锡基硫/氧化物薄膜的原位制备及其光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了解决严峻的能源和环境问题,研发高效率、低成本的太阳能电池以充分利用天然丰富的太阳能资源已成为目前最佳途径。有机-无机杂化薄膜全固态太阳能电池既继承了无机半导体纳米晶载流子迁移率高、化学稳定性好等优势,又保留了有机高分子材料良好的柔韧性和可加工性等特点,使该类太阳能电池成为目前太阳能电池研究领域的热点。、一些具有光伏性能、相对无毒、环保的无机化合物材料引起了研究者们的兴趣。SnS和SnO2因其优异的性能被看作是很有发展前景的太阳能电池的吸收层和窗口层材料。本论文对锡基硫/氧化物薄膜的制备及其光电性能进行了研究。研究工作获得的主要成果归纳如下:
     (1)纳米结构SnS薄膜的原位制备及光电性能研究。选用金属单质锡和硫粉作为反应物,不需任何表面活性剂,利用溶剂热法180℃反应24h,在ITO基底上一步合成了SnS纳米薄膜。产物薄膜致密均匀,由厚度约为70nm的纳米片交联组成。我们还探讨了各种实验条件对产物薄膜的影响,初步推断了SnS薄膜的生长机理。对产物薄膜的光电性能也进行了研究,目前测得光电转换效率0.0012%,表明SnS材料具有一定的光伏特性。
     (2)纳米结构SnO2薄膜的原位制备及光电性能研究。选用反应物元素的单质形式采用水热法160℃反应24h,在ITO基底上直接合成了与之结合较好的Sn02纳米薄膜。薄膜由大小约为30nm的纳米颗粒构成。并首次组装成器件结构为ITO/SnO2/P3HT/Al的杂化薄膜太阳能电池,测得最优器件的各种性能参数:开路电压(Voc)为0.296V,短路电流密度(Jsc)为0.0180mA/cm2,填充因子(FF)为22.2%,效率(η)为0.0012%。
     另外,为了调节SnO2薄膜的形貌,我们利用SnS纳米片薄膜作为模板,通过形貌遗传的方法成功制备了具有纳米片结构的SnO2薄膜。并初步探讨了一系列影响器件性能的实验因素,确定最优工艺参数:前驱物制备采用溶剂热反应,恒温180℃反应18h,20mL的DMF与无水乙醇体积比为1∶1混合溶剂;氧化反应采用水热法,恒温140℃反应24h;组装好的电池器件在真空条件下80℃热处理2h。最优器件测得性能参数:开路电压(Voc)为0.405V,短路电流密度(Jsc)为0.321mA/cm2,填充因子(FF)为15.5%,效率(η)为0.020%。
     (3)SnO2/SnO杂化薄膜制备的初步研究。选用溶剂热法在基底上原位合成SnO薄膜,然后通过煅烧制备出SnO2/SnO杂化薄膜。此方法简便易行,且实验过程环境友好。
At present, in order to resolve the serious problems of energy and environmental, the best way is to research and development the high efficiency, low cost solar cells to make the best use of the solar energy resources. Solar cells based on organic-inorganic hybrid thin film have attracted a great deal of attention, due to it not only has the high electron mobility, good chemical and structural stability of inorganic semiconductor material, but also to retain the good flexible and machinable of polymer material. As a result, some inorganic compound materials attracted the interest of researchers, which have photovoltaic performance, non-toxic and environmental friendly. Because of the excellent performance of SnS and SnO2, they are seen as the absorbing materia and very promising window layer of solar cells, respectively. So the preparation and photoelectric properties of tin-based sulfide/oxide thin film were studied in this paper. The main results in our work are summarized as follows:
     (1) The In-situ preparation and photovoltaic properties of nanostructures SnS thin film. We selected the metallic simple substance of tin and sulfur powder as reactants, without any surfactant, utilized a hydrothermal method at180℃for24h to synthesize the SnS films on ITO glass substrates directly. The film was composed of nanoplates with thickness of70nm. Different reaction conditions of the SnS film preparation were discussed, furthermore, growth mechanism and photovoltaic performance of SnS film were studied. At present, we obtained the conversion efficiency of0.0012%, which indicated that SnS have obvious photovoltaic properties.
