锂离子电池正极材料LiFePO_4的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸亚铁锂(LiFePO4)因其原料来源广泛、理论比容量高、结构稳定、循环性能优异且对环境无污染,成为最具发展前景的锂离子电池正极材料之一。本论文选取了共沉淀和溶剂热两种方法来合成碳包覆的纳米磷酸亚铁锂。论文的主要工作归纳如下:
     1.在乙二醇的参与下,在水溶液中,采用简单方便的一步共沉淀法得到LiFePO4的前驱体,经过煅烧得到纳米级的LiFePO4/C复合材料。该材料具有紧密完整的碳包覆层和优异的电化学性能。该过程适宜工业化大规模生产。
     2.采用非模板低温溶剂热法合成了具有不同微观结构的LiFePO4颗粒,通过煅烧生成碳包覆的LiFePO4复合材料。每一种结构都是由LiFePO4小颗粒自组装而成。在还原气氛中,采用两步煅烧的方式(250℃650℃)对材料进行热处理,以得到紧密完整的碳包覆层。
LiFePO4is a very hopeful positive electrode material for further lithium-ion batteries materials, because of abundance of raw materials, high theoretical capacity, stable structure, excellent cycling performance and pollution-free. A simple one-step co-precipitation process and solvothermal method were carried out to synthesize nanoscale LiFePO4/C composites. The detailed information of the paper is summarized as follows:
     1. A one-step co-precipitation process with ethylene glycol in aqueous solution was carried out to provide a convenient and economic route for the synthesis of nanoscale LiFePO4/C composites with uniform carbon coating and excellent electrochemical performance. It can be easily scaled up for commercialization.
     2. A simple template-free, low-temperature solvothermal method is developed for the synthesis of multi-morphous LiFePO4nanoparticles as well as carbon-coated LiFePO4composites. Each structure consists of LiFePO4nano-particles self-assembled. To get uniform carbon coating, the materials are subjected to further temperature treatment (250℃,650℃) under an inert atmosphere.
引文
[1]李国欣.新型化学电源导论[M].上海:上海复旦大学出版社,1992.
    [2]郭炳煜,徐徽,王先友等.锂离子电池[M].长沙:中南大学出版社,2002.
    [3]D. W. Murphy, J. Broodhead, B. C. Steel. Materials for advanced batteries [M]. New York:Plenum Press,1980:145.
    [4]K. Mizushima, P. C. Jones, P. J. Wiseman, et al. LixCoO2(0    [5]J. J. Auborn, Y. L. Barberio. Lithium intercalation cells without metallic lithium [J]. J. Electrochem. Soc.,1987,134:638-641.
    [6]雷永泉.新能源材料[M].天津:天津大学出版社,2000:32-33,124-125.
    [7]赵健,杨维芝,赵佳明.锂离子电池得应用开发[J].电池工业,2000,5:31-36.
    [8]B. Scrosati. Challenge of portable power [J]. Nature,1998,373:557-558.
    [9]A. R. Armstrong, Peter G Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature,1996,381:499-500.
    [10]J. M. Arascon, M. Armand. Issues and Challenges Facing Rechargeable Lithium Batteries [J]. Nature,2001,144:360-363.
    [11]A. K. Padhi, K. S. Nanjundawamy, J. B. Goodenough. Phospho-olivine as Positive Electrode Materials for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc.,1997,144:1188-1194.
    [12]M. Thackeray. Lithium-ion Batteries:An Unexpected Conductor [J]. Nat. Mater., 2002,1:81-82.
    [13]卢俊彪,唐子龙,张中泰等.镁离子掺杂对LiFePO4/C材料电池性能的影响[J].物理化学学报,2005,21:319-323.
    [14]H. Huang, S. C. Yin, L. F. Nazar. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates [J]. Electrochem. Solid-State Lett.,2001,4: A170-A172.
    [15]Y. Huang, H. Ren, Z. Peng, et al. Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method [J]. Electrochim. Acta,2009,55:311-315.
    [16]W. L. Liu, J. P. Tu, Y. Q. Qiao, et al. Optimized performances of core-shell structured LiFePO4/C nanocomposite [J]. J. Power Sources,2011,196: 7728-7735.
    [17]R. Dominko, M. Bele, M. Gaberscek, et al. Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4/C Composites [J]. J. Electrochem. Soc.,2005,152:A607-A610.
