新型锂离子电池纳米正极材料硼酸铁锂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用柠檬酸-硝酸盐溶液燃烧法,选择聚阴离子化合物铁系正极材料硼酸铁锂(LiFeBO3)作为研究对象,针对其存在的电导率不高、倍率性能欠佳、纯度难控制等问题有针对性地开展研究。
     1)通过探索硝酸铁和柠檬酸加入比例对纯相LiFeBO3合成的影响可知,当硝酸铁和柠檬酸加入比例为1.5时,所制备样品1.5-LiFeBO3的X射线衍射峰均能够与单斜晶系C2/c空间群硼酸铁锂相标准衍射峰位相吻合,证明制备出纯相硼酸铁锂相。然而仅经溶液燃烧合成法制备的样品1.5-LiFeBO3,在0.05C倍率下放电比容量最大仅为111.5mAh/g,为进一步改善硼酸铁锂正极材料的电化学性能,我们选取葡萄糖(C6H12O6·H2O)作为有机碳源用于硼酸铁锂正极材料的碳包覆改性处理。不同葡萄糖加入方式直接影响最终合成样品的纯度、颗粒尺寸、形貌等,进而决定LiFeBO3/C复合材料的电化学性能。探索研究发现将硼酸铁锂前驱体经预热燃烧后粉体与葡萄糖共同进行球磨处理,而后结合低温煅烧制备的LiFeBO3/C复合材料展现了优异的电化学活性——较高的放电比容量、卓越的倍率性能以及循环稳定性能。
     2)我们利用柠檬酸-硝酸盐溶液燃烧法合成硼酸铁锂/碳复合材料的技术路线,探索柠檬酸、抗坏血酸、葡萄糖、蔗糖四种碳源对LiFeBO3/C复合材料合成及电化学性能的影响。研究结果显示,选用抗坏血酸作为有机碳源对硼酸铁锂进行表面碳包覆改性处理得到的样品展示了较高的放电比容量、卓越的循环稳定性和倍率性能。我们推测选用抗坏血酸作为有机碳源对硼酸铁锂进行表面碳包覆改性处理得到的样品电化学性能较优的原因主要是由于抗坏血酸中具有不同氧基团,使其更容易吸附在硼酸铁锂纳米颗粒表面,从而使热解产生的碳与硼酸铁锂颗粒具有更好的接触,进而提高硼酸铁锂正极材料电子导电性能;其次,抗坏血酸凭借其较强还原性能,可使硼酸铁锂正极材料表面轻微三价铁杂相被充分还原,进而减弱硼酸铁锂正极材料充放电过程中的电荷转移电阻,加快锂离子在其内部脱出嵌入过程,使LiFeBO3/C复合材料体系在充放电过程中更易达到平衡状态,从而促使LiFeBO3/C复合材料放电比容量增加,倍率性能和循环稳定性能得到改善。
     3)为进一步制备具有更高能量密度的锂离子电池电极,我们提出了LiFeBO3/C块状电极。选用柠檬酸-硝酸盐溶液燃烧合成法,结合低温煅烧抗坏血酸有机碳源进行碳包覆改性处理的技术路线,我们探索了LiFeBO3/C块状电极的制备与电化学性能研究。在LiFeBO3/C块状电极制备过程中,由于柠檬酸预热处理时未能反应完全,致使后续低温煅烧阶段,柠檬酸进一步分解引起LiFeBO3/C块状电极内部形成多孔结构,同时抗坏血酸热解生成的碳均匀包覆在硼酸铁锂颗粒表面,以及乙炔黑在LiFeBO3/C块状电极内部提供一个相互关联的三维孔导电碳网络,共同增强了离子和电子在LiFeBO3/C块状电极中的运输能力。我们所制备的LiFeBO3/C块状电极具有较高的电子导电性和多孔状结构,且在传统电极薄膜涂布过程中必不可少的绝缘聚合物粘结剂、金属基集流体等也不需要添加,同时更展现出卓越的电化学性能。
In this thesis, a cost-effective solution combustion method based on the citric acid-nitrate process with an inexpensive iron compound (III) as one of raw materials is used to synthesize nanosized LiFeBO3/C composites. The dependence of the structure and electrochemical performance of LiFeBO3/C on the preparation parameters is explored.
     1) To better understand phase formation of LiFeBO3, various molar ratios of iron nitrate to citric acid were tried. The XRD results show that for the sample with a ratio of1.5, the XRD pattern of the product can be successfully indexed as a monoclinic structure with a space group of C2/c, in accordance with the typical structure of LiFeBO3. The electrochemical tests indicate that the sample with the ratio of1.5shows the optimum discharge capacity only111.5mAh/g at0.05C rate. To further increase the electrical conductivity, glucose (C6H12O6·H2O) was employed as a carbon source. It is found that not only the amount of glucose incorporated, but also the addition way influences phase formation, particle size and morphology of resulted LiFeBO3. Ball mixing glucose with the product from the auto combustion is the most effective way in improving electrode performance. The LiFeBO3/C with about3.5wt%carbon has a very high discharge capacity of about201.9mAh/g at0.05C rate and still a capacity of145.9mAh/g at a2C rate.