     (2) The In-situ preparation and photovoltaic properties of nanostructures SnO2thin film. We choosed the elemental form of reactants, utilized a facile hydrothermal method at160℃for24h to fabricate SnO2films on ITO glass substrates directly. SnO2film could be attached to ITO glass substrates tightly and composed of uniform nanoparticles with size of30nm. Then, we assembled a new structure hybrid film solar cells devices of ITO/SnO2/P3HT/Al for the first time, and obtained the performance parameters of an optimal device:an open-circuit voltage of0.296V, a short circuit of0.0180mA/cm2, a fill factor of22.2%, and energy conversion efficiency of0.0012%.
     In addition, to regulate the morphology of SnO2thin film, we employed the SnS nanoplates thin film as template, prepared the SnO2thin film successfully through morphology transfer from the SnS thin film. We discussed preliminarily the various factors that influencing the performance of solar cell device, the optimal process parameters were determined:The first step reaction at180℃for18h in20mL mixed solvent of DMF and absolute ethyl alcohol volume ratio is1:1; The second step reaction at140℃for24h in distilled water. The assembled devices were heated at80℃for2h in vacuum. The better performance parameters were obtained:an open-circuit voltage of0.405V, a short circuit of0.321mA/cm2, a fill factor of15.5%, and energy conversion efficiency of0.020%.
     (3) A preliminary research of SnO2/SnO hybrid thin film. Use the solvothermal method to synthesize SnO film on the substrate, then the SnO2/SnO hybrid thin film is obtained via calcining the SnO thin film. This method is simple, and the experiment process is environmental friendly.
引文
[1]彭英才,于威,等.纳米太阳电池技术:第一版[M].北京:化学工业出版社,2010,9:1-12
    [2]王文菜.太阳能电池[J].现代物理知识,2002,15(6):3-6
    [3]梁宗存,沈辉,李戬洪.太阳能电池研究进展[J].能源工程,2004,4:8-11
    [4]Ren S Q, Zhao N, Crawford S C, et al. Heterojunction Photovoltaics Using GaAs Nanowires and Conjugated Polymers [J]. Nano Letters,2011,11:408-413
    [5]Corwine C R, Sites J R, Gessert T A, et al. CdTe photoluminescence:Comparison of solar-cell material with surface-modified single crystals [J]. Applied Physics Letters,2005, 86(22):1~3
    [6]Vidyadharan Pillai P K, Vijayakumar K P. Characterization of CulnSe2/CdS thin film solar cells prepared using CBD[J]. Solar Energy Materials& Solar Cells,1998,51(1):47-54
    [7]李建军,邹正光,龙飞CIS(CIGS)太阳能电池研究进展[J].半导体光电,2005,26(4):164-167
    [8]Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8%efficiency [J]. Applied Physics Letters,1993,62:2851~2852
    [9]Contreras MA, Romero M J, Noufi R. Characterization of Cu(In, Ga)Se2 materials used in record performance solar cells [J]. Thin Solid Films,2006,51-54:511~512
    [10]Powallaa M, Dimmler B.Development of large-area CIGS modules [J]. Solar Energy Materials& Solar Cells,2003,75(1-3):27~34
    [11]KomiyaR, HanL, YamanakaR, et al. Quasi-solidification of dye sensitized solar cell with superior ion conduction polymer electrolyte [C]. In:Kurokawa K, eds. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan.2003.295~298
    [12]MikoshibaS, SuminoH, YonetsuM, etal. In:ScheerH, eds. Proceedings of the 16th European Photovoltaic Solar Energy Conference.2000
    [13]Varghese O K, Paulose M, Grimes C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells [J]. Nature Nanotechnology, 2009,4:592
    [14]Hoppen H, Sariciftci N S, Organic solar cells:An overview [J]. Journal of Materials Research,2004,19:1924~1945
