固定化镰刀菌降解对氯苯酚废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类化合物(CPs)作为一类非常重要的工业有机化合物,被广泛应用于许多化工品如染料、颜料、防腐剂、除草剂、杀虫和杀菌剂等的生产中。利用固定化微生物技术处理氯酚废水是环境工程领域的研究热点之一。本文提出了利用镰刀菌处理对氯苯酚(4-CP)废水的方法,研究了镰刀菌降解对氯苯酚的特性和产酶特性。初步研制了一种新型固定化材料-CMC-膨润土凝胶材料,探讨了CMC-膨润土的物化特性,并采用流化床反应器,利用固定化镰刀菌处理对氯苯酚废水,取得了一些有一定价值的研究结果:
     1、菌体能以对氯苯酚作为唯一碳源生长,外加碳源可促进对氯苯酚的降解速率。在添加蔗糖浓度1g·L-1、pH6.0、温度30℃条件下,96小时内,100mg·L-1。对氯苯酚的降解率可达100%,游离HJ01菌的最大耐酚量为100mg·L-1。最佳氮源和磷源分别为NH4-N和H2P04-P。4-CP为唯一碳源和外加蔗糖下的降解动力学分别符合Haldane模型和一级动力学方程。
     2、镰刀菌HJ01能同时产生氯代邻苯二酚1,2加氧酶(CC120)和氯代邻苯二酚2,3加氧酶(CC230),两种酶皆为诱导酶。CC120的最适宜pH为6.8,温度为50℃,CC230在碱性条件下适应情况较好,且具有较强的耐热性,其最适宜pH和温度分别为8和60℃。两种酶反应动力学符合米氏方程。
     3、新型固定化材料CMC-膨润土材料的密度范围为1.00-1.07×103 kg·m-3,含水率90%左右,材料对甲基橙和对氯苯酚都表现出良好的传质性能。
     4、不同固定化方法对对氯苯酚降解率比较,CMC-膨润土包埋固定>CBC吸附固定>海藻酸钙固定>游离菌。装置间歇运行时,最佳曝气量为0.8L·min-1。连续进水时,反应器最大耐酚量为100mg·L-1。进水负荷为50mg·L-1,停留时间4h,曝气量0.8 L·min-1条件下,反应器连续运2d,出水稳定,降解率维持在65%左右,固定化材料也基本没有分散破裂的现象,这表明该种材料包埋微生物在废水处理中具有一定的实践意义。不同停留时间下,固定化镰刀菌对4-CP的降解基本符合零级反应动力学。
Chlorophenol are widely distributed due to their common presence in the effluents of many industrial processes, including dye, pigment, preservative,herbicide, insecticide, fungicide industries. The application of immobilization techniques to chlorophenols effluents has been the subject of numerous investigations by environmental workers. In this research, Fusarium HJ01 has been applied to degrade 4-chlorophenol(4-CP). The speciality of HJ01 with potential for 4-chlorophenol degradation and its biodegradation enzyme is investigated. A new carrier, carboxymethylcellulose(CMC)-bentonite gel is studied and partially characterized physically and chemically. The fluidized bed reactor filled with CMC-bentonite gel-immobilized Fusarium HJ01 is constructed and operated to 4-chlorophenol treatment.
     The main conclusions of the research are as follows:
     1. Fusarium sp.HJ01 could grow using 4-chlorophenol as only carbon resource and energy. Additional carbon can speed the 4-chlorophenol biodegradation.In the condition of 1g·L-1sucrose, pH6,30℃, 100mg·L-1 of 4-chlorophenol is entirely degraded within 96h. The maximum of initial 4-chlorophenol concentration which this strain can endure is 100mg·L-1, when above the value,they are inhibited. the best nitrogen resource and phosphorus resource are NH4-N,H2PO4-P,respectively. The kinetic of 4-CP degradation accord with Haldane model when 4-CP is the sole carbon source and first order equation when sugar is added.
     2. This strain can exhibit activity of both chlorocatechol 1,2-dioxygenase (CC12O) and chlorocatechol 2,3-dioxygenase(CC23O) in free cell extracts. The activities of CC12O and CC23O reach the highest value which were 0.609U.mg-1 and 0.125U.mg-1 respectively when use 4-chlorophenol as single carbon resource. When CC12O make function, activity is optimal at pH6.8,50℃, while CC23O has a higher activity in alkalescence condition and is more stable at elevated temperatures when the optimal condition is pH8,60℃. Kinetics of enzyme-catalyzed reactions of CC12O and CC23O accord with The Michaelis-Menten equation.
     3. The density of CMC-bentonite gel are 1.00-1.07×103 kg·m-3, water content of the material is about 90%. The material appears a good character of 4-CP and cymene orange mass transportation.
