009,21:1333-1342.
    [38]Adachi C, Kwong R C, Forrest S R, et al. Endothermic energy transfer:A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J]. Appl. Phys. Lett.,2001, 79:2082-2084.
    [39]Tsai M.-H, Hong Y.-H, Chang C.-H, et al.3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence [J]. Adv. Mater.,2007,19:862-866.
    [40]Ikai M, Tokito S, Sakamoto Y, et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer [J]. Applied Physics Letters.2001,79:156-158.
    [41]Holmes R J, Forrest S R, Tung Y J, et al. Blue organic electrophosphorescence using exothermic host-guest energy transfer [J]. Appl. Phys. Lett.,2003,82:2422-2424.
    [42]Tokito S, Iijima T, Suzuri Y, et al. Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices [J]. Appl. Phys. Lett.,2003,83:569-571.
    [43]Jiang Z Q, Xu X C, Ma D G, et al. Diarylmethylene-bridged 4,4'-(bis(9-carbazolyl))biphenyl: morphological stable host material for highly efficient electrophosphorescence [J]. J. Mater. Chem., 2009,19:7661-7665.
    [44]Hudson Z M, Wang Z, Helander M G, et al. N-Heterocyclic Carbazole-Based Hosts for Simplified Single-Layer Phosphorescent OLEDs with High Efficiencies [J]. Adv. Mater.,2012,24:2922-2928.
    [45]Adachi C, Baldo M A, Forrest S R, et al. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J]. Appl. Phys. Lett.,2000, 77:904-906.
    [46]Adachi C, Baldo M A, Forrest S R, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. J. Appl. Phys.,2001,90:5048-5051.
    [47]Burrows P E, Sapochak L S, Thompson M E, et al. Ultraviolet electroluminescence and blue-green phosphorescence using an organic diphosphine oxide charge transporting layer [J]. Appl. Phys. Lett., 2005,88:183503-183505.
    [48]Leung M K, Yang C C, Chiu C F, et al. The Unusual Electrochemical and Photophysical Behavior of 2,2'-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes [J]. Org. Lett.,2007,9:235-238.
    [49]Fukagawa H, Irisa S, Tokito S, et al. Pyridoindole Derivative as Electron Transporting Host Material for Efficient Deep-blue Phosphorescent Organic Light-emitting Diodes [J]. Adv. Mater.,2010,22: 4775-4778.
    [50]Zeng L, Lee T Y H, Merkel R B, et al. A new class of non-conjugated bipolar hybrid hosts for phosphorescent organic light-emitting diodes [J]. J. Mater. Chem.,2009,19:8772-8781.
    [51]Guan M, Chen Z Q, Huang C H, et al. The host materials containing carbazole and oxadiazole fragment for red triplet emitter in organic light-emitting diodes [J]. Org. Electron.,2006,7:330-336.
    [52]Tao Y T, Wang Q, Ma D G, et al. Tuning the Optoelectronic Properties of Carbazole/Oxadiazole Hybrids through Linkage Modes:Hosts for Highly Efficient Green Electrophosphorescence [J]. Adv. Funct. Mater.,2010,20:304-311.
    [53]Lai M Y, Chen C H, Wu C C, et al. Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters [J]. Angew. Chem. Int. Ed.,2008,47:581-585.
    [54]Gong S L, Yang C L, Ma D G, et al. De Novo Design of Silicon-Bridged Molecule Towards a Bipolar Host:All-Phosphor White Organic Light-Emitting Devices Exhibiting High Efficiency and Low Efficiency Roll-Off [J]. Adv. Mater.,2010,22:5370-5373.
    [55]Kim J H, Yoon D Y, Kim J W, et al. New host materials with high triplet energy-level for blue-emitting electrophosphorescent device [J]. Synth. Met.,2007,157:743-750.
    [56]Gong S, Fu Q, Wang Q, et al. Highly Efficient Deep-Blue Electrophosphorescence Enabled by Solution-Processed Bipolar Tetraarylsilane Host with Both a High Triplet Energy and a High-Lying HOMO Level [J]. Adv. Mater.,2011,23:4956-4959.
    [57]Su S J, Sasabe H, Kido J J, et al. Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs [J]. Chem. Mater.,2008,20:1691-1693.