    [15]Weinberger B R, Gau S C, Kiss Z, et al. A polyacetylene:aluminum photodiode [J]. Applied Physics Letters,1981,38(7):555~557
    [16]Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nature Materials,2005,41: 864
    [17]Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science,2007,317(5835):222~225
    [18]Park SH, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nature Photonics,2009,3:297
    [19]周健伟.无机纳米晶—共轭聚合物异质结太阳能电池的制备及研究[D].[硕士学位论文].广州:华南理工大学,2006
    [20]Kumer S D, Nann T. First solar cells based on CdTe nanoparticle/MEH-PPV composites [J]. Journal of Materials Research,2004,19(7):1990~1994
    [21]VermaD, RaoAR, DuttaV. Surfactant-free CdTe nanoparticles mixed MEH-PPV hybrid solar cell deposited by spin coating technique [J]. Solar Energy Materials& Solar Cells, 2009,93(9):1482~1487
    [22]Lin Y Y, Wang D Y, Yen H C, et al. Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell[J].Nanotechnology, 2009,20(40):405207~405211
    [23]McDnoald S A, Konstantatos G, Zhang S G, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials,2005,4:138~142
    [24]CuiDH, XuJ, ZhuT, et al. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells [J]. Applied Physics Letters,2006,88(18):183111~183113
    [25]NooneKM, Anderson NC, HorwitzNE, etal. Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers[J]. ACS Nano,2009,3 (6): 1345~1352
    [26]Breeze A J, Schlesinger Z, Brock P J, et al. Charge transport in TiO2/MEH-PPV polymer photovoltaics [J]. Physical Review B,2001,64(12):125205~125214
    [27]Lin Y Y, Chu T H, Li S S, et al. Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells [J]. Journal of the American Chemical Society,2009,131:3644~3649
    [28]Beek W J E, Wienk M M, Janssen RAJ. Efficient hybrid solar cells from Zinc Oxide nanoparticles and a conjugated polymer [J]. Advanced Materials,2004,16 (12):1009~ 1013
    [29]Cheng J X, Wang S H, Li X Y. Fast interfacial charge separation in chemically hybridized CdS-PVK nanocomposites studied by photoluminescenee and photoconductivity measurements [J]. Chemical Physics Letters,2001,333:375~380
    [30]Han L L, Qin D H, Jiang X, et al. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells [J]. Nanotechnology,2006,17 (18):4736~4742
    [31]SunBQ, EikeM, Creenham N C. Photovoltaic Devices Using Blends of Branched CdSe nanoparticles and Conjugated Polymers [J]. Nano Letters,2003,3(7):961~963
    [32]Gunes S, Fritz K P, Neugebauer H. Hybrid solar cells using PbS nanoparticles [J]. Solar Energy Materials& Solar Cells,2007,91(5):420~423
    [33]伍丽.硫化亚锡薄膜的制备及其太阳能电池的研制[D].[硕士学位论文].上海:上海大学,2009
    [34]Hidenori N, Agus S, Tanamura H, et al. Characterization of Vacuum-evaporated Tin Sulfide Film for Solar Cell Materials [J]. Solar Energy Materials and Solar Cells,1994,35 (1-4): 325~331
    [35]Subramanian B, Sanjeeviraja C, Jayachandran M. Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells [J]. Material Chemistry and Physics,2001,71: 40~46
    [36]Ramakrishna Reddy K T, Koteswara Reddy N, Miles R W. Photovoltaic Properties of SnS-Based Solar Cells [C]. Technical Digest of the International PVSEC-14, Bangkok: Thailand,2004:627~628
    [37]Ichimura M, Takagi H. Electrodeposited ZnO/SnS Heterostructures for Solar Cell Application [J]. Japanese Journal of Applied Physics,2008,47:7845~7847
    [38]Wang Yu, Gong H, Fan B H, et al. Photovoltaic Behavior of Nanocrystalline SnS/TiO2[J]. The Journal of Physical Chemistry C,2010,114:3256~3259