    [18]J. Wang, X. Sun. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries [J]. Energy Environ. Sci., 2012,5:5163-5185.
    [19]F. Pan, X. Chen, H. Li, et al. Influence of carbon coating porosity on the electrochemical performance of LiFePO4 cathode [J]. Electrochem. Commun., 2011,13:726-729.
    [20]Y. Cho, G. Fey, H. Kao. The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J]. J. Power Sources,2009,189:256-262.
    [21]C. Ong, Y. Lin, J. Chen. Effect of Various Organic Precursors on the Performance of LiFePO4/C Composite Cathode by Coprecipitation Method [J]. J. Electrochem. Soc.,2007,154:A527-A533
    [22]S. Y. Chung, J. T. Blocking, Y. M. Chiang. Electronically Conductive Phospho-olivines as Lithium Storage Electrodes [J]. Nat. Mater.,2002,1: 123-128.
    [23]Y. Ge, X. Yan, J. Liu, et al. An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance [J]. Electrochim. Acta,2010,55:5886-5890.
    [24]C. Li, N. Hua, C. Wang, et al. Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances [J]. J. Alloy Compd.,2011,509: 1897-1900.
    [25]D. Seo, H. Gwon, S. Kim, et al. Multicomponent Olivine Cathode for Lithium Rechargeable Batteries:A First-Principles Study [J]. Chem. Mater.,2010,22: 518-523.
    [26]M. Wagemaker, B. L. Ellis, D. Lutzenkirchen-Hecht, et al. Proof of Supervalent Doping in Olivine LiFePO4 [J]. Chem. Mater.2008,20:6313-6315.
    [27]颜剑,苏玉长,苏继桃等.锂离子电池负极材料的研究进展[J].电池工业,2006,11:277-281.
    [28]毛信表,王连邦,马淳安.新型锂储藏合金负极材料研究进展[J].浙江工业大学学报,2006,34:364-368.
    [29]唐致远,高飞,韩彬.锂离子电池负极材料Li4Ti5O12的研究进展[J].化工进展,2006,25:159-162.
    [30]A. Ritchie, W. Howard. Recent Developments and Likely Advances in Lithiumion Batteries [J]. J. Power Sources,2006,162:809-812.
    [31]李昌明,张仁元,李伟善.硅材料在锂离子电池中的应用研究进展[J].材料导报,2006,20:34-37.
    [32]P. Limthongkul, Y. Jang, N. J. Dudney, Y. M. Chiang. Electrochemically-driven solid-state amorphization in lithium-metal anodes [J]. J. Power sources,2003, 119-121:604-609.
    [33]D. H. Gregory, P. M. O'Meara, A. G Gordon, et al. Layered ternary transition metal nitrides:synthesis, structure and physical Properties [J]. J. Alloy Compd., 2001,317-318:237-244.
    [34]Y. H. Rho, K. Kanamura. Li+ion diffusion in Li4TiO12 thin film electrode prepared by PVP sol-gel method [J]. J. Solid State Chem.,2004,177:2094-2100.
    [35]Y. J. Hao, Q. Y. Lai, J. Z. Lu, et al. Synthesis and characterization of spinel Li4TisO12 anode material by oxalic acid-assisted sol-gel method [J]. J. Power Sources,2006,158:1358-1364.
    [36]郑洪河.锂离子电池电解质[M].北京:化学工业出版社,2007.
    [37]G. Moumouzias, G Ritzoulis, D.Siapkas, D. Terzidis. Comparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn2O4 cells [J]. J. Power sources,2003,122:57-66.
    [38]S. S. Zhang, K. Xu, T. R. Jow. Study of LiBF4 as an electrolyte salt for a Li-ion battery [J]. J. Electrochem. Soc.,2002,149:A586-A590.
    [39]E. Zinigrad, L. L. Asraf, J. S. Gnanaraj, M. Sprecher, D. Aurbach. On the thermal stability of LiPF6 [J]. Thermochim. Acta,2005,438:184-191.
    [40]D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J]. J. Power Sources,1999,81-82:95-111.