    [58]Ge Z Y, Ueda M, Kakimoto M A, et al. Novel Bipolar Bathophenanthroline Containing Hosts for Highly Efficient Phosphorescent OLEDs [J]. Org. Lett.,2008,10:421-424.
    [59]Gao Z Q, Luo M S, Sun X H, et al. New host containing bipolar carrier transport moiety for high-efficiency electrophosphorescence at low voltages [J]. Adv. Mater.,2009,21:688-692.
    [60]Cai X, Padmaperama A B, Sapochak L S, et al. Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence [J]. Appl. Phys. Lett.,2008,92:308-310.
    [61]Jeon S O, Yook K S, Lee J Y, et al. Phenylcarbazole-Based Phosphine Oxide Host Materials For High Efficiency In Deep Blue Phosphorescent Organic Light-Emitting Diodes [J]. Adv. Funct. Mater.,2009, 19:3644-3649.
    [62]Jeon S O, Yook K S, Lee J Y, et al. High-Efficiency Deep-Blue-Phosphorescent Organic Light-Emitting Diodes Using a Phosphine Oxide and a Phosphine Sulfide High-Triplet-Energy Host Material with Bipolar Charge-Transport Properties [J]. Adv. Mater..2010,22:1872-1876.
    [63]Chou H H, Cheng C H. A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDs [J]. Adv. Mater.,2010,22:2468-2471.
    [64]Grimsdale A C, Chan K, Martin R E, et al. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices [J]. Chem. Rev.,2009,109:897-1091.
    [65]Ego C, Grimsdale A C, Uckert F. et al. Triphenylamine-substituted polyfluorene:a stable blue-emitter with improved charge injection for light-emitting diodes [J]. Adv. Mater.,2002,14:809-811.
    [66]Setayesh S, Grimsdale A C, Weil T. et al. Polyfluorenes with Polyphenylene Dendron Side Chains: Toward Non-Aggregating, Light-Emitting Polymers [J]. J. Am. Chem. Soc.,2001,123:946-953.
    [67]Scherf U, List E J W. Semiconducting polyfluorenes-towards reliable structure-property relationships [J]. Adv. Mater.,2002,14:477-487.
    [68]Yu W L, Pei J, Huang W, et al. Spiro-functionalized polyfluorene derivatives as blue light-emitting materials [J]. Adv. Mater.,2000,12:828-831.
    [69]Herz L M, Phillips R T. Effects of interchain interactions, polarization anisotropy, and photo-oxidation on the ultrafast photoluminescence decay from a polyfluorene [J]. Phys. Rev. B,2000,61: 13691-13697.
    [70]Zeng G, Yu W I, Huang W. Spectral and thermal spectral stability study for fluorene-based conjugated polymers. Macromolecules,2002,35:6907-6914.
    [71]Romaner L, Pogantsch A, de Freitas PS, et al. The origin of green emission in polyfluorene-based conjugated polymers:On-chain defect fluorescence [J]. Adv. Funct. Mater.,2003,13:597-601.
    [72]Becker K, Lupton J M, Feldmann J, et al. On-chain fluorenone defect emission from single polyflurene molecules in the absence of intermolecular interaction [J]. Adv. Funct. Mater.,2006,16: 364-370.
    [73]Li J Y, Ziegler A, Wegner G. Substituent effect to prevent autoxidation and improve spectral stability in blue light-emitting polyfluorenes [J]. Chem. Eur. J.,2005,11:4450-4457.
    [74]Kamtekar K T, Vaughan H L, Lyons B P, et al. Synthesis and Spectroscopy of Poly(9,9-dioctylfluorene-2,7-diyl-co-2,8-dihexyldibenzothiophene-S,S-dioxide-3,7-diyl)s: Solution-Processable, Deep-Blue Emitters with a High Triplet Energy [J]. Macromolecules,2010,43: 4481-4488.
    [75]Kowitz C, Wengner G. Functionalized Poly-and Oligo-phenylenes:Variations on the Suzuki Cross-Coupling of Functionalized Aryl [J]. Tetrahedron,1997,53:15553-15574.
    [76]Jo J, Chi C Y, Hoger S, Weger G, Yoon D Y. Synthesis and characterization of monodisperse oligofluorenes [J]. Chem. Eur. J.,2004,10:2681-2688.
