1,2-二(氰氨基)-3-羰基-4-环戊烯-4,5-二醇锂硼盐系列电解质的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次锂离子电池作为一种环保、节约的新型能源,自问世以来一直倍受关注。随着社会的发展,人们的需求越来越多,然而各种资源短缺及能源匮乏,迫使人们去寻找能够满足自身发展的新型能源。二次锂离子电池与其它二次电池(如镍-氢、镍铬电池)相比,具有质量轻、工作电压高、自放电小、无记忆效应、循环寿命长、对环境污染小等优势,这便使它的应用前景更加广阔。因此,二次锂离子电池的快速、全面发展已经成为不可逆转的趋势,电化学研究者对于锂离子电池的研究也是层出不穷,尤其是最近几年中,报道出许多新型的二次锂离子电池材料。合成新型的电解质锂盐,也是锂离子电池创新的一个重要方向。作为锂离子电池中不可或缺的材料之一,电解质承载了锂离子在正、负电极间的传输工作,它的性能的优劣直接关系到锂离子电池的各项性能。所以,研制出具有高的电导率、良好的电化学及热力学稳定性、而且安全无毒的锂离子电池电解质,是开发新型锂离子电池最有效的途径之一。
     本论文的主要工作,就是合成了三种含有克酮酸衍生物的锂硼盐,并对其性能进行了实验性的研究。此三种锂硼盐中的阴离子,均是以B为中心的大的螯合体系,形成了大的共轭结构,有利于阴离子的稳定,而且其中引入了强的吸电子基-NCN,更加使中心离子上的负电荷得到分散,增强了阴离子的稳定性,增大了锂硼盐在有机溶剂中的溶解度。Li+与此类阴离子结合后,更容易以离子的状态在电解液中存在,从而提高了锂硼盐的电导率。
     在本论文中,研究工作主要分四步展开:首先,合成了三种含克酮酸衍生物的锂盐——1,2-二(氰氨基)-3-羰基-4-环戊烯-4,5-二醇-二氟螯合锂硼盐(DFLNBC)、1,2-二(氰氨基)-3-羰基-4-环戊烯-4,5-二醇-邻苯二酚螯合锂硼盐(BLNBC)、1,2-二(氰氨基)-3-羰基-4-环戊烯-4,5-二醇-四氟邻苯二酚螯合锂硼盐(PFLNBC)、并通过红外光谱(IR)、元素分析、电感耦合等离子体发射光谱(ICP)等方法对它们的结构分别进行了表征,其结果与目标产物基本一致。其次,分别对其热力学性质及电化学性质进行了测试,并做了初步分析。热力学性质主要是从其热稳定性、在混合有机溶剂中的溶解性来探究,电化学性质主要从其在有机溶剂中的电导率、氧化电位来探究。第三,根据测试数据,比较它们的
     各项性能的优劣,得出结论,从而进一步认识该类锂硼盐的性能与其结构的关系。最后,对本文的不足之处做了分析,对锂离子电池电解质未来的发展趋势做了展望。
     测试结果表明,本文成功合成了三种新型锂盐,并且它们具有较强的热力学稳定性及电化学稳定性,在几种混合有机溶剂中的溶解性较好,电导率较高,可以为该系列锂硼盐的在二次锂离子电池中的实用性作进一步研究。
As a new type of environmental protection and saving energy, the lithium-ion secondary batteries attract much attention since their appearance. People's needs become more and more with the development of the society, and becaus e the various resources shortages and energy poverty, people have to seek rene w-able energies what can meet their development needs. Compare the lithiumi-on secondary batteries with other secondary batteries (such as nickel-hydrogen battery, nickel-chromium battery), they have favorable advantages of light quali-ty, low self-discharge rate, non memory effect, long cycle life and non-pollutio-n and so on, that make them have a good prospect in application. So rapidly and all-round development of the lithium-ion secondary batteries has already become the irreversible trend. The study on the lithium-ion battery by electroc-hemical researchers is emerging in an endless way. Synthesis of novel electrol-yte lithium salt has become a new direction of development for lithium-ion ba-tteries. Electrolyte is one of the essential parts of lithium-ion battery, carrying lithium-ion transfer between positive and negative terminals. Its performance directly affects their performances. So, development of the electrolyte lithium salt which has high electric conductivity, good electrochemical stability and int-ermal domain thermal stability, and non-toxic is one of the effective ways to develop new type lithium-ion battery.