    [41]D. Ostrovskii, F. Ronci, B. Scrosati, P.Jacobsson. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes:spontaneous reactions at the electrode-electrolyte interface investigated by FTIR [J]. J. Power Sources,2001, 103:10-17
    [42]S. Gupta, S. Patmaik, S. Chaklanobis, K. Shahi. Enhanced electrical transport in LiBr-LiI mixed crystals and LiBr-Al2O3 composites [J]. Solid State Ionics, 1988.31:5-8..
    [43]G A. Nazri, R. A. Conell, C. Julien. Preparation and physical properties of lithium phosphide-lithium chloride, a solid electrolyte for solid state lithium batteries [J]. Solid State Ionics,1996,86-88:99-105.
    [44]吴大勇,刘昌炎.锂离子电池隔膜研究进展[J].新材料产业,2006,9:48-53.
    [45]Anders Lundblad, Bill Bergman. Synthesis of LiCoO2 Starting Form Arbonate Precursors:The Reaction Mechanisms [J]. Solid State Ionics,1997,96:173-181.
    [46]杨新河,刘人敏,吴国良.锂离子电池正极材料LiCoO2的合成机理及其化学行为研究.第23届全国化学与物理电源学术会议论文集,河南新乡,1999:342-344.
    [47]S. G. Kang, S. Y. Kang, K. S. Ryu, et al. Electrochemical and Structural Properties of HT-LiCoO2 and LT-LiCoO2 Prepared by the Citrate Sol-gel Method [J]. Solid State Ionics,1999,120:155-161
    [48]D. Larcher, M. R. Palacin, G G Ammtucci, et al. Electrochemically Active LiCoO2 and LiNiO2 Made by Cationic Exchange under Hydrothermal Conditions [J]. J.Electrochem. Soc.,1997,144(2):408-417.
    [49]H. W. Yan, X. J. Huang, H. L. Li, et al. Electrochemical Study on LiCoO2 Synthesized by Microwave Energy [J]. Solid State Ionics,1998,115:11-15
    [50]B. Garcia, J. Farcy, J. P. Pereira-Ramos. Low Temperature Cobalt Oxide as Rechargeable Cathodic Material for Lithium Batteries [J]. J. Power Sources, 1995,54:373-377.
    [51]L. Maugeri, L. Simonelli, A. Iadecola, et al. Temperature dependent local structure of LiCoO2 nanoparticles determined by Co K-edge X-ray absorption fine structure [J]. J. Power Sources,2013,229:272-276.
    [52]Y. Jung, P. Lu, A. S. Cavanagh, et al. Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li-Ion Batteries [J]. Adv. Energy Mater.,2013,3: 213-219.
    [53]S. Yamakawa, H. Yamasaki, T. Koyama, et al. Numerical study of Li diffusion in polycrystalline LiCoO2 [J]. J. Power Sources,2013,223:199-205
    [54]D. Luo, G. Li, C. Yu, et al. Low-concentration donor-doped LiCoO2 as a high performance cathode material for Li-ion batteries to operate between-10.4 and 45.4 degrees C [J]. J. Power Sources,2012,22:22233-22241.
    [55]A. G. Ritchie, C. O. Giwa, J. C. Lee, et al. Future Cathode Materials for Lithium Rechargeable Batteries [J]. J. Power Sources.1999,80:98-102.
    [56]T. Ohzuku, A. Ueda and Masatoshi Nagayama Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells [J]. J. Electrochem. Soc.1993,140:1862-1870
    [57]M. Wang, A. Navrotsky. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1-xCoxO2 [J]. Solid State Ionics,2004,166:167-173
    [58]L. Cheng, W. C. Liu. Reaction Mechanism and Kinetics Analysis of Lithium Nickel Oxide during Solid-State Reaction [J]. J. Mater. Chem,2000,10: 1403-1407.
    [59]P. Barboux, J. M. Tarascon, F. K. Shokoohi. The Use of Acetates As Precursors for the Low-temperature Synthesis of LiMn2O4 and LiCoO2 Intercalation Compounds [J]. J. Solid State Chem.1991,94:185-196.
    [60]W. Li, J. C. Currie, J. Wolstenholme Influence of morphology on the stability of LiNiO2 [J]. J. Power Sources,68,1997,565-569
    [61]Y Kim. First principles investigation of the structure and stability of LiNiO2 doped with Co and Mn [J]. J. Mater. Sci.,2012,47:7558-7563.
    [62]S. Muto, K. Tatsumi, Y. Kojima, et al. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods [J]. J. Power Sources,2012,205:449-455.