     2) To explore the effect of different carbon sources on phase formation and electrochemical performance of nanosized LiFeBO3/C composites, a cost-effective solution combustion method based on the citric acid-nitrate process with an inexpensive iron compound (Ⅲ) as one of raw materials is used, and then coated the samples with a carbon layer from different carbon sources by a low temperature calcinations, such as citric acid, ascorbic acid, glucose, sucros. The LiFeBO3/C nanocomposites obtained with ascorbic acid as the carbon source show a higher discharge capacity, excellent cycle stability and rate performance. Correlated with the molecule structure, it is believed that the ascorbic acid with more oxygenous groups would benefit their uniform adsorption on the electrodes and then produce a better electron-conductive carbon layer after calcinations. At the same time, due to the strong reduction property of ascorbic acid, the silight impurity phase of ferric iron on the surface of LiFeBO3/C composites is fully reduced, which can weaken the charge transfer resistance and accelerate the lithium ion intercalation/deintercalation, resulting in facility to reach equilibrium state in the process of charging and discharging.
     3) To improve the energy density of lithium-ion batteries, we increase active material of LiFeBO3up to94.87wt%in a LiFeBO3based bulk electrode. A solution combustion method similar to the one above was employed. The difference is that the co-incopration of ascorbic acid and citric acid into the precursors during the preparation of LiFeBO3/C bulk electrodes. The strength of this method is that citric acid remnants could be further decomposed to make the LiFeBO3/C bulk electrodes a porous structure. Meanwhile the decoposition of ascorbic acid is triggered by a low temperature calcinations to encapsulate LiFeBO3particle. Furthermore, the acetylene black introduced into the LiFeBO3/C bulk electrodes forms a three-dimensional conductive network as well. The combined effect of the above processes would greatly enhance the electrical conductivity and Li ion diffusion rate. The LiFeBO3/C bulk electrodes are shown to be porous, conductive, metal current collector-and polymeric binder-free. The bulk electrodes thus prepared exhibit excellent electrochemical performance with ultrahigh volumetric capacity.
引文
[1]翟秀静,刘奎仁,韩庆.新能源技术[M].化学工业出版社,2005.
    [2]雷永泉,万群,石永康.新能源材料[M].天津大学出版社,2000.
    [3]赵健,杨维芝,赵佳明.锂离子电池的应用开发.电池工业,2000,5:78-82.
    [4]马树华.锂离子电池负极材料的表面改性与修饰.电化学,1997,3:293-296.
    [5]华寿南.铁钠复合氧化物作锂离子电池负极材料的研究.电源技术,1999,23:2-4.
    [6]吴宇平.锂离子蓄电池锡基负极材料的研究.电源技术,1999,23:191-193.
    [7]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展.化学进展,1998,10:85-94.
    [8]吴川,吴锋.锂离子电池正极材料研究进展.电池,2000,30:36-38.
    [9]麦立强,邹正光.锂离子电池正极材料的研究进展.材料导报,2000,14:32-35.
    [10]陈立泉.锂离子电池正极材料的研究进展.电池,2002,32:6-8.
    [11]李景虹.先进电池材料[M].化学工:业出版社,2004.
    [12]张克立.固体无机化学[M].武汉大学出版社,2005.
    [13]郑子山,张中太,唐子龙.锂离子二次电池最新进展及评述.化学世界,2004,45:270-273.
    [14]Harris LB. XL lock and operating mechanism for deferred action batteries:U.S. Patent 2,862,390[P].1958-12-2.
    [15]Venkatraman S, Subramanian V, Gopu Kumar S. Capacity of layered cathode materials for lithium-ion batteries -a theoretical study and experimental evaluation. Electrochemistry communications,2000,2:18-22.
    [16]Goldenfeld N. Dynamics of dendritic growth. Journal of Power Sources,1989,26: 133-140.
    [17]Eudo M, Kim C, Nishimura K. Recent development of carbon materials for Li-ion batteries. Carbon,2000,138:1003-1009.
    [18]Meng YS, Whittingham MS. Introduction and Foreword to Focus Issue on Intercalation Compounds for Rechargeable Batteries. Journal of the Electrochemical Society,2013,160:Y2-Y3.
    [19]Mizushima K, Jones PC, Wiseman PJ. LixCoO2 (0< x<1):A new cathode material for batteries of high energy density. Materials Research Bulletin,1980,15:783-789.
    [20]Yamada A, Chung SC, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society,2001,148:A224-A229.
    [21]Chan CK, Peng H, Liu G. High-performance lithium battery anodes using silicon nano wires. Nature na no techno logy,2007,3:31-35..