    [76]Jo J, Chi C Y, Hoger S, Weger G. Yoon D Y. Synthesis and characterization of monodisperse oligofluorenes [J]. Chem. Eur. J.,2004,10:2681-2688.
    [77]Wand R, Wand W Z, Yand G Z, et al. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers [J]. J. Polym. Sci., Part A:Polym. Chem., 2008; 46:790-802.
    [78]Si Z J, Shao Y, Li C X, et al. Synthesis and fluorescence study of sodium-2-(4'-dimethyl-aminocinnamicacyl)-3,3-(1',3'-alkylenedithio) acrylate [J]. J. Lumin.,2007, 124:365-369.
    [79]Tao S, Peng Z K, Zhang X H, et al. Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability [J]. Adv. Funct. Mater.,2005,15:1716-1721.
    [80]Gong X, Iyer P K, Moses D, et al. Stabilized blue emission from polyfluorene-based light-emitting diodes:Elimination of fluorenone defects [J]. Adv. Funct. Mater.,2003,13:325-330.
    [81]Lupton J M. On-chain defect emission in conjugated polymers-Comment on Exciton dissociation dynamics in a conjugated polymer containing aggregate states [J]. Chem. Phys. Lett.,2002,365: 366-368.
    [82]Kulkarni A P, Kong X, Jenekhe S A. Fluorenone-Containing Polyfluorenes and Oligofluorenes: Photophysics, Origin of the Green Emission and Efficient Green Electroluminescence [J]. J. Phys. Chem. B,2004,108:8689-8701.
    [83]Yang W, Hou Q, Liu C, et al. Improvement of color purity in blue-emitting polyfluorene by copolymerization with dibenzothiophene [J]. J. Mater. Chem.,2003,13:1351-1355.
    [84]陈之光。聚芴衍生物蓝光材料的合成及性质研究[D].大连:大连理工大学化工与环境生命学部,2010.
    [85]Ye S H, Liu Y Q, Lu K, et al. An Alternative Approach to Constructing Solution Processable Multifunctional Materials:Their Structure, Properties, and Application in High-Performance Organic Light-Emitting Diodes [J]. Adv. Funct. Mater.,2010,20:3125-3135.
    [86]Wang R, Liu D, Ren H, et al. Highly Efficient Orange and White Organic Light-Emitting Diodes Based on New Orange Iridium Complexes [J]. Adv. Mater.,2011,23:2823-2827.
    [87]Zeng D L, Chen J W, Chen Z, et al. Efficient Improvement of Fluorescence Quantum Yield of Fluoreneethynylene-Based Polymers by Introducing a Periluoroalkylbenzene Unit to the Polymers [J]. Macromol. Rapid Commun.,2007,28:772-779.
    [88]Janietz S, Bradley D D C, Grell M, et al. Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene) [J]. Appl. Phys. Lett.,1998,73:2453-2455.
    [89]Yamamoto H, Wilkinson J, Long J P, et al. Nanoscale Organic Light-Emitting Diodes [J]. Nano. Lett., 2005,5:2485-2488.
    [90]Hung L S, Chen C H. Recent progress of molecular organic electroluminescent materials and devices [J]. Mater. Sci. Eng. R,2002,39:143-222.
    [91]Leung L M, Lo W Y, So S K, et al, A High-Efficiency Blue Emitter for Small Molecule-Based Organic Light-Emitting Diode [J]. J. Am. Chem. Soc.,2000,122:5640-5641.
    [92]Tang S, Liu M, Lu P, et al. A Molecular Glass for Deep-Blue Organic Light-Emitting Diodes Comprising a 9,9'-Spirobifluorene Core and Peripheral Carbazole Groups [J]. Adv. Funct. Mater., 2007,17:2869-2877.
    [93]Wu C.-H, Chien C.-H, Hsu F.-M, et al. Efficient non-doped blue-light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups [J]. J. Mater. Chem.,2009,19:1464-1470.
    [94]Lee M T, Liao C H, Tsai C H. Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices [J]. Adv. Mater.,2005,17:2493-2497.
    [95]Zheng C.-J, Zhao W.-M, Wang Z.-Q, et al. Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives [J]. J. Mater. Chem.,2010,20:1560-1566.