     The main objective of this thesis is to synthesize three lithium borates lit-hium with croconic acid, and their properties were investigated, anions of these lithium borates salts which form large conjugated structure are B-centric large chelating anions, this structure is conducive to the stability of the anions, and we introduce strong electron-withdrawing group-NCN into the anions, that can more scatter the negative charge on the central ion, enhance the stability of the anions, and increase the solubility of lithium boron salt in organic solvents. When lithium-ion binds to this anion, it is more likely to exist in the state of ion in the electrolyte, thus the conductivity of the lithium boron salt can be improved
     In the present thesis, research work mainly includes four steps:First, synt-hetic three lithium borates salt with croconic acid-Lithium difluoro [1,2-di(cy-anoamino)-3-oxo-4-cyclopentene-4,5-diol croconato] borate (DFLNBC), Lithium[1,2-benzenediolato(2)-O,O'-1,2-di(cyanoamino)-3-oxo-4-cyclopentene-4,5-diol croco-nato] borate (BLNBC), Lithium [3,4,5,6-Tetrafluorocatechol-O,O'-1,2-di(cyanoa mino)-3-oxo-4-cyclopentene-4,5-diol croconato] borate (PFLNBC). The ligands and complexes were characterized by IR, elemental analysis, ICP, and the resu-Its were roughly identical to the target products. Second, the properties of the thermodynamic and electrochemical are tested and preliminary analysized, and the properties of the thermodynamic are explored thermostability, solubility in mixed organic solvent, the properties of the electrochemical are explored from electrical conductivity in organic solvent, and its oxidative potential. Three var-ied performances of the three kinds of lithium boron salts are compared on the basis of numeral results, and some conclusions are obtained, thus further realizes relationship between the properties and structure. At last, the deficien-cy of this subject and the future of the lithium-ion secondary batteries were described.
     Our test results show that three new lithium salts can be synthesized and have good thermal stability and electrochemical stability, good solubleness in some kinds of mixed organic solvents, and high conductivity, it makes sense to do further research on this series of lithium boron salts for their practical application.
引文
[1]黄倩,锂离子电池的热效应及其安全性能的研究,复旦大学博士学位论文.
    [2]陈景贵.跨入新世纪的中国新型绿色电池工业.电源技术,2000,(1):5-7.
    [3]David R. Lide.CRC Handbook of Chemistry and Physics:The redox poten-tials against the standard hydrogen electrode (SHE) for various reactions, usually called "electrochemical series". [M]. Boca Raton,FL:CRC Press,1998-08-15.
    [4]R.Jasinski. High Energy Batteries[M]. New York:Plenum Press,1967.
    [5]J. Moser. Solid state lithium-iodine primary battery [P]. U. S. Patent:3660 163,1972-05-02.
    [6]A. A. Schneider, J. Moser. Primary cells and iodine containing cathodes th erefor[P] U. S. Patent:3674562,1972-07-04.
    [7]A.V. Fraioly, W. A. Barber, A. M. Feldman. Composite paper electrode fo r a voltaic cell [P]. U. S. Patent:3551205,1970-12-29.
    [8]M.Fukuda, T. Ijima. In Power Sources [M]. London:D. H. Collins, Ed., Academic Press,1975:Vol.5,713.
    [9]R. D. Raul, S. B. Brummer. The effect of additives on lithium cycling in propylene carbonate [J]. Electrochim. Acta,1977,22(1):75-83.