    [22]Yoon WS, Lee KK, Kim KB. X-Ray Absorption Spectroscopic Study of LiAlCo1-yO2 Cathode for Li Rechargeable Batteries. Journal of the Chemical Society, 2002,194:1338-1344.
    [23]Armand MB. Materials for Advanced Batteries [M]. Plenum Press.1980.
    [24]Lee SH, LiuP, Tracy CE. All-Solid-State Rocking Chair Lithium Battery on a Flexible Al Substrate. Electrochemical and solid-state letters,1999,2:425-427.
    [25]Liang CC, Bolster ME, Murphy RM. The Li/Cl2 in SO2C12 Inorganic Battery System Ⅱ. D Cell Discharge Characteristics. Journal of the Electrochemical Society, 1981,128:1631-1636.
    [26]Bicelli LP, Maffi S, Tagliavini P. Lithium insertion into hexagonal ferrites: BaFe12O19. Materials research bulletin,1988,23:663-671.
    [27]Auborn JJ, Barberio YL. Lithium intercalation cells without metallic lithium MoO2/LiCoO2 and WO2/LiCoO2. Journal of the Electrochemical Society,1987,134: 638-641.
    [28]Rossouw MH, Kock A, Picciotto LA. Structural aspects of lithium-manganese-oxide electrodes for rechargeable lithium batteries. Materials research bulletin,1990,25:173-182.
    [29]Strobel P, Levy JP, Joubert JC. Hydro thermal and flux synthesis of Li-Mn-O compounds:Crystal growth of LiMnO2 and Li2MnO3. Journal of crystal growth,1984, 66:257-261.
    [30]Kemp JP, Cox PA. Electronic structure of LiCoO2 and related materials photoemission studies. Journal of Physics:Condensed Matter,1990,2:9653.
    [31]Kemp JP, Cox PA, Hodby J W. Magnetic susceptibility studies of LiNiO2 and NaNiO2. Journal of Physics:Condensed Matter,1990,2:6699.
    [32]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京化学工业出版社.2002.
    [33]Nishijima M, Tadokoro N, Takeda Y. Li Deintercalation-Intercalation Reaction and Structural Change in Lithium Transition Metal Nitride, Li7MnN4. Journal of the Electrochemical Society,1994,141:2966-2971.
    [34]Shodai T, Okada S, Tobishima S. Anode performance of a new layered nitride Li3-xCoxN (x=0.2-0.6). Journal of power sources,1997,68:515-518.
    [35]王恩通,杨林芳,任引哲.溶胶-凝胶法合成锂离子电池正极材料Li1+xV3O8的初步探讨.材料开发与应用,2012,4:75-79.
    [36]Jacek Lipkowski, Philip N. The electrochemistry of novel materials [M]. New York VCH Publisher INC.1994.
    [37]Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society,1997,144:1188-1194.
    [38]Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367.
    [39]任学佑.锂离子电池及其发展前景.电池,1996,26:38-40.
    [40]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展.化学进展,1998,10:85-94.
    [41]Andersson AS, Thomas JO, Kalska B. Thermal Stability of LiFePO4-Based Cathodes. Electrochemical and Solid-State Letters,2000,3:66-68.
    [42]Li G, Azuma H, Tohda M. Optimized LMnyFe1-yPO4 as the Cathode for Lithium Batteries. Journal of the electrochemical society,2002,149:A743-A747.
    [43]Arora P, White RE, Doyle M. Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. Journal of the Electrochemical Society,1998,145:3647-3667.
    [44]Kang B, Ceder G. Battery materials for ultrafest charging and discharging. Nature, 2009,458:190-193.
    [45]Yamada A, Chung SC, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society,2001,148:A224-A229.
    [46]Chen Z, Dahn JR. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of the Electrochemical Society,2002,149:A1184-A1189.
    [47]Recham N, Dupont L, Courty M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chemistry of Materials,2009,21:1096-1107.
    [48]Janssen Y, Middlemiss DS, Bo SH. Structural Modulation in the High Capacity Battery Cathode Material LiFeBO3. Journal of the American Chemical Society,2012, 134:12516-12527.
    [49]Sirisopanaporn C, Masquelier C, Bruce PG. Dependence of Li2FeSiO4 Electrochemistry on Structure. Journal of the American Chemical Society,2010,133: 1263-1265.
    [50]Dominko R, Bele M, Gaberscek M. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications,2006,8:217-222.
    [51]Nyten A, Kamali S, Haggstrom L. The lithium extraction/insertion mechanism in Li2FeSi04. Journal of Materials Chemistry,2006,16:2266-2272.
    [52]张万红,岳敏.锂离子动力电池及其负极材料的研究现状及发展方向.新材料产业,2006,9:54-59.
    [53]Fujimoto H, Mabuchi A, Tokumitsu K. Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds. Carbon, 1994,32:193-198.
