多元硫族化合物的湿化学制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜太阳能电池以其成本低,质量轻等优势成为目前太阳能电池研究的主流方向,多元化合物薄膜太阳能电池材料成为当今纳米材料领域的研究热点。
     本论文主要研究内容归纳如下:
     (1)我们采用原位生长法在不锈钢和FTO基底上制备出CZTS和CZTSe两种四元化合物光电薄膜材料。在CZTS的研究工作中,我们研究了反应温度、时间、合金厚度、基底等因素对CZTS薄膜形成的影响。并对各种实验条件下产物做了XRD和Raman测试。我们得到以下结论:FTO基底更加适于CZTS晶体的形成,温度是CZTS晶体形成的主要控制因素。我们对以FTO为基底的CZTS做了FETEM测试,并对其生长机理进行简单推测。以FTO为基底的产物做了TEM和HRTEM测试,测试结果更加定性说明我们的产物,以FTO为基底的产物的UV-Vis测试和光电响应测试证明我们的产物可以进行光学器件的组装。我们在CZTS研究的基础上对CZTSe进行了研究。我们研究了反应温度、时间、基底等因素对CZTSe薄膜形成的影响。并对各种实验条件下产物做了XRD和Raman测试。得出以下结论:由于Se的活性较低,CZTSe的合成条件较CZTS难,反应温度270℃和反应时间24h我们可以得到CZTSe,提高温度和延长反应时间有利于CZTSe的合成。
     (2)我们采用湿化学的合成方法,利用NaOH和S粉等简单易得的原料在没有任何表面活性剂的条件下采用简单的合成方法合成出了三维花状结构的NaInS2。我们在NaInS2合成的基础上,采用同样的方法合成出CZTS粉末。在NaInS2的工作中,我们对晶体形成的各种影响因素S粉和NaOH的比例、时间、温度等进行了对比试验,得出产物形成的最佳条件是S:NaOH=1:3,反应温度为160℃,反应时间为12h。我们对其生长机理进行了推测,发现整个过程是一种自组装过程。我们对其光学活性进行测试,该物质在可见光的条件下,一个小时就可以降解罗丹明B,具有很好的光学活性。我们在此基础上合成了四元硫化物粉末CZTS。我们研究了晶体形成的各种影响因素:S粉的用量,S粉和NaOH的比例、时间、温度等,得出产物形成的最佳条件,我们对不同合成条件下的所的产物进行XRD测试进行对比分析。
     本论文针对目前制备出的CZTS纳米晶材料的方法中存在基底温度较高、工艺复杂、反应条件苛刻和形貌不理想等缺点。提供一种不需要任何模板,不需要添加任何表面活性剂,不必经过除杂等繁琐的后处理操作,在较低的温度下即可制得高纯度的纳米网状结构的Cu2ZnSnS4四元化合物光电薄膜材料的方法,对于CZTS的工业化生产具有重要意义。
The development of thin film solar cells is to reduce the quality of the battery in order to reduce the cost of the battery. Thin film solar cell solar battery direction research focus with its unique advantages, Multiple compound thin film solar cell materials become a hot research field of nanomaterials today.
     The main contents are summarized as follows:
     (1) We obtained the CZTS and CZTSe thin film photovoltaic material on stainless steel and FTO substrate by in-situ growth method..In the work about CZTS, we have studied the effects of reaction temperature, time, alloy thickness, substrate and other factors on the formation of CZTS film. The products under various experimental conditions were Characterization by XRD and Raman test. We get the following conclusions:The FTO substrate was more suitable for the formation of CZTS crystal, the temperature is the main controlling factor for the formation of CZTS crystal. The products on FTO substrate were Characterization by FETEM test and the growth mechanism were guessed. The TEM and HRTEM test results are more qualitative description of our product, the FTO substrate UV-Vis product testing and optical response test prove that our products can be the assembly of the optics. We make the research about CZTSe based on the CZTS. We studied the effects of reaction temperature and time for the formation of CZTSe film. We take the XRD and Raman test for the product under various experimental conditions. The conclusions are as follows:we can obtain the CZTSe under the condtion24h and270℃. Increasing temperature and reaction time is a good way for the synthesis of CZTSe.