    [10]R. Selim, P. Bro. Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte [J]. J. Electrochem. Soc.,1974,121(11):1457-1459.
    [11]I. Yoshimatsu, T. Hirai, J. Yamaki. Lithium Electrode Morphology during Cycling inn Lithium Cells [J]. J. Electrochem. Soc.,1988.135(10):24222427.
    [12]V. R. Koch, J. H. Young. The Stability of the Secondary Lithium Electrode in Tetrahydrofuran-Based Electrolytes [J]. J. Electrochem. Soc., 1987,125(9):1371-1377.
    [13]J. Broadhead, F. A. Trumbore. In Power Sources [M]. London:D. H. Collins, Ed., Academic Press,1975:Vol.5,661.
    [14]D.Aurbach, I. Weissman, A. Zaban,Y. Ein-Eli, E. Mengeritsky, P. Dan. Safety and Performace of Tadiran TLR-7103 Rechargeable Batteries [J]. J. Electrochem. SOC., 1996,143(7):2110-2116.
    [15]D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovski, M. D. Levi, E. Levi, A. Schechter, E. Granot. Recent studies on the correlation between surface chemistry, morphology..three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J]. J. Power Sources,1997,68:91-98.
    [16]P. Dan, E. Mengeritsky, Y. Geronov, D. Aurbach, I. Weissman. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell [J]. J. Power Sources, 1995,54(1):143-245
    [17]D. Aurbach, Y. Gofer, M. Ben-Zion. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries [J]. J. Power Sources,1992,39(2):163-178.
    [18]M. S. Whitingham. Lithium Bateries and Cathode Materials [J]. Chem. Rev., 2004,104:4271-4301
    [19]H. F. Franzen. Structure and bonding in met al-rich compounds:Pnictides, Chalcides and halides[J]. Prog.Solid State Chem.,1978,12 (1):1-39.
    [20]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough. LiCoOz(kx    [21]M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada, T. Mouri. Preparation and Properites of LiNi1-x-yCoXMnyO2 as a cathode for lithium ion bateries[J]. J. Power Sources,2000,90(2):176-181.
    [22]Z. Liu, A. Yu, J. Y. Lee. Synthesis and characterization of LiNi1-x-yCoXMnyO2 as the cathode materials of secondary lithium batteries, [j]. J. Power Sources,1999, 81-82:416-419.
    [23]T. Ohzuku, Y. Makimura. Layered Lithium Insertion Material of LiCOl/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries [J]. Chem. Lett.2001, 30(7):642-649
    [24]S. Jouanneau, J. R. Dahn. Preparation, Structure,and Thermal Stability of New NixCol-2xMnx(OH)2(0    [25]J. K. Ngala, N. A. Chemova, M. Ma, M. Mamak, P. Y. Zavalij, M. S. Whitingham. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound [J]. J. Mater.Chem.,2004,14(2):214-220.
    [26]D. D. MacNeil, Z. Lu, J. R. Dahn. Structure and Electrochemistry of Li[NixCol-2xMnx]O2 (0    [27]Y. Sun,C. Ouyang, Z. Wang,X. Huang, L. Chen. Effect of Co Content on Rate Performance of LiMn0.5-xCo2xNi0.5-xO2 Cathode Materials for Lithium-Ion Batteries [J]. J. Electrochem.Soc.,2004,151(4):A504-A508.
    [28]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc.,1997,144(4):1188-1194.
    [29]S,Y ang,Y. Song, K. Ngala, P. Y. Zavalij, M. S. Whitingham. Performance of LiFePO4 as lithium batery cathode and comparison with manganese and vanadium Oxides[J]. J. Power Sources,2003,119:239-246.
    [30]S. Yang, P. Y. Zavalij, M. S. Whitingham. Hydrothermal synthesis of lithium Iron phosphate cathodes [J]. Electrochem.Commun.,2001,3(9):505-508.