    [54]Mabuchi A, Tokumitsu K, Fujimoto H. Charge-Discharge Characteristics ofthe Mesocarbon Miocrobeads Heat-Treated at Different Temperatures. Journal of the Electrochemical Society,1995,142:1041-1046.
    [55]Liang Y, Xie Z, Tu C. Influence of graphite powder on the properties of carbon paper for proton-exchange membrane fuel cells. Carbon,2013,52:625.
    [56]Kida Y, Yanagida K, Funahashi A. Electrochemical characteristics of graphite, coke and graphite/coke hybrid carbon as negative electrode materials for lithium secondary batteries. Journal of power sources,2001,94:74-77.
    [57]Shi H, Barker J, Saidi MY. Structure and lithium intercalation properties of synthetic and natural graphite. Journal of the Electrochemical Society,1996,143: 3466-3472.
    [58]张军,金忠,杨清河.介稳定相炭微球嵌锂特性.电源技术,2001,25:398-400.
    [59]Wu C, Yin P, Zhu X. Synthesis of hematite (α-Fe2O3) nanorods:diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. The Journal of Physical Chemistry B,2006,110:17806-17812.
    [60]Ziolo RF, Giannelis EP, Weinstein BA. Matrix-mediated synthesis of nanocrystalline y-Fe2O3:a new optically transparent magnetic material. Science,1992, 257:219-223.
    [61]Taberna PL, Mitra S, Poizot P. High rate capabilities FesO4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature materials, 2006,5:567-573.
    [62]Zhang WM, Wu XL, Hu JS. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Advanced Functional Materials,2008,18: 3941-3946.
    [63]Reddy MV, Yu T, Sow CH. α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries. Advanced Functional Materials,2007,17:2792-2799.
    [64]Zhu X, Zhu Y, Murali S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. Acs Nano,2011,5: 3333-3338.
    [65]McewenAB, Mcdevitt SF, Koch VR. Nonaqueous electrolytes for electrochemical capacitors:imidazolium cations and inorganic fluorides with organic carbonates. Journal of the Electrochemical Society,1997,144:L84-L86.
    [66]Liao XZ, Ma ZF, Gong Q. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochemistry Communications,2008,10: 691-694.
    [67]Kawamura T, Kimura A, Egashira M. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. Journal of power sources,2002,104: 260-264.
    [68]Freunberger SA, Chen Y, Peng Z. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. Journal of the American Chemical Society,2011,133: 8040-8047.
    [69]Daeneke T, Kwon TH, Holmes AB. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chemistry,2011,3:211-215.
    [70]Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources,2010,195:4554-4569.
    [71]Wendler F, Freund M, Kanoun O. Material characterisation of nano scale solid state electrolytes. Lecture Notes on Impedance Spectroscopy:Measurement, Modeling and Applications,2012,3:13.
    [72]Chen Y, Zhang X, Zhang D. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon,2011,49:573-580.
    [73]Lewandowski A, S wider ska-Mocck A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources,2009,194: 601-609.
    [74]Guerfi A, Dontigny M, Charest P. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. Journal of Power Sources,2010,195:845-852.
    [75]Croce F, d'Epifanio A, Hassoun J. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002,5:A47-A50.
    [76]Huang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters,2001,4:A170-A172.
    [77]Prosini PP, Carewska M, Scaccia S. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. Journal of the Electrochemical Society, 2002,149:A886-A890.
    [78]Sauvage F, Baudrin E, Morcrette M. Pulsed laser deposition and electrochemical properties of LiFePO4 thin films. Electrochemical and solid-state letters,2004,7: A15-A18.
    [79]Yu W, Zhao Y, Rao Q. Rapid and Continuous Production of LiFePO4/C Nanoparticles in Super Heated Water. Chinese Journal of Chemical Engineering,2009, 17:171-174.
    [80]Takeuchi T, Tabuchi M, Nakashima A. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process. Journal of power sources, 2005,146:575-579.
    [81]Choi D, Kumta PN. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. Journal of power sources,2007,163:1064-1069.
    [82]Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009,458:190-193.
    [83]Okamoto H. The Li-Si (Lithium-Silicon) System. Journal of Phase Equilibria,1990, 11:306-312.
    [84]Okamoto H. Li-Si (Lithium-Silicon). Journal of Phase Equilibria and Diffusion, 2009,30:118-119.
    [85]Wang GX, Ahn JH, Yao J. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry communications,2004,6:689-692.
    [86]Li H, Huang X, Chen L. The crystal structural evolution of nano-Sianode caused by lithium insertion and extraction at room temperature. Solid State Ionics,2000,135: 181-191.
    [87]Yoshio M, Wang H, Fukuda K. Carbon-coated Si as a lithium-ion battery anode material. Journal of the electrochemical society,2002,149:A1598-A1603.