    [63]P. Cui, Z. Jia, L. Li, et al. Preparation and characteristics of Sb-doped LiNiO2 cathode materials for Li-ion batteries [J]. J. Phys. Chem. Solids,2011,72: 899-903.
    [64]M. H. Lee, Y. J. Kang, S. T. Myung, Y. K. Sun. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation [J]. Electrochim. Acta,2004,50: 939-948.
    [65]Y. Gao, J. R. Dahn. Sythesis and Characterization of Li1+xMn2-xO4 for Ion Battery Application [J]. J. Electrochem. Soc.,1996,143:100-144.
    [66]Y. Gao, J. R. Dahn. The High Temperature Phase Diagram of Li1-xMn2-xO4 and its Implications [J]. J. Electrochem Soc.,1996,143:1783-1788.
    [67]K. M. Shaju, P. G. Bruce. A Stoichiometric Nano-LiMn2O4 Spinel Electrode Exhibiting High Power and Stable Cycling [J]. Chem. Mater.,2008,20: 5557-5562.
    [68]M. Zhao, X. Song, F. Wang, et al. Electrochemical performance of single crystalline spinel LiMn2O4 nanowires in an aqueous LiNO3 solution [J]. Electrochim. Acta,2011,56:5673-5678.
    [69]W. Tang, Y. Hou, F. Wang, et al. LiMn2O4 Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries [J]. Nano lett.,2013,13:2036-2040.
    [70]R. Thirunakaran, R. Ravikumar, S. Gopukumar, et al. Electrochemical evaluation of dual-doped LiMn2O4 spinels synthesized via co-precipitation method as cathode material for lithium rechargeable batteries [J]. J. Alloy Compd.,2013, 556:266-273.
    [71]Y. Wang, X. Shao, H. Xu, et al. Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries [J]. J. Power Sources, 2013,226:140-148.
    [72]L. Xiao, Y. Guo, D. Qu, et al. Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials [J]. J. Power Sources,2013,225:286-292.
    [73]A. Iturrondobeitia, A. Goni, V. Palomares, et al. Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study [J]. J. Power Sources,2012, 216:482-488.
    [74]L. Xiong, Y. Xu, T. Tao, et al. Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries [J]. J. Power Sources,2012,199:214-219.
    [75]Q. Chen, Y. Wang, T. Zhang, et al. Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries [J]. Electrochim. Acta, 2012,83:65-72.
    [76]S. Lee, Y. Cho, H. Song, et al. Carbon-Coated Single-Crystal LiMn2O4 Nanoparticle Clusters as Cathode Material for High-Energy and High-Power Lithium-Ion Batteries [J]. Angew. Chem. Int. Edit,2012,51:8748-8752.
    [77]W. Kim, D. Han, W. Ryu, et al. A12O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance [J]. Electrochim. Acta,2012,71:17-21.
    [78]A. R. Armstrong, P. G. Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature,1996,381:499-500.
    [79]阮艳莉,韩恩山,张西慧.尖晶石型锂锰氧化物正极材料的研究进展[J].电源技术,2003,27:400-403.
    [80]J. B. Cook, C. Kim, L. Xu, et al. The Effect of Al Substitution on the Chemical and Electrochemical Phase Stability of Orthorhombic LiMnO2 [J]. J. Electrochem. Soc,2013,160:A46-A52.
    [81]L. Z. Zhao, Y. W. Chen, G R. Wang. Raman spectra study of orthorhombic LiMnO2 [J]. Solid State Ionics,2010,181:31-32.
    [82]G. Yang, H. Ji, P. Gao, et al. Crystal Structure and Electrochemical Performances of Proton-Substituted Li2MnO3 and the Nanocomposites Treated by LiMnO2 [J]. J. Electrochem. Soc.,2011,158:A1071-A1078.
    [83]H. Ji, G. Yang, X. Miao, et al. Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries [J]. Electrochim. Acta,2010,55:3392-3397.
    [84]S. Patoux, M. M. Doeff. Direct synthesis of LiNi1/3Co1/3Mn1/302 from nitrate precursors [J]. Electrochem. Commun.,2004,6:767-772.
    [85]S. Myung, M. Lee, S. Komaba, et al. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery [J]. Electrochim. Acta,2005,50:4800-4806.