    [31]S. Yang, Y. Song, P. Y. Zavalij, M. S. Whitingham. Reactivity, stability and electrochemical behavior of lithium iron phosphates[J].Electrochem. Commun> 2002,4(3):239-244.
    [32]A. N. Dey. Elecrtochemical Alloying of Lithiumin Organic Elecrtolytes [J]. J. Elecrtochem. Soc.,1971,118(10):1547-1549.
    [33]P. Novak, K. Muller, K. S. V. Santhanam, O. Haas. Electrochemically Active Polymers for Rechargeable Batteries [J]. C hem. Rev,1997,97(1):207-282.
    [34]F. Croce,S. Panero, S. Passerini, B. Scrosati. The role of conductive polymers in Advanced electrochemical technology [J]. Electrochim. Acta,1994,39 (2):255-263.
    [35]Liu Xiaohong(刘小虹),Yu Lang(余兰),Battery(电池)[J],2004,134(16):449
    [36]W atanabe H, Nohma T, N akane I, et al. Investigation of an electrolyte for lithium secondary batteries with lithium-containing manganese dioxide as positive material[J]. J Power Source,1993,43-44:217-221.
    [37]J. Barthel, R. Buestrich, E. Carl, H. J. Gores. J. Electrochem. Soc.,143(11) (1996) 3572-3575
    [38]M. Handa, M. Suzuki, J. Suzuki, H. Kanematsu, Y. Sasaki. Electrochem. Solid State Lett.,2(2) (1999) 60-62
    [39]I. Nikolaj, S. Peter. WO 98 15562,1998
    [40]K. B. Wishvender, J. P. Edward, J. Power Sources,72(1998) 132-135
    [41]G. Nagasubramanian, D. H. Shen, S. Surampudi, Q. J. Wang, G. K. S. Prakash. Electrochim. Acta,40(1995) 2277-2280
    [42]F. Tatsuo, B. Yasushi. J. Power Sources,119-121(2003) 438-441
    [43]S. Sylla, J. Y. Sanchez, M. Armand. Electrochim. Acta,37(1992) 1699-1701
    [44]W. Xu, A. J. Shusterman, R. Marzke. C. A. Angella. J. Electrochem. Soc., 151(4)(2004) A632-A638
    [45]B. G. Nolan, S. H. Strauss. J. Electrochem. Soc.,150(12)(2003) A1726-A1734
    [46]H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara. J. Electrochem. Soc., 150(60)(2003) A695-A700
    [47]W. Xu, L. M. Wang, R. A. Nieman, C. A. Angell. J. Phys. Chem. B 107(2003) 11749-11756
    [48]M. Eberwein, A. Schmid, M. Schmidt, M. Zabel, T. Burgemeister, J. Barthel, W. Kunz, H. J. Goresa. J. Electrochem. Soc.,150(7)(2003) A994-A999
    [49]T. J. Barbarichz, P. F. Driscoll. Electrochem. Solid State Lett.,6(6)(2003) A113-A116
    [50]S. Tsujioka, B. G. Nolan, H. Takase, B. P. Fauber, S. H. Straussa. J. Electrochem. Soc.,151(9)(2004) A1418-A1423
    [51]T. J. Barbarich, P. F. Driscoll, S. Izquierdo, L. N. Zakharov, C. D. Incarvito, A. L. Rheingold. Inorg. Chem.,43(2004) 7764-7773
    [52]L. Conte, G. P. Gambaretto, G. Caporiccio, F. Alessandrini, S. Passerini. J. Fluorine Chem.,125(2004) 243-252
    [53]U. Wietelmann, W. Bonrath, T. Netscher, H. Nth, J. C. Panitz, W. M. Margret. Chem. Eur. J.,10(2004) 2451-2458
    [54]K. Hayashi, Y. Nemoto, S. Tobishima, et al. Electrochim. Acta,44(1999) 2337-2344
    [55]J. M. Tarascon, D. Guyoard. Solid State Ionics,69(1994) 293-305
    [56]J.T. Dudley, D. P. Wilkinson, G. Tohoms, et al J. Power Sources,35(1991) 59-82
    [57]U. Makoto, I. Kazuhiko, M. Shichiro, et al. J. Electrochem. Soc.,141(1994) 2989-2996
    [58]M. Ue, A. Murakami, N. Shinichiro. J. Electrochem. Soc.,149(10)(2002) A1385-A1388.