    [88]Wang XL, Mei A, Li XL. Novel polymer electrolytes based on triblock poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) with ionically active SiO2. Journal of Power Sources,2007,171:913-916.
    [89]Okada W, Nakamura S. Battery pack and battery pack seperator:U.S. Patent 8,124,262[P].2012-2-28.
    [90]Qing G, Yang W, Jiang L. Porous polyimide membrane, battery separator, battery, and method:U.S. Patent Application 12/533,664[P].2009-7-31.
    [91]Gao F. Performance Study on Zirconia Cloth Separator for High Pressure Ni-H2 Battery. Key Engineering Materials,2012,519:164-168.
    [92]Cho TH, Tanaka M, Ohnishi H. Composite nonwoven separator for lithium-ion battery:Development and characterization. Journal of Power Sources,2010,195: 4272-4277.
    [93]Ding J, Kong Y, Li P. Polyimide/Poly (ethylene terephthalate) Composite Membrane by Electrospinning for Nonwoven Separator for Lithium-Ion Battery. Journal of the Electrochemical Society,2012,159:A1474-A1480.
    [94]Visco SJ, Nimon YS, Katz BD. Protective composite battery separator and electrochemical device component with red phosphorus:U.S. Patent 7,838,144[P]. 2010-11-23.
    [95]Li H, Chen YM, Ma XT. Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I:Preparation and property of PVDF/poly (dimethylsiloxane) blending membrane. Journal of Membrane Science,2011,379:397-402.
    [96]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展.化学进展,1998,10:85-94.
    [97]Park KS, Son JT, Chung HT. Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Communications,2004,129: 311-314.
    [98]Mi CH, Cao GS, Zhao XB. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials letters,2005,59:127-130.
    [99]Su J, WuXL, Yang CP. Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. The Journal of Physical Chemistry C,2012,116: 5019-5024.
    [100]Park KS, Son JT, Chung HT. Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry communications,2003,5:839-842.
    [101]Delmas C, Maccario M, Croguennec L. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature materials,2008,7:665-671.
    [102]Ohzuku T, Ueda A. Solid-State Redox Reactions of LiCo02 (R3m) for 4 Volt Secondary Lithium Cells. Journal of the Electrochemical Society,1994,141: 2972-2977.
    [103]Wang H, Jang YI, Huang B. TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society,1999,146:473-480.
    [104]Cho J, Kim YJ, Park B. Novel LiCoO2 cathode material with A12O3 coating for a Li ion cell. Chemistry of materials,2000,12:3788-3791.
    [105]Cho J, KimGB, Lim HS. Improvement of Structural Stability of LiMn2O4 Cathode Material on 55℃ Cycling by Sol-Gel Coating of LiCoO2. Electrochemical and solid-state letters,1999,2:607-609.
    [106]Cho J, Kim CS, Yoo SI. Improvement of Structural Stability of LiCoO2 Cathode during Electrochemical Cycling by Sol-Gel Coating of SnO2. Electrochemical and Solid-State Letters,2000,3:362-365.
    [107]Tukamoto H, West AR. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. Journal of the Electrochemical Society,1997,144:3164-3168.
    [108]Jung YS, Cavanagh AS, Dillon AC. Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition. Journal of the Electrochemical Society,2010,157:A75-A81.
    [109]Kemp JP, Cox PA. Electronic structure of LiCo02 and related materials photoemission studies. Journal of Physics:Condensed Matter,1990,2:9653.
    [110]Fukui T, Okawa H, Tsunooka T. Solubility and deposition of LiCoO2 in a molten carbonate. Journal of power sources,1998,71:239-243.
    [111]Alcantara R, Lave la P, Tirado JL. Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrodes. Chemistry of materials,1997,9:2145-2155.
    [112]Dahn JR, Von Sacken U, Juzkow MW. Rechargeable LiNiO2/carbon cells. Journalof the Electrochemical Society,1991,138:2207-2211.
    [113]Kitaoka Y, Kobayashi T, Koda A. Orbital frustration and resonating valence bond state in the spin-1/2 triangular lattice LiNiO2. Journal of the Physical Society of Japan, 1998,67:3703-3706.
    [114]Larcher D, Palacin MR, Amatucci GG. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions. Journal of the Electrochemical Society,1997,144:408-417.
    [115]Cho J, Kim TJ, Kim YJ. High-performance ZrO2-coated LiNiO2 cathode material. Electrochemical and Solid-State Letters,2001,4:A159-A161.
    [116]Sun YK, Oh IH. Synthesis of LiNiO2 powders by a sol-gel method. Journal of materials science letters,1997,16:30-32.
    [117]Alcantara R, Lave la P, Tirado JL. Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrodes. Chemistry of materials,1997,9:2145-2155.
    [118]Lim JH, Bang H, Lee KS. Electrochemical characterization of Li2MnP3-Li [Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. Journal of power sources,2009,189:571-575.