    [86]王海燕,黄可龙,刘素琴等.溶胶凝胶-软模板法制备LiNi1/3Co1/3Nn1/3O2正极材料及其电化学性能研究[J].无机化学学报,2009,25:2090-2096.
    [87]乔敏,张海朗.锂离子电池正极材料LiNixCo1-2XMnxO2的制备及电化学性能[J].稀有金属材料与工程,2009,38:1667-1670.
    [88]杨志,李新海,王志兴等.碳酸盐共沉淀法制备LiNi0.5Co0.3Mn0.2O2及其性能[J].电源技术,2009,133:869-872.
    [89]丁燕怀,张平,龙志林.LiNi1/3CO1/3Mn1/3O2和LiNi3/8Co1/4Mn3/8O2纳米纤维的合成与电化学性能[J].稀有金属材料与工程,2009,38:1227-1229.
    [90]J. K. Ngala, N. A. Chermova, M. S. Whitingham, et al. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound [J]. J. Mater. Chem.,2004,14:214-220.
    [91]X. Liu, P. He, H. Li, et al. Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer [J]. J. Alloy Compd.,2013,552: 76-82.
    [92]S. J. Shi, J. P. Tu, Y. Y. Tang, et al. Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries [J]. J. Power Sources,2013,225:338-346.
    [93]J. Deng, L. Xi, L. Wang, et al. Electrochemical performance of LiNi1/3Co1/3Mh1/3O2 thin film electrodes prepared by pulsed laser deposition [J]. J. Power Sources,2012,217:491-497.
    [94]F. Fu, G. Xu, Q. Wang, et al. Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Coi/3Mn1/3O2 with high percentage of exposed{010} active facets as high rate performance cathode material for lithium-ion battery [J]. J. Mater. Chem. A,2013,1:3860-3864.
    [95]X. Bie, L. Liu, H. Ehrenberg, et al. Revisiting the layered LiNi0.4Mn0.4Co0.2O2:a magnetic approach [J]. RSC Adv.2012,2:9986-9992.
    [96]C. Ban, Z. Li, Z. Wu, et al. Extremely Durable High-Rate Capability of a LiNi0.4Mn0.4Co0.2O2 Cathode Enabled with Single-Walled Carbon Nanotubes [J]. Adv. Energy Mater.,2011,1:58-62.
    [97]X. Xiong, Z. Wang, P. Yue, et al. Washing effects on electrochemical performance and storage characteristics of LiNiO.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries [J]. J. Power Sources,2013,222:318-325.
    [98]P. Yue, Z. Wang, H. Guo, et al. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.0O2-zFz cathode materials [J]. Electrochim. Acta,2013,92:1-8.
    [99]Y. Gu, F. Jian. Hollow LiNio.8Co0.1Mn0.1O2-MgO Coaxial Fibers:Sol-Gel Method Combined with Co-electrospun Preparation and Electrochemical Properties [J]. J. Phys. Chem. C,2008,112:20176-20180.
    [100]Y. K. Sun, S. T. Myung, B. C. Park, et al. High-energy cathode material for long-life and safe lithium batteries [J]. Nat. Mater.,2009,8:320-324.
    [101]A. Hammou, A. Hammouche. All solid state Li-Li1+xV3O8 secondary batteries [J]. Electrochim. Acta,1988,33:1719-1720.
    [102]H. Li, P. He, Y. Wang, et al. High-surface vanadium oxides with large capacities for lithium-ion batteries:from hydrated aerogel to nanocrystalline VO2OB), V6O13 and V2O5 [J]. J. Mater. Chem.,2011,21:10999-11009.
    [103]K. Kim, S. Park, T. Kwon, et al. Characterization of Li-V-O nanorod phases and their effect on electrochemical properties of Li1+xV3O8 cathode materials synthesized by hydrothermal reaction and subsequent heat treatment [J]. Electrochim. Acta,2013,89:708-716.
    [104]T. Jiang, M. L. Falk. Calculations of the thermodynamic and kinetic properties of Li1+xV3O8 [J]. Phys. Rev. B,2012,85:245111
    [105]J. Feng, X. Liu, X. Zhang, et al. Effects of Synthesis Methods on Li1+xV3O8 as Cathodes in Lithium-Ion Batteries [J]. J. Electrochem. Soc.,2009,156: A768-A771.