    [39]Jiang F, Shen H L, Wang Z W, et al. Preparation of SnS Film by Sulfurization and SnS/a-Si Heterojunction Solar Cells [J]. Journal of The Electrochemical Society,2012,159(3): H235~H238
    [40]DuN, Zhang H, ChenJ, et al. Metal Oxide and Sulfide Hollow Spheres:Layer-By-Layer Synthesis and Their Application in Lithium-Ion Battery [J]. The Journal of Physical Chemistry B,2008,112:14836~14842
    [41]Gubbala S, Chakrapani V, Kumar V, et al. Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires [J]. Advanced Function Materials, 2008,18:2411~2418
    [42]Kim Y S, Yu B K, Kim D Y, et al. A hybridized electron-selective layer using Sb-doped SnO2 nanowires for efficient inverted polymer solar cells [J]. Solar Energy Materials& Solar Cells,2011,95:2874~2879
    [43]AiX, Anderson N, GuoJC, et al. Ultrafast Photoinduced Charge Separation Dynamics in Polythiophene/SnO2 Nanocomposites [J]. The Journal of Physical Chemistry B,2006,110: 25496~25503
    [44]Ebrahimiasl S, Yunus W M Z W, Zainal Z, et al. Preparation and photovoltaic property of a new hybrid nanocrystalline Sn02/Polypyrrole p-n heterojunction [J]. Optical and Quantum Electron,2012,43:129-136
    [45]Wright M, Uddin A. Organic-inorganic hybrid solar cells:A comparative review [J]. Solar Energy Materials& Solar Cells,2012,107:87~111
    [46]Jin H, Hou Y B, Meng X G, et al. High open-circuit voltage in UV photovoltaic cell based on polymer/inorganic bilayer structure [J]. Chemical Physics,2006,330:501~505
    [47]Takagahara T, Takeda K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials [J]. Physical Review B,1992,46:15578~15581
    [48]Radychev N, Lokteva I, Witt F, et al. Physical Origin of the Impact of Different Nanocrystal Surface Modifications on the Performance of CdSe/P3HT Hybrid Solar Cells [J]. The Journal of Physical Chemistry C,2011,115:14111~14122
    [49]Han L L, Qin D H, Jiang X, et al. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells[J].Nanotechnology,2006,17:4736~4742
    [50]Zhong M, Yang D, Zhang J, et al. Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification [J]. Solar Energy Materials and Solar Cells,2012,96: 160~165
    [51]Wang L, Liu Y S, Jiang X, et al. Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells [J]. The Journal of Physical Chemistry C,2007,111:9538~9542
    [52]McDnoald S A, Konstantatos G, Zhang S, et al. Solution-processed PbS quantum dot infrared photodetectors andphotovoltaics[J]. Nature Materials,2005,4:138~142
    [53]Guchhait A, Rath A K, Pal A J. To make polymer:Quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles [J]. Solar Energy Materials& Solar Cells,2011,95:651~656
    [54]HuynhWU, DittmerJJ, Alivisatos A P. Hybrid nanorod-polymer solar cells [J]. Science, 2002,295(5564):2425~2427
    [55]Boucle J, Snaith H J, Greenham N C. Simple Approach to Hybrid Polymer/Porous Metal Oxide Solar Cells from Solution-Processed ZnO Nanocrystals [J]. The Journal of Physical Chemistry C,2010,114:3664~3674
    [56]Hal P A, Wienk M M, Kroon J M, et al. Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction[J]. Advanced Materials,2003, 15(2):118~121
    [57]Wang Z J, Qu S C, Zeng X B, et al. Organic/inorganic hybrid solar cells based on SnS/SnO nanocrystals and MDMO-PPV[J]. Acta Materialia,2010,58:4950~4955
    [58]胡永红.新型太阳能电池材料SnS薄膜的制备及结构分析[D].[硕士学位论文].西安:西安理工大学,2004
    [59]Ichimura M, Takeuchi K, Ono Y, et al. Electrochemical Depsition of SnS Thin Films [J]. Thin Solid Films,2000,361-362:98-101