    [59]J. Barthel, A. Schmid, H. J. Gores, J. Electrochem. Soc.,147(1) (2000) 21.
    [60]J. Barthel, R. Buestrich, H. J. Gores, M. Schmidt, M. Wiihr, J. Electrochem. Soc., 144(1997)3866.
    [61]Z. M. Xue, C. H. Chen. Electrochim. Acta,49 (2004) 5167-5175.
    [62]Z. M. Xue, C. H. Chen,化学进展,17(3)(2005)399.
    [63]Z. M. Xue, B. Liu, C. H. Chen, Electrochim. Acta,51 (2006) 4554.
    [64]Z. M. Xue, J. J. Cheng, C. H. Chen, J. Molecular Structure:Theochem.763 (2006) 181.
    [65]Z. M. Xue, C. H. Chen, Molecular Simulation,32 (2006) 401.
    [1]Peled E. Menachem C. Bar-Two D. et al. Improved graphite anode for lithium batteries[J]. J. Electrochem Soc.1996,143:L4-L7.
    [2]Panero S, Spila E, Scrosati B. A new type of a rocking-chair batteries family based on a graphite anode and a polymer cathode[J]. J Electrochem Soc,1996.143: L29-L32.
    [3]陈益钊,李聚才等.氧方酸与一些酸胺的反应研究[J].四川大学学报(自然科学版),1996,33(2):177-181.
    [4]Gunther Seitz, Peter Imming. Oxocarbons and Pseudooxocarbons[J]. chem. Rev. 1992,92:1227-1260.
    [5]Seitz, G.; Auch, J.; Klein, W. Chem.-Ztg[J].1987,111,343.
    [6]Zinigrad E, Larush Asraf L, Salitra G, et al. On the thermal behavior of Li bis (oxalato) borate LiBOB[J]. Thermochim Acta,2007,457(1-2):64-69.
    [7]Olivier Cortadellas, Anne Marie Galibert. Nickel coordination compounds of the cyanamido squarate ligand.The crystal structures of the 2,4-bis(cyanami do)cyclobutane-1,3-dione dianion (2,4-NCNsq2-) and of three polymers with generalformula [Ni(Him)x(H2O)4-x(2,4-NCNsq).yH2O]n(x=2-4; y=1-3; Him=i midazole)[J]. Inorganica Chimica Acta,2006,359:484-496.
    [8]T. Yamazaki, T. Oohama, T. Doiuchi und I. Takizawa, Chem. Parm. Bull[J]. 20(1972) 238:T. Yamazaki und T. Takizay, a, Tetrahedron 28 (2004) 4675.
    [9]Zur Namensgebung vgl. S. Hunig und H. Putter, Angew.Chem.84(2001) 481; 85(1973) 143; Angew.Chem.. Int. Ed. Engl[J].11(2001) 431:12(7973) 149.
    [10]Zusammenfassung:R. West:Oxocarbons[J]. Academic Press. New York 1980.
    [11]刘建文,锂离子电池电解质盐LiBF4的制备新方法及表征[J].无机化学学报.2009,25(1):31-36.