    [106]M. S. Whittingham. Lithium Batteries and Cathode Materials [J]. Chem. Rev. 2004,104:4271-4301.
    [107]K. S. Nanjundaswamy, A. K. Padhia, J. B. Goodenough, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds [J]. Solid State Ionics,1996,92: 1-10.
    [108]P. Larsson, R. Ahuja, A. Nyten, et al. An ab Initio Study of the Li-ion Battery Cathode Material Li2FeSi04 [J]. Electrochem. Commun.,2006,8:797-800
    [109]Z. Chen, S. Qiu, Y. Cao, et al. Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries [J]. J. Mater. Chem. A,2013,1:4988-4992.
    [110]W. Chen, M. Lan, D. Zhu, et al. Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries [J]. RSC Adv.2013,3: 408-412
    [111]Y. Xu, Y. Li, S. Liu, et al. Nanoparticle Li2FeSiO4 as anode material for lithium-ion batteries [J]. J. Power Sources,2012,220:103-107.
    [112]A. Nyten, A. Abouimrane, M. Armand, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochem. Commun., 2005,7:156-160.
    [113]J. Liu, H. Xu, X. Jiang, et al. Facile solid-state synthesis of Li2MnSi04/C nanocomposite as a superior cathode with a long cycle life [J]. J. Power Sources, 2013,231:39-43.
    [114]S. Aono, T. Tsurudo, K. Urita, et al. Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material [J]. Chem. Commun.,2013,49:2939-2941.
    [115]Y. Zhao, C. Wu, J. Li, et al. Long cycling life of Li2MnSiO4 lithium battery cathodes under the double protection from carbon coating and graphene network [J]. J. Mater. Chem. A,2013,1:3856-3859.
    [116]K. Gao, C. Dai, J. Lv, et al. Thermal dynamics and optimization on solid-state reaction for synthesis of Li2MnSiO4 materials [J]. J. Power Sources,2012,211: 97-102.
    [116]R. Dominko, M. Bele, M. Gaberscek, et al. Structure and Electrochemical Performance of Li2MnSiO4 and Li2FeSiO4 as Potential Li-battery Cathode Materials [J]. Electrochem. Commun.,2006,8:217-222.
    [117]J. Barker, M. Y. Saidi, J. L. Swoyer. Electrochemical insertion properties of lithium vanadium titanate, LiVTiO4 [J]. Solid State Ionics,2004,167:413-418.
    [118]R. K. B. Gover, P. Burns, A. Bryan, et al. LiVPO4F:a New Active Material for Safe Lithium-ion Batteries [J]. Solid State Ionics,2006,177:2635-2638.
    [119]R. K. B. Gover, A. Bryan, P. Burns, et al. The Electrochemical Insertion Properties of Sodium Vanadium Fluorophosphate, Na3V2(PO4)2F3 [J]. Solid State Ionics,2006,177:1495-1500.
    [120]C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, et al. New Cathode Materials for Rechargeable Lithium Batteries:the 3-D Framework Structures Li3Fe2(XO4)3(X=P,As) [J]. J. Solid State Chem.,1998,135:228-234.
    [121]K. M. Begam, Y. H. Taufiq-Yap, M. S. Michael, et al. A New NASICON-type Polyanion, LixNi2(MoO4)3 as 3-V Class Positive Electrode Material for Rechargeable Lithium Batteries [J]. Solid State Ionics,2004,172:47-52.
    [122]S. R. S. Prabaharan, S. Ramesh, M. S. Michael, et al. Characterization of Soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for Lithium Batteries [J]. Mater. Chem. Phys.,2004,87:318-326.
    [123]S. Okada, S. Sawa, M. Egashira, et al. Cathode Properties of Phospho-olivine LiMPO4 for Lithium Secondary Batteries [J]. J. Power Sources,2001,97-98: 430-432.
    [124]C. W. Kim, J. S. Park, K. S. Lee, Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material [J]. J. Power Sources,2006,163:144-150.
    [125]J. Yao, F. Wu, X. Qiu, et al. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material [J]. Electrochim. Acta,2011,56: 5587-5592.
    [126]K. Park, S. B. Schougaard, J. B. Goodenough. Conducting-Polymer/Iron-Redox-Couple Composite Cathodes for Lithium Secondary Batteries [J]. Adv. Mater.,2007,19:848-851.