    [60]Hidenori N, Agus S, TanamuraH, et al. Characterization of Vacuum-evaporated Tin Sulfide Film for Solar Cell Materials [J]. Solar Energy Materials and Solar Cells,1994,35 (1-4): 325-331
    [61]Minemura T, Miyauchi K, Noguchi K, et al. Preparation of SnS films by low temperature sulfurizationLJ]. Physical Status Solidi C,2009,6(5):1221~1224
    [62]李艳巧.第Ⅴ-Ⅵ族金属硫化物薄膜的制备和光电性能的研究[D].硕士学位论文.郑州:郑州大学,2012
    [63]Brownson J R S, Georges C, Levy-Clement C. Synthesis of a δ-SnS Polymorph by Electrodeposition[J]. Chemistry of Materials,2006,18:6397-6402
    [64]周健伟,覃东欢,罗潺,等.无机纳米晶—共轭聚合物异质结光电池研究进展[J].化学通报,2006,5:323-330
    [65]Tetreault N, Horvath E, Moehl T, et al. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires[J].ACS.Nano,2010,4(12):7644~7650
    [66]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells [J]. Science, 2002,295(5564):2425~2427
    [67]LiY, MastriaR, LiK, etal. Improved photovoltaic performance of bilayer heterojunction photovoltaic cells by triplet materials and tetrapod-shaped colloidal nanocrystals Doping[J]. Applied Physics Letters,2009,95:043101
    [68]Bi H, LaPierre R R, et al. A GaAs nanowire/P3HT hybrid photovoltaic device [J]. Nanotechnology,2009,20(46):5205
    [69]Park B, LeeJH, Chang M, et al. Exciton Dissociation and Charge Transport Properties at a Modified Donor/Acceptor Interface:Poly(3-hexylthiophene)/Thiol-ZnO Bulk Heterojunc-tion Interfaces[J]. The Journal of Physical Chemistry C,2012,116:4252~4258
    [70]Beek W J E, Slooff L H, Wienk M M, et al. Hybrid Solar Cells Using a Zinc Oxide Precursor and Conjugated Polymer[J]. Advanced Functional Materials,2005,15:1703~ 1707
    [71]Lin Y Y, Chu T H, Li S S, et al. Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells [J]. Journal of the American Chemical Society,2009,131:3644~3649
    [72]Lee J, Jho J Y. Fabrication of highly ordered and vertically oriented TiO2 nanotube arrays for ordered heterojunction polymer/inorganic hybrid solar cell[J]. Solar Energy Materials and Solar Cells,2011,95:3152-3156
    [73]Arnold M S, Avouris P, Pan Z W, et al. Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts[J]. The Journal of Physical Chemistry B,2003,107: 659-663
    [74]Xi G C, Ye J H. Ultrathin SnO2 Nanorods:Template-and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing and Surface Adsorption Properties [J]. Inorganic Chemistry,2010,49:2302~2309
    [75]Shi L, Lin H L. Preparation of Band Gap Tunable SnO2 Nanotubes and Their Ethanol Sensing Properties [J]. Langmuir,2011,27:3977~3981
    [76]Wang YF, LiJW, HouYF, et al. Hierarchical Tin Oxide Octahedra for Highly Efficient Dye-Sensitized Solar Cells [J]. Chemistry-A European Journal,2010,16 (29):8620~8625
    [77]Wang C H, Shao C L, Zhang X T, et al. SnO2 Nanostructures-Ti02 Nanofibers Heterostructures:Controlled Fabrication and High Photocatalytic Properties [J]. Inorganic Chemistry,2009,48:7261-7268
    [78]Qiao H, Li J, Fu J P, et al. Sonochemical Synthesis of Ordered SnO2/CMK-3 Nanocomposites and Their Lithium Storage Properties [J]. Applied Materials & Interfaces, 2011,3:3704~3708
    [79]Wang J Z, Du N, Zhang H, et al. Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries [J]. The Journal of Physical Chemistry C,2011,115:11302~11305
    [80]Wang C, Du G H, Stahl K, et al.Ultrathin SnO2 Nanosheets:Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances [J]. The Journal of Physical Chemistry C,2012,116:4000~4011