    [96]Shih P.-I, Chuang C.-Y, Chien C.-H, et al. Highly Efficient Non-Doped Blue-Light-Emitting Diodes Based on an Anthrancene Derivative End-Capped with Tetraphenylethylene Groups [J]. Adv. Funct. Mater.,2007,17:3141-3146.
    [97]Kim Y.-H, Jeong H.-C, Kim S.-H, et al. High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene [J]. Adv. Funct. Mater.,2005,15:1799-1805.
    [98]Kreger K, Jandke M, Strohriegl P. Novel starshaped molecules based on fluorene [J]. Synth. Met., 2001,119:163-164.
    [99]Gao Z Q, Li Z H, Xia P F, et al, Efficient Deep-Blue Organic Light-Emitting Diodes: Arylamine-Substituted Oligofluorenes [J]. Adv, Funct. Mater.,2007,17:3194-3199.
    [100]王谦。芴类衍生物蓝光材料的合成与表征[D].大连:大连理工大学化工与环境生命学部,2010.
    [101]Li J Y, Ma C, Tang J, et al. Novel Starburst Molecule as a Hole Injecting and Transporting Material for Organic Light-Emitting Devices [J]. Chem. Mater.,2005,17:615-619.
    [102]Jiao S B, Liao Y, Xu X J, et al. Synthesis, structure, electronic state, and luminescent properties of novel blue-light-emitting aryl-substituted 9,9-di(4-(di-p-tolyl)aminophenyl)fluorenes [J]. Adv. Funct. Mater.,2008,18:2335-2347.
    [103]Zhang T, Liu D, Wang Q, et al. Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps [J]. J. Mater. Chem.,2011,21: 12969-12976.
    [104]E. L. Williams, K. Haavisto, J. Li and G. E. Jabbour. Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100%Internal Quantum Efficiency [J]. Adv. Mater.,2007,19: 197-202.
    [105]Jiang W, Duan L, Qiao J, et al. High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices [J]. J. Mater. Chem.,2011,21:4918-4926.
    [106]Lux M, Strohriegl P, Hoecker H M. Polymers with pendant carbazolyl groups.2. Synthesis and characterization of some novel liquid-crystalline polysiloxanes [J]. Chem.,1987,188:811-820.
    [107]Tomkeviciene A, Grazulevicius J V, Jankauskas V. High Hole Mobilities in the Amorphous Films of 2,7-Di(9-carbazolyl)-9-(2-ethylhexyl)carbazole [J]. Chem. Lett.,2008,37:344-345.
    [108]Liu D, Ren H, Li J, et al. Novel perylene bisimide derivative with fluorinated shell:A multifunctional material for use in optoelectronic devices [J]. Chem. Phys. Lett.,2009,482:72-76.
    [109]Wong K, Chen Y, Lin Y, et al. Nonconjugated Hybrid of Carbazole and Fluorene:A Novel Host Material for Highly Efficient Green and Red Phosphorescent OLEDs [J]. Org. Lett.,2005,7: 5361-5364;
    [110]Tsai M H, Lin H W, Su H C, et al. Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material [J]. Adv. Mater.,2006,18: 1216-1220.
    [111]He J, Liu H, Dai Y, et al. Nonconjugated Carbazoles:A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs [J]. J. Phys. Chem.,2009,113:6761-6767.
    [112]Lin M.-S, Yang S.-J, Chang H.-W, et al. Incorporation of a CN group into mCP:a new bipolar host material for highly efficient blue and white electrophosphorescent devices [J]. J. Mater. Chem.,2012, 22:16114-16120.
    [113]Liu B, Yu W.-L. Lai Y.-H, et al. Blue-Light-Emitting Fluorene-Based Polymers with Tunable Electronic Properties [J]. Chem. Mater.,2001,13:1984-1991.
    [114]Park J, Yun C, Koh T.-W, et al. Vinyl-type polynorbornene with 9,9'-(1,1'-biphenyl)-4,4'-diylbis-9H-carbazole side groups as a host material for highly efficient green phosphorescent organic light-emitting diodes [J]. J. Mater. Chem.,2011,21:5422-5429.
    [115]Deng L, Zhang T, Wang R, et al. Diphenylphosphorylpyridine-functionalized iridium complexes for high-efficiency monochromic and white organic light-emitting diodes [J]. J. Mater. Chem.,2012,22: 15910-15918.