     (2)We obtained a three-dimensional flower-shaped structure NaInS2by using wet chemical synthesis methods. The materials NaOH and S are low-cost. We use the same method to synthesis the CZTS powder. We investigative various factors for the formation of crystals, including the proportion of S and NaOH, time, temperature. The optimum conditions obtained product formation is S:NaOH=1:3, the reaction temperature is160℃, the reaction time for12h. We speculate that the growth mechanism and found that the whole process is a self-assembly process. Its optically active testing, the substance under the conditions of the visible light, an hour can Degradation of RhB, having good optical activity. We were synthesized the quaternary sulfides powder of CZTS based on the NaInS2. We studied the various factors affecting the formation of crystals:an amount of S powder, the ratio of S and NaOH, time, temperature, etc. We obtained the best conditions for product formation.
     This thesis focuses on CZTS nanocrystalline materials prepared substrate temperature is higher, the process is complicated and harsh reaction conditions and morphology. Provided which does not require any templates do not need to add any surface active agents, having to go through the tedious post-processing operation in the impurity in a lower temperature to obtain high-purity nano-sheet structure Cu2ZnSnS4quaternary compound photoelectric method of thin film material, for CZTS industrialized production has important significance.
引文
[1]熊绍珍,朱美芳.太阳能电池基础与应用[M].北京:科学出版,2009,1-11
    [2]Fritts C E.On a new form of selenium photocell [J].American Journal Science,1883,26:245
    [3]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].北京:科学出版社,2005,58-59
    [4]彭英才,于威.纳米太阳电池技术[M].北京:化学工业出版社,2010,1-12
    [5]Chung B C,Virshup G F, Werthen J G High-efficiency one-sun (22.3%at air mass 0; 23.9%at air mass 1.5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy [J].Applied Physics Letters,1988,52:1889
    [6]Olson J M, Kurtz S R, Friedman D J, et al. A 27.3%efficient Gao.5In0.5P/GaAs tandem solar cell[J]. Applied Physics Letters,1990,56:623
    [7]Bertness K A, Kurtz S R, Friedman D J, et al.29.5%-efficient GalnP/GaAs tandem solar cells [J].Applied Physics Letters,1994,65:989
    [8]Ermer J. Validation in pharmaceutical analysis. Part I:An integrated approach [J]. Journal of Pharmaceutical and Biomedical Analysis,2001,24,755~767
    [9]King R R,Karam N H, Ermer J H, et al. Next-generation, high-efficiency Ⅲ-V multijunction solar cells [C].Proc.28th IEEE Photovoltaic Specialists Conference,2000:998~1001
    [10]King R R, Law D C,Edmondson K M, et al. Advances in high-efficiency III-V multijunction solar cells [J]. Applied Physics Letters,2007,90:183516
    [11]Geisz J F, Friedman D J, Ward J S, et al.40.8%efficient inverted triple-junction solar cell with two independently metamorphic junctions [J].Applied Physics Letters,2008,93: 123505
    [12]Yamaguchi M, Ohshita Y, Arafune K, et al. Present status and future of crystalline silicon solar cells in Japan [J]. Solar Energy,2006,80:104
    [13]Agostinelli G, Vitanov P, Alexieva Z, et al. Surface passivation of silicon by means of negative charge dielectrics [C].Proceedings of the 19th European Photovoltaic Solar Energy Conference. Paris, France,2004:132~134
    [14]Eiji M, Akira T, Mikio T, et al. Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business.4th World Conference On Photovoltaic Energy Conversion. Hawaii,2006
    [15]何宇亮,丁建宁,彭英才等.物理,2008,37:862
    [16]Metzger W K, Repins I L, Contreras M A. Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells [J]. Applied Physics Letters,2008,93:22110
    [17]Wu X. Asher S,Levi D H, et al. Interdiffusion of CdS and Zn2Sn04 layers and its application in CdS/CdTe polycrystalline thin-film solar cells [J] Journal of Applied Physics,2001,89: 4564
    [18]Mikoshiba S.Sumino H, Yonetsu M, et al.Photoelectrochemical cells with chemically crosslinked polymer gel electrolytes [A]. proceeding in 13 th international conference on photochemical conversion and storage of solar energy [C]. USA, snowmass,2000. W6,70