    [119]Palacin MR, Larcher D, Audemer A. Low-Temperature Synthesis of LiNiO2 Reaction Mechanism, Stability, and Electrochemical Properties. Journalof the Electrochemical Society,1997,144:4226-4236.
    [120]Muto S, Sasano Y, Tatsumi K. Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries Ⅱ. Diagnostic Analysis by Electron Microscopy and Spectroscopy. Journal of the Electrochemical Society,2009,156:A371-A377.
    [121]Palacin MR, Larcher D, Audemer A. Low-Temperature Synthesis of LiNiO2 Reaction Mechanism, Stability, and Electrochemical Properties. Journal of the Electrochemical Society,1997,144:4226-4236.
    [122]Hosono E, Kudo T, Honma I. Synthesis of single crystalline spinel LiMn2O4 nano wires for a lithium ion battery with high power density. Nano letters,2009,9: 1045-1051.
    [123]Kim DK, Muralidharan P, Lee HW. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano letters,2008,8:3948-3952.
    [124]Luo J, Wang Y, Xiong H. Ordered mesoporous spinel LiMmO4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials,2007,19:4791-4795.
    [125]Gee B, Horne CR, Cairns EJ. Supertransferred Hyperfine Fields at 7Li:Variable Temperature 7LiNMR Studies of LiMn2O4-Based Spinels. The Journal of Physical Chemistry B,1998,102:10142-10149.
    [126]Xu H, Sun J, Gao L. Hydrothermal synthesis of LiMnO2 microcubes for lithium ion battery application Ionics,2013,19:63-69.
    [127]Armstrong AR, Bruce PG. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature,1996,381:499-500.
    [128]Gummow RJ, Thackeray MM. An Investigation of Spinel-Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society,1994,141:1178-1182.
    [129]ShaoHorn Y, Hackney S A, Armstrong AR. Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging. Journal of the Electrochemical Society,1999,146:2404-2412.
    [130]Ammundsen B, Desilvestro J, Groutso T. Formation and structural properties of layered LiMnO2 cathode materials. Journal of The Electrochemical Society,2000,147: 4078-4082.
    [131]Yoon WS, Grey CP, Balasubramanian M. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chemistry of materials,2003,15:3161-3169.
    [132]Breger J, Meng YS, Hinuma Y. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2:A joint experimental and theoretical study. Chemistry of materials,2006,18:4768-4781.
    [133]Zhou Y, Li H. Sol-gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array. Journal of material chemistry,2002,12: 681-686.
    [134]Julien CM, Abdel-Ghany A, Zaghib K. Electrochemical Features of Li-Ni-Mn-Co Oxides [C]. The Electrochemical Society,2006,5:346-346.
    [135]Poizot P, Laruelle S, Grugeon S. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407:496-499.
    [136]Nukuda T, Inamasu T, Fujii A. Development of a lithium ion battery using a new cathode material. Journal of power sources,2005,146:611-616.
    [137]Hinuma Y, Meng YS, Kang K. Phase transitions in the LiNi0.5Mn0.5O2 system with temperature. Chemistry of Materials,2007,19:1790-1800.
    [138]Wang X, Zhou F, Zhao X. Fabrication and characterization of nanosized single-crystalline LiNi0.5Mn0.5O2. Journal of crystal growth,2004,267:184-187.
    [139]Cheon JH, Jang BY, Kim JS. Microstructures and electrochemical properties of a SiO1.39-C composite for a lithium-ion secondary battery. Journal of the Korean Physical Society,2013,62:1119-1124.
    [140]Cui WW, Tang DY, Gong ZL. Electro spun poly (vinylidene fluoride)/poly (methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. Journal ofpower sources,2013,223:206-213.
    [141]Dong YZ, Zhao YM, FuP. Phase relations of Li2O-FeO-B2O3 ternary system and electrochemical properties of LiFeBO3 compound. Journal of Alloys and Compounds, 2008,461:585-590.
    [142]Janssen Y, Middlemiss DS, Bo SH. Structural Modulation in the High Capacity Battery Cathode Material LiFeBO3. Journal of the American Chemical Society,2012, 134:12516-12527.
    [143]Isono M, Okada S, Yamaki J. Synthesis and electrochemical characterization of amorphous Li-Fe-P-B-O cathode materials for lithium batteries. Journal of Power Sources,2010,1952:593-598.
    [144]Bo SH, Wang F, Janssen Y. Degradation and (de) lithiation processes in the high capacity battery material LiFeBO3. Journal of Materials Chemistry,2012,22: 8799-8809.
    [145]Barpanda P, Yamashita Y, Yamada Y. High-Throughput Solution Combustion Synthesis of High-Capacity LiFeBO3 Cathode. Journal of the Electrochemical Society, 2013,160:A3095-A3099.