    [127]Y. Huang, J. B. Goodenough. High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers [J]. Chem. Mater.,2008,20: 7237-7241.
    [128]C. Sun, S. Rajasekhara, J. B. Goodenough, et al. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode [J]. J. Am. Chem. Soc., 2011,133:2132-2135.
    [129]C. Delmas, M. Maccario, L. Croguennec, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J]. Nat. Mater.,2008,7: 665-671
    [130]S. Wang, H. Yang, L. Feng, et al. A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation [J]. J. Power Sources,2013,223: 43-46.
    [131]A. Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO4 for Lithium Battery Cathodes [J] J. Electrochem. Soc.,2001,148:224-226.
    [132]S. S. Zhang, J. L. Allen, K. Xu, et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes [J]. J. Power Sources, 2005,147:234-240.
    [133]Y. Jin, C. P. Yang, X. H. Rui, et al. V2O3 modified LiFePO4/C composite with improved electrochemical performance [J]. J. Power Sources,2011,196: 5623-5630.
    [134]G Meligrana, C. Gerbaldi, A. Tuel, et al. Hydrothermal synthesis of high surface LiFePO4 Powders as cathode for Li-ion cells [J]. J. Power Sources, 2006,160:516-522.
    [135]Z. Wang, S. Su, C. Yu, et al. Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method [J]. J. Power Sources,2008,184:633-636.
    [136]Z. Lu, H. Chen, R. Robert, et al. Citric Acid-and Ammonium-Mediated Morphological Transformations of Olivine LiFePO4 Particles [J]. Chem. Mater., 2011,23:2848-2859.
    [137]H. Uchiyama, H. Imai. Preparation of LiFePO4 Mesocrystals Consisting of Nanorods through Organic-Mediated Parallel Growth from a Precursor Phase [J]. Cryst. Growth Des.,2010,10:1777-1781.
    [138]S. Yang, X. Zhou, J. Zhang, et al. Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries [J]. J. Mater. Chem.,2010,20:8086-8091.
    [139]L. N. Wang, Z. G Zhang, K. L. Zhang. A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material [J]. J. Power Sources,2007,167: 200-205.
    [140]J. Kim, J. Choi, G S. Chauhan, et al. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis [J]. Electrochim. Acta,2008,53:8258-8264.
    [141]F. Yu, J. Zhang, Y. Yang, et al. Porous micro-spherical aggregates of LiFePO4/C nanocomposites:A novel and simple template-free concept and synthesis via sol-gel-spray drying method [J]. J. Power Sources,2010,195:6873-6878.
    [142]D. Choi, P. N. Kumta. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. J. Power Sources,2007,163: 1064-1069.
    [143]K. Hsu, S. Tsay, B. Hwang. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route [J]. J. Mater. Chem.,2004,14:2690-2695.
    [144]R. Dominko, M. Bele, J. Goupil, et al. Wired Porous Cathode Materials:A Novel Concept for Synthesis of LiFePO4 [J]. Chem. Mater.,2007,19: 2960-2969.
    [145]C. Delacourt, P. Poizot, S. Levasseur, et al. Size Effects on Carbon-Free LiFePO4 Powders [J]. Electrochem. Solid-State Lett.,2006,9:A352-A355.
    [146]S. W. Oh, S. Myung, H. J. Bang, et al. Nanoporous Structured LiFePO4 with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries [J]. Electrochem. Solid-State Lett.,2009,12:A181-A185.
    [147]C. M. Doherty, R. A. Caruso, B. M. Smarsly, et al. Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries [J]. Chem. Mater.,2009,21:2895-2903.
    [148]C. H. Yim, E. A. Baranova, Y. Abu-Lebdeh, et al. Highly ordered LiFePO4 cathode material for Li-ion batteries templated by surfactant-modified polystyrene colloidal crystals [J]. J. Power Sources 2012,205:414-419.
    [149]Y. G. Wang, Y. R. Wang, E. Hosono, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method [J]. Angew. Chem. Int. Ed.,2008,47: 7461-7465.
    [150]K. Saravanan, P. Balaya, M. V. Reddy, et al. Morphology controlled synthesis of LiFePO4 nanoplates for Li-ion batteries [J]. Energy Environ. Sci.,2010,3: 457-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700