    [19]Varghese O K, Paulose M, Grimes C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells [J]. Nature Nanotechnology, 2009,4:592
    [20]Yang H, Yu C Z, Song Q L, et al. High temperature and long-term stable solid-state electrolyte dye-sensitized solar cells by self-assembly [J]. Chemistry of Materials,2006, 18(22):5173-5177
    [21]Wienk M M, Kroon J M, Janssen R A J, et al. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells [J]. Angewandte Chemie. International Edition, 2003,42:3371
    [22]Mor G K, Kim S, Pauloss M, et al. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells [J].Nano Letters,2009,9:4250
    [23]Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J].Nature Photonics,2009,3:297
    [24]Noone K M, Anderson N C, Horwitz N E, et al.Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers [J].ACS Nano,2009,3(6): 1345-1352
    [25]Cui D H, Xu J, Zhu T, et al. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells [J]. Applied Physics Letters,2006,88(18):183111-183113
    [26]Lin Y Y, Wang D Y.Yen H C, et al. Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell [J].Nanotechnology, 2009,20(40):405207-405211
    [27]McDnoald S A, Konstantatos G, Zhang S G, et al.Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J].Nature Materials,2005,4:138-142
    [28]Verma D, Rao A R, Dutta V.Surfactant-free CdTe nanoparticles mixed MEH-PPV hybrid solar cell deposited by spin coating technique [J]. Solar Energy Materials& Solar Cells, 2009,93(9):1482-1487
    [29]Chopin D, Fuller C, Pearson G A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J] Journal of Applied Physics,1954,25:676-677
    [30]Shockley Wa, Queisser H. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells [J]. Journal of Applied Physics,1961,32:510-519
    [31]Green M A, Conibeer G, Kong D, et al. progress with all-silicon tandem cells based on silicon quantum dots in a dielectric matrix.21 st European Photovoltaic SolarEnergy Conference, Dresden,2006
    [32]Ekins-Daukes N J, Schmidt T W. A molecular approach to the intermediate band solar cells. Technical Digest of the International PVSEC-17.Fukuoka, Japan,2007:528
    [33]胡永红.新型太阳能电池材料SnS薄膜的制备及结构分析[D].硕士学位论文,西安: 西安理工大学,2004
    [34]朱懿,余京松,韩高荣等.乙烯含量对CVD法硅镀膜玻璃结构和性能的影响[J].建筑材料学报,1999,2(2):126-130
    [35]Zheng J, Song X B, Chen N, et al.Highly symmetrical CdS tetrahedral nanocrystals prepared by low-temperature chemical vapor deposition using polysulfide as the sulfur source [J]. Crystal Growth& Design,2008,8(5):1760-1765
    [36]Yang J L, An S J, Park W I, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition [J]. Advanced Materials,2004,16(18): 1661-1664
    [37]王艳,黄剑锋,曹丽云.电沉积法制备Bi2S3薄膜研究[J].人工晶体学报,2009,38(4):916-919
    [38]Tae Y M, Sang H K, Hyun Y M, et al. Substrate Temperature Dependence of ZnO Films Prepared by Ultrasonic Spray Pyrolysis[J] Journal of Applied Physics,1996,35(12): 6208-6211
    [39]Ramakrishna K T, Reddy P P, Miles R. W. Investigations on SnS films deposited by spray pyrolysis Optical Materials [J].2001,17(1-2):295-298
    [40]陈庭金,罗思银,刘宗光等.卫星用AIGaAs/GaAs太阳能电池[J].半导体光电,1997,18(1):56-60
    [41]Corwine C R, Sites J R, Gessert T A, eta al. CdTe photoluminescence:Comparison of solar-cell material with surface-modified single crystals [J]. Applied Physics Letters,2005, 86(22):1-3
    [42]Vidyadharan P K, Vijayakumar K P. Characterization of CulnSe2/CdS thin film solar cells prepared using CBD [J].Solar Energy Materials& Solar Cells,1998,51(1):47-54
    [43]李建军,邹正光,龙飞.CIS(CIGS)太阳能电池研究进展[J].半导体光电,2005,26(4):164-167
    [44]Fischereder A, Rath T, Haas W. Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide[J].Chemistry of Materials,2010,22,3399-3406
    [45]Fernandes P A, SalomeP M P, da Cunha A F. Growth and Raman scattering characterization of Cu2ZnSnS4thin films [J].Thin Solid Films,2009,517,2519-2523
    [46]Steinhagen C, Matthew G, Panthani V A, et al.Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals [J]. Journal of the American Chemistry society,2009,131,12554-12555
    [47]Zhou Y L, Zhou W H, Lei M, et al.Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell.Morphology Control and Growth Mechanism [J]. Journal of Physical of Chemistry, 2011,115,19632-19639.