    [146]Shigeto, Okada, Toshiyuki. Anode properties of calcite-type MBO3 (M:V, Fe). Journal of Power Sources,2003,119:621-625.
    [147]Rowsell JL, Taylor NG, Nazar LF. Crystallo graphic investigation of the Co-B-O system. Journal of Solid State Chemistry,2003,174:189-197.
    [148]Seo DH, Park YU, Kim SW. First-principles study on lithium metal borate cathodes for lithium rechargeable batteries. Physical Review B,2011,83:205127.
    [149]Yamada A, Iwane N, Harada Y. Lithium Iron Borates as High-Capacity Battery Electrodes. Advanced Materials,2010,22:3583-3587.
    [150]王洪,杨驰,郭春泰.表面包覆保护的离子电池新型正极材料LiFeBO3电化学性能Chinese Journal of Applied Chemistry,2011,28:821-825.
    [151]Legagneur V, An Y, Mosbah A. LiMBO3 (M= Mn, Fe, Co):synthesis, crystal structure and lithium deinsertion/insertionproperties. Solid State Ionics,2001,139: 37-46.
    [152]Hong W, Chi Y, Chuntai G. The Electrochemical Performance of Surface Protected LiFeBO3 Cathode Materials for Li-ion Batteries. Chinese Journal of Applied Chemistry,2011,7:014.
    [153]Aravindan V, Umadevi M. Synthesis and characterization of novel LiFeBO3/C cathodes for lithium batteries. Ionics,2012,18:27-30.
    [154]Dong YZ, Zhao YM, Shi ZD. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material. Electrochimica Acta,2008,53: 2339-2345.
    [155]Chen Z, Dahn JR. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of the Electrochemical Society,2002,149:A1184-A1189.
    [156]LaiC, XuQ, Ge H. Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics,2008,179: 1736-1739.
    [157]Xie HM, Wang R S, Zhang LY. Optimized LiFePO4-Polyacene Cathode Material for Lithium-Ion Batteries. Advanced Materials,2006,18:2609-2613.
    [158]Zhou W, He W, Y. Biosynthesis and electrochemical characteristics of LiFePO24/C by microwave processing. Journal of Solid State Electrochemistry,2009,13: 1819-1823.
    [159]Lu CZ, Fey GTK, Kao HM. Study of LiFePO4 cathode materials coated with high surface area carbon. Journal of Power Sources,2009,189:155-162.
    [160]Kim CW, Park JS, Lee KS. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. Journal of power sources,2006,163:144-150.
    [161]MiCH, CaoYX, ZhangXG. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technology,2008,181:301-306.
    [162]Huang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters,2001,4: A170-A172.
    [163]Higuchi M, Katayama K, Azuma Y. Synthesis of LiFePO4 cathode material by microwave processing. Journal of Power Sources,2003,119:258-261.
    [164]Delacourt C, Poizot P, Levasseur S. Size Effects on Carbon-Free LiFePO4 Powders the Key to Superior Energy Density. Electrochemical and Solid-State Letters, 2006,9:A352-A355.
    [165]Yukui L, Changchun Z, Xinghui L. Field emission display with carbon nanotubes cathode:prepared by a screen-printing process. Diamond and related materials,2002,11: 1845-1847.
    [166]Wang Y, Wang Y, Hosono E. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie International Edition,2008,47:7461-7465.
    [167]Croce F, Epifanio A, Hassoun J. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters,2002,5: A47-A50.
    [168]Fey GTK, Chen YG, Kao HM. Electrochemical properties of LiFePO4 prepared via ball-mil ling. Journal of power sources,2009,189:169-178.
    [169]Hsu KF, Tsay SY, Hwang BJ. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gelroute. Journal of Materials Chemistry,2004,14:2690-2695.
    [170]Ferrari S, Lavall RL, Capsoni D. Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. The Journal of Physical Chemistry C,2010,114:12598-12603.
    [171]李维,应皆荣,万春荣.以NH4FePO4·H2O为前驱体微波法合成LiFePO4及其性能研究.稀有金属材料与工程,2007,6:1046-1046.
    [172]Ellis B, Kan WH, Makahnouk WRM. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. Journal of Materials Chemistry,2007,17: 3248-3254.
    [173]Dokko K, Koizumi S, Nakano H. Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. Journal of Materials Chemistry,2007,17:4803-4810.
    [174]Saravanan K, Balaya P, Reddy MV. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy & Environmental Science,2010,3: 457-463.
    [175]Doeff MM, Wilcox JD, Yu R. Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. Journal of Solid State Electrochemistry,2008,12:995-1001.
    [176]Huang YH, Goodenough JB. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chemistry of Materials,2008,20: 7237-7241.
    [177]Oh SW, Bang HJ, Myung ST. The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C-LiFePO4 Prepared via Coprecipitation. Journal of the Electrochemical Society,2008,155:A414-A420.