    [1]Paul Beeken, Frank W Fowler. N-Methyl-1,2,3,4-tetrahydropyridine[J]. Org Chem.,1980,45(7):1336-1338
    [2]M Makowski, M T Pawlikowski. Absorption, resonance, the preresonance Raman study of the 1,3-dicyanomethylene croconate dianion using complete active space self -consistent field and density functional theory methods[J]. Chem Phys.,2003, 119(24):12795-12804
    [3]Xavier Solans, Magdalena Aguil, Alain Gleizes. et al.Coordination Modes of the Squarate Ligand:Syntheses and Crystal Structures of Six Copper(II) Squarate Complexes[J]. Inorg Chem.,1990,29(4):775-784
    [4]赵铭姝.锂离子电池正极材料LiMn2O4及其相关材料的制备与理论研究[D].东北大学博士论文,2002
    [5]Lucimara R.,Martins, Mauro C,C. Molecular Dynamics Simulations of the Squarate Dianion (C4O42-) in Aqueous Solution[J].Phys Chem.,2002,106(21):5493-5499
    [6]Gunther Seitz,Peter Imming.Oxocarbons and Pseudooxocarbons[J].Chemical Reviews,1992,92(6):1228-1337
    [7]David R, Tallant, Dennis H. Application of Studies of the Infrared Internal
    Reflection Electrochemical Reduction[J].Electroanal Chem.,1967,14:834-838
    [8]M. J. Sisley, R. B. Jordan.Kinetic and Equilibrium Studies of Complexes of Aqueous Iron(Ⅱ1) and Squaric Acid, Inorganic Chemistry [J].1991,30(9): 2190-2195
    [9]Solomon Jacobson, Richard Pizer.Multidentate Lewis Acids:Theoretical Study of Anion Binding by Organoboron Macrocyclic Hosts[J].Am ChemSOC., 1993,115(24):11216-11221
    [10]Tina M. Morwick,Leo A. Paquette. Combined Addition of Alkenyl and Allenic Anions to Squarate Esters. Direct Competition between Six-Ring and Eight-Ring Electrocyclization of 1,2,4,6,8-Cumulenic Pentaenes[J].Org Chem.,1997,62(3): 627-635
    [11]Pavel I. Kitov, David R. Bundle. On the Nature of the Multivalency Effect:A thermodynamicmodel[J].AM.CHEM.SOC,2003,125; 16271-16284
    [12]Richard Pizer, P. J. Ricatto. Thermodynamics of Severa11:1 and 1:2 Complexation Reactions of the Borate Ion with Bidentate Ligands[J].11B NMR Spectroscopic Studies' anic Chemistry.1994,33(11):2402-2406
    [13]W. Xu and C. A. Angell,Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions[J]. Electrochem. Solid-State Lett., 2001,4; E1
    [14]J. Barthel, R. Buestrich, H. J. Gores, M. Schmidt, M. Wu, J. A New Classof Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes[J]. Electrochem. Soc.,1997,144:3866
    [15]Zhao-Ming Xue, Chun-Hua Chen. Density functional theory study on lithium bis[1,2-benzenediolato(2-)-(O, O'] borate and its derivatives:Electronic structures, energies, and molecular properties[J]. Electrochim. Acta.2004,49: 5167
    [16]M. Ue, A. Murakami, S. Nakamura. J. Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories[J]. Electrochem. Soc.,2002,14(12):A1572
    [17]P. Johansson, S. P. Gejji, J. Tegenfeldta, J. Lindgren. The imide ion:pote-ntial energy surface and geometries [J].Electrochim. Acta,1998,143(10-11): 1375
    [18]K. Tasaki. Computational Study of Salt Association in Li-Ion Battery Electr-olytes [J]. Electrochem. Soc.,2002,149(4):A418
    [19]Z. M. Xue, C. H. Chen, Progress in studies of lithium salts for Li-ion battery in nonaqueous electrolytes [J]化学进展,2005,17(3):399
    [20]S. Z. Zhang. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Source,2007,146(1/2):351-364.
    [21]K. Hayashi, Y. Nemoto, S. Tobishima, et al. ElectrochimicaActa,1999, 44:2337-2344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700