    [48]Katagiri H, Jimbo K, Oishi K, et al.Development of CZTS-based thin film solar cells [J]. Thin Solid Films,2009,517,2455-2460
    [49]Riha S C, Parkinson B A,Prieto A L. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals [J]. Journal of the American Chemistry society,2009,131,12054
    [50]Rajeshmon V G, Kartha C S, Vijayakumar K P,et al. Role of precursor solution in controlling the opto-electronic properties of spray pyrolysed Cu2ZnSnS4 thin films.Solar Energy,2011,85,249-255
    | [51] Cao M, Shen Y. A mild solvothermal route to kesterite quaternary nanoparticles[J]. Journal of Crystal Growth,2011,318,1117-1120
    [52]Ahmed S, Reuter K B, Gunawan O, et al. A High Efficiency Electrodeposited Cu Solar Cell [J]. Energy. Mater,2011,1-7
    [53]Tanaka K, Fukui Y, Moritake N,et al.Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency [J]. Solar Energy Materials and Solar Cells,2011, 95,838-842
    [54]Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells [J]. Energy Environ Science,2012,5:5340-5345
    [55]Araki H, Kubo Y, Mikaduki A, et al. Preparation of Cu2ZnSnS 4 thin films by sulfurizing electroplated precursors [J].Solar Energy Mater and Solar Cells,2009,93:996-999
    [56]Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu< sub> 2 ZnSnS< sub> 4 thin films deposited by spray pyrolysis technique [J].Thin Solid Films,2007,515:5949-5952
    [57]Zheng R B, Zeng J H, Mo M S, et al. Solvothermal synthesis of the ternary semiconductor AInS< sub> 2(A= Na, K) nanocrystal at low temperature [J].Materials Chemistry and Physics.2003,82:116-119
    [58]Fukuzaki K, Kohiki S, Matsushima S, et al. Preparation and characterization of NaInO2 and NaInS2 [J] Journal of Matericals Chemistry,2000,10:779-782
    [59]Kudo A, Nagane A, Tsuji I, et al. H2 Evolution from Aqueous Potassium Sulfite Solutions under Visible Light Irradiation over a Novel Sulfide Photocatalyst NaInS2 with a Layered Structure [J]. Chemistry. Letters,2002,31:882-883
    [60]Chen Z Y, Guo L J. Journal of xi'an jiaotong university 2007,41,1487-1490
    [61]Gur I, Fromer N A, Chen C P, et al. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals [J].Nano Letters,2007, 7:409-414
    [62]Cheng Z G, Wang S Z, Wang Q B, et al. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst [J].CrysEngComm, 2010,12:144-149
    [63]Li D P, Zheng Z, Lei Y, et al. Design and growth of dendritic Cu(2-x)Se and bunchy CuSe hierarchical crystalline aggregations [J]. CrystEngComm,2010,12,1856-1861
    [64]Lim W P, Low H Y, Chin W S. From Winter Snowflakes to Spring Blossoms:Manipulating the Growth of Copper Sulfide Dendrites [J].Crystal. Growth and Design,2007,7: 2429-2435
    [65]Gao Y H, Zheng Z, Tian Y P, et al. Growth and Transformation Mechanism of Ternary CuAgSe from Binary Ag2Se Dendrites [J]. European. Journal of Inorganic Chemistry, 2011,4198-4203
    [66]Whitesides G M, Boncheva M. Beyond molecules:Self-assembly of mesoscopic and macroscopic components [J].Proc. Natl. Acad. Sci. USA.2002,99,4769-4774

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700