    [81]Wang Y L, Guo M, Zhang M, et al. Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays [J]. CrystEngComm,2010,12:4024~ 4027
    [82]Snaith H J, Ducati C, SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency[J]. Nano Letters,2010,10:1259~ 1265
    [83]Ohgi H, Maeda T, Hosono E, et al. Evolution of Nanoscale SnO2 Grains, Flakes, and Plates into Versatile Particles and Films through Crystal Growth in Aqueous Solutions [J]. Crystal Growth& Design,2005,5(3):1079~1083
    [84]Tamai T, Ichinose N. Formation of SnO2 Thin Film by Pyrolysis of a Photo-Cross-Linked Organotin Polymer [J]. Macromolecules,2000,33:2505~2508
    [85]Liu Z, Zhang D, HanS, et al. Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires[J]. Advanced Materials,2003,15:1754~1757
    [86]Wang W Z, Xu C K, Wang X S, et al. Preparation of SnO2 nanorods by annealing SnO2 powder in NaCl flux [J]. Journal of Materials Chemistry,2002,12:1922~1925
    [87]Wang Y F, Lei B X, Hou Y F, et al. Facile Fabrication of Hierarchical SnO2 Microspheres Film on Transparent FTO Glass [J]. Inorganic Chemistry,2010,49:1679~1686
    [88]Sepulveda B, Angelome P C, Lechuga L M, et al. LSPR-based nanobiosensors [J]. Nano Today,2009,4:244~251
    [89]Patil G E, Kajale D D, Gaikwad V B, et al. Preparation and characterization of SnO2 nanoparticles by hydrothermal route [J]. International Nano Letters,2012,2:17
    [90]Fouad O A, Glaspell G, El-shall M S. Structural, Optical and Gas sensing properties of ZnO, SnO2 and ZTO nanostructures [J]. NANO:Brief Reports and Reviews,2010,5(4): 185~194
    [91]Dowland S, Lutz T, Ward A, et al. Direct Growth of Metal Sulfi de Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells [J]. Advanced Materials,2011,23:2739-2744
    [92]Sun S H, Meng G W, Zhang G X, et al. Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders [J]. Chemical Physics Letters,2003,376: 103~107
    [93]Liu L Z, Li T H, Wu XL, et al. Identification of oxygen vacancy types from Raman spectra ofSnO2nanocrystals[J]. Journal of Raman Spectroscopy,2012,43:1423-1426
    [94]Jia H M, He W W, Chen X W, et al. In situ fabrication of chalcogenide nanoflake arrays for hybrid solar cells:the case of In2S3/poly(3-hexylthiophene) [J]. Journal of Materials Chemistry,2011,21:12824~12828
    [95]Lei Y, Jia H M, Zheng Z, et al. A very facile, low temperature, one-step route to in situ fabricate copper sulfide nanosheet thin films[J]. CrystEngComm,2011,13:6212~6217
    [96]Majumder S. Synthesis and characterisation of SnO2 films obtained by a wet chemical process[J]. Materials Science-Poland,2009,27:126
    [97]Canestraro C D, Oliveira M M, Valaski R, et al. Strong inter-conduction-band absorption in heavily fluorine doped tin oxide [J]. Applied Surface Science,2008,255:1874~1879
    [98]Wang H K, Wang Y, Xu J, et al. Polyvinylpyrrolidone-Assisted Ultrasonic Synthesis of SnO Nanosheets and Their Use as Conformal Templates for Tin Dioxide Nanostructures [J]Langmuir,2012,28:10597~10601
    [99]Liang LY, LiuZM, CaoHT, et al. Microstructural, Optical, and Electrical Properties of SnO Thin Films Prepared on Quartz via a Two-Step Method [J]. Applied Materials Interfaces,2010,2(4):1060-1065
    [100]Geurts J, Rau S, Richter W, et al. SnO films and their oxidation to SnO2:Raman scattering, IR reflectivity and X-Ray diffraction studies[J]. Thin Solid Films,1984,121:217~225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700