    [116]Kanno H, Ishikawa K, Nishio Y. Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(Ⅱ) as host material [J]. Appl. Phys. Lett.,2007,90:123509/1-123509/3
    [117]T. J. Park, W. S. Jeon, J. J. Park, S. Y. Kim, Y. K. Lee, Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap fluorescent host [J]. Appl. Phys. Lett.,2008,92: 113308/1-113308/3.
    [118]Gather M C, Kohnen A, Meerholz K. White Organic Light-Emitting Diodes [J]. Adv. Mater.2011, 23:233-248.
    [119]Wu H, Zou J, An D, et al. A new approach to efficiency enhancement of polymer light-emitting diodes by deposition of anode buffer layers in the presence of additives [J]. Org. Electron.,2009,10: 1562-1570.
    [120]Zhou G, Wong W.-Y, Yao B, et al. Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs [J]. Angew. Chem. Int. Ed.,2007,46:1149-1151.
    [121]Holder E, Langeveld B M W, Schubert U S. New trends in the use of transition metal-ligand complexes for applications in electroluminescent devices [J]. Adv. Mater.,2005,17:1109-1121.
    [122]Ding J, Zhang B, Lu J, et al. Solution-Processable Carbazole-Based Conjugated Dendritic Hosts for Power-Efficient Blue-Electrophosphorescent Devices [J]. Adv. Mater.,2009,21:4983-4986.
    [123]Yang J, Ye T, Zhang Q, Ma D. "Click" Synthesis of a Bipolar Dendrimer as a Host Material for Electrophosphorescent Devices. Macromol [J]. Chem. Phys.,2010,211:1969-1976.
    [124]梁云静。树枝状咔唑衍生物的合成及电致发光性质研究[D].大连:大连理工大学化工与环境生命学部,2011.
    [125]Ho M.-H, Balaganesan B, Chu T.-Y, et al. A morphologically stable host material for efficient phosphorescent green and red organic light emitting devices [J]. Thin Solid Films,2008,517: 943-947.
    [126]Li J Y, Liu D, Li Y, et al. A High Tg Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices [J]. Chem. Mater.,2005,17:1208-1212.
    [127]Moonsin P, Prachumrak N, Rattanawan R, et al. Carbazole dendronised triphenylamines as solution processed high Tg amorphous hole-transporting materials for organic electroluminescent devices [J]. Chem. Commun.,2012,48:3382-3384.
    [128]Lee H M, Baek S J, Gong S C, et al. Preparation and characterization of phosphorescence organic light-emitting diodes using poly-vinyl carbazole:tris(2-phenylpyridine) iridium(III) emission layer [J]. Opt. Eng.,2009,48:104001/1-104001/6.
    [129]Wu H, Zhou G, Zou J, et al. Efficient Polymer White-Light-Emitting Devices for Solid-State Lighting [J]. Adv. Mater.,2009,21:4181-4184.
    [130]Ding J, Cao J, Cheng Y, et al. Highly Efficient Green-Emitting Phosphorescent Iridium Dendrimers Based on Carbazole Dendrons [J]. Adv. Funct. Mater.,2006,16:575-581.
    [131]Rehmann N, Ulbricht C, Kohnen A, et al. Advanced Device Architecture for Highly Efficient Organic Light-Emitting Diodes with an Orange-Emitting Crosslinkable Iridium(III) Complex [J]. Adv. Mater.,2008,20:129-133.
    [132]Ho C.-L, Wong W.-Y, Zhou G.-J, et al. Solution-Processible Multi-component Cyclometalated Iridium Phosphors for High-Efficiency Orange-Emitting OLEDs and Their Potential Use as White Light Sources [J]. Adv. Funct. Mater.,2007,17:2925-2936.
    [133]Ge Z, Hayakawa T, Ando S, et al. Spin-coated highly efficient phosphorescent organic light-emitting diodes based on bipolar triphenylamine-benzimidazole derivatives [J]. Adv. Funct. Mater.,2008,18: 584-590.
    [134]Cai M, Xiao T, Hellerich E, et al. High-Efficiency Solution-Processed Small Molecule Electrophosphorescent Organic Light-Emitting Diodes [J]. Adv. Mater.,2011,23:3590-3596.
    [135]Lin M S. Chi L C, Chang H W, et al. A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices [J]. J. Mater. Chem.,2012,22:870-876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700