    [178]Hu Y, Doeff MM, Kostecki R. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. Journal of the Electrochemical Society,2004, 151:A1279-A1285.
    [179]Xiang CJ. Improvement of LiFePO4 Electrochemical Performance by Doping Metal Oxides. Chinese Journal of Inorganic Chemistry,2005,4:003.
    [180]Chung SY, Chiang YM. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemical and solid-state letters,2003,6:A278-A281.
    [181]Ouyang CY, Shi SQ, Chen L. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. Journal of Physics:Condensed Matter,2004,16:2265.
    [182]Sun CS, Zhang Y, Zhou XJ. Structural and electrochemical properties of Cl-doped LiFePO4/C. Journal of Power Sources,2010,195:3680-3683.
    [183]Wang D, Li H, Shi S. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochimica Acta,2005,50:2955-2958.
    [184]Zheng M, Liu S, Sun S. Cu Doping LiFePO4 and its Electrochemical Performance. Electrochemistry,2008,1:002.
    [185]Shi S, Liu L, Ouyang C. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Physical Review B, 2003,68:195108.
    [186]Aravindan V, Karthikeyan K, Amaresh S. A Potential Cathode Material for Lithium Batteries. Bull Korean Chemical Society,2010,31:1506-1508.
    [187]Yamada A, Iwane N. Sythesis and Eletrochemistry of Monoclinic Li(MnxFe1-x)BO3:a Combined experimental and computational Study. Journal of Materials Chemistry,2011,21:10690-10696.
    [188]Patil KC, Aruna ST, Ekambaram S. Combustion synthesis. Current opinion in solid state and materials science,1997,2:158-165.
    [189]Chick LA, Pederson LR, Maupin GD. Glycine-nitrate combustion synthesis of oxide ceramic powders. Materials Letters,1990,10:6-12.
    [190]Julien C, Michael SS, Ziolkiewicz S. Structural and electrochemical properties of LiNi0.3Co0.7O2 synthesized by different low-temperature techniques. International Journal of Inorganic Materials,1999,1:29-37.
    [191]Julien C, Camacho-Lopez MA, Mohan T. Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics,2000,135:241-248.
    [192]Yang W, Zhang G, Xie J. A combustion method to prepare spinel phase LiMn2O4 cathode materials for lithium-ion batteries. Journal of power sources,1999,81: 412-415.
    [193]Kalyani P, Kalaiselvi N, Muniyandi N. A new solution combustion route to synthesize LiCoO2 and LiMn2O4. Journal of power sources,2002,111:232-238.
    [194]Meza E, Ortiz J, Ruiz-Leon D. Lithium-nickel cobalt oxides with spinel structure prepared at low temperature. XRD, XPS, and EIS measurements. Materials Letters, 2012,70:189-192.
    [195]Xiong L, Xu Y, Tao T. Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. Journal of Power Sources,2012,199:214-219.
    [196]Zaghib K, Shim J, Guerfi A. Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochemical and Solid-State Letters, 2005,8:A207-A210.
    [197]Rey I, Lassegues JC, Baudry P. Study of a lithium battery by confocal Raman micro spectro me try. Electrochimica acta,1998,43:1539-1544.
    [198]Zhang X, Freeh R. In Situ Raman Spectroscopy of LixV2O5 in a Lithium Rechargeable Battery. Journal of the Electrochemical Society,1998,145:847-851.
    [199]Croce F, d'Epifanio A, Hassoun J. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002,5:A47-A50.
    [200]Iriyama Y, Yokoyama M, Yada C. Preparation of LiFePO4 thin films by pulsed laser deposition and their electrochemical properties. Electrochemical and solid-state letters,2004,7:A340-A342.
    [201]Park MH, Kim K, Kim J. Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes:From OD Hollow to 3D Porous Germanium Nanoparticle Assemblies. Advanced Materials,2010,22:415-418.
    [202]Wang DW, Li F, Liu M.3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie,2008,120:379-382.
    [203]Doyle M, Newman J. Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry,1997, 27:846-856.
    [204]Cui LF, Hu L, Choi JW. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS nano,2010,4:3671-3678.
    [205]EganDF, Shackelford DB, Mihaylova MM. Phosphorylationof ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science Signaling,2011,331:456.
    [206]Wang Y, Wang J, Yang J. High-Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4-4H2O. Advanced Functional Materials,2006,16: 2135-2140.
    [207]Lou X, Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries. Journal of Materials Chemistry, 2011,21:4156-4160.
    [208]Appetecchi GB, Hassoun J, Scrosati B. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes:II. All solid-state Li/LiFePO4 polymer batteries. Journal of power sources,2003,124:246-253.
    [209]Neudecker BJ, Dudney NJ, Bates JB. "Lithium-Free" Thin-Film Battery with In Situ Plated Li Anode. Journal of the Electrochemical Society,2000,147:517-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700