     4、In the condition of the same biomass and solid to liquid ratio, the comparison of 4-chlorophenol degradation rate are CMC-bentonite gel-immobilized by embedment> CBC gel-immobilized by absorption> Ca-alginate-immobilized> free cells. In batch-recirculation mode experiment, the optimal air flow rate is 0.8L.min-1. In continuous flow process, the degradation rate obviously fell when the concentration of 4-chlorophenol in influent is larger than 100 mg·L-1. The reactor operated stably in 2 days under these conditions:concentration of 4-chlorophenol in influent is 50 mg·L-1, retention time 4h, air flow rate is 0.8L.min-1,the degradation rate in effluent maintained at about 65%, and the CMC-bentonite gel is not broken up, it shows that this carrier had some practical meaning in wastewater treatment. The kinetic of 4-CP degradation in different retention time accords with zero order equation.
引文
[1]Derek C, G Muir, Philiph H. Are there other persistent organic pollutants?A challenge for environmental chemists[J]. Environmental Science & Technology,2006,40(2):7157-7166.
    [2]Piero MA, David KGordonAL, et al. Anaerobic and aerobic treatment of halogenated phenolic compounds[J]. Water Research,1999,33(3):681-692.
    [3]Hamid Z, Benoit G Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia[J]. Process Biochemistry,2006,41(2):1083-1089.
    [4]Vallecillo A, P AGarciar'Encina M Pena. Anaerobicb biodegradability and toxicity of chlorophenols[J]. Water Science & Technology,1999,40(8):161-168.
    [5]Gupta S S, Stadler M Noser, CA Schramm. Rapid Total Destruction of Chlorophenols by Activated Hydrogen Peroxide[J]. Science,2002,296(5566):326-328.
    [6]Monika W Kirsty S H, Boyd W, et al. Laboratory trials on the bioremediation of aged pentachlofophenol residues[J]. International Biodeterioration and Biodegradation,2005,55(2): 121-130.
    [7]Jijun Gao,Linghua Liu,Xiaom Liu.Levels and spatial distribution of chlorophenols-2,4-Dichlorophenol,2,4,6-trichlorophenol, and pentachlorophenol in surface water of China[J]. Chemosphere,2007,10(2):10-18.
    [8]周定等.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14(5):15-54.
    [9]Atlow S C, Bonadonna-Aparo L, Klibanov A M. Dephenolization of industrial waste waters catalyzed by polyphenol oxidase[J]. Biotechnol Bioengineering,1984,26(3):599-603.
    [10]G Aggelis, C Ehaliotis, F Nerud, etal. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olived ebittering process[J]. Applied Microbiology and Biotechnology,2002,59(3):353-360.
    [11]Gellman. Environmental effects of paper industry wastewater: an overview[J]. Water Science & Technology,1988,20(2):59-65.
    [12]Srivastava S K, Tyagi, Renu. Competitive adsorption of substituted phenols by activated carbon developed from the fertilizer wastes lurry[J]. Water Research,1995,29(2):483-488.
    [13]陈元彩,肖锦,詹怀宁.絮凝法处理纸浆漂自废水的研究[J].中国造纸学报,1999,14(3):68-73.
    [14]Lamar R T. The role of fungal lignin-degrading enzymes in xenobiotic degradation. Current Opinion Biotechnology,1992,3(3):261-266.
    [15]陈建海,李慧蓉,黄抱原毛平革菌对2,4-氯苯酚的生物降解[J].环境科学与技术,1999,87(4):26-28.
    [16]董爱明.氯酚类化合物生物降解的研究现状及其应用前景[J].净水技术,1996,55(1):18-22.
    [17]瞿福平,张晓健,吕听等.氯代芳香化合物的生物降解性研究进展[J].环境科学,1997,18(2):74-78.
    [18]Mileski G.J., Bumpus J. A., Jurek M.A etal. Biodegradation of pentachlo-rophenol by the white rot fungus Phanerochaetec hrysosporium[J]. Applied and Environmental Microbiology, 1988,54(12):2885-2889.
    [19]Van Hamme J D, Wong E T, Dettman H. Dibenzylsulfide metabolism by white rot fungi[J]. Applied and Environmental Microbiology,2003,69(2):1320-1324.
    [20]Kahraman S, Yesilada O. Decolorization and bioremediation of molasses wastewater by white-rot fungi in a semi-solid-state condition[J]. Folia Microbiologica,2003,48(4):525-530.
    [21]Detomaso A, Lopez A, Lovecchio G. Practical applications of the Fenton reaction to the removal of chlorinated aromatic pollutants:Oxidatived egradation of 2,4-dichlorophenol[J]. Environmental Science Pollution Research,2003,10(6):379-84.
    [22]Sabhi S, Kiwi J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts[J]. Water Research,2001,35(8):1994-2002.
    [23]Ullah M A, Bedford C T, EvansC S. Reactions of pentachlorophenol with laccase from Coriolus versicolor[J]. Applied and Environmental Microbiology,2000,53(2):230-234.
    [24]Valentovic M A, Rogers B A, MeadowsM K, etal. Characterization of methemoglobin formation induced by 3,5-dichloroaniline,4-amino-2,6-dichlorophenol and 3,5-dichlorophenylhydroxylamine[J]. Toxicology,1997,118(1):23-36.
    [25]Sung-Ryong Ha, Soydoa Vinitnantharat,Hiroaki Ozaki. Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols[J]. Biotechnology Letters,2000,22:1093-1096.
    [26]徐泉,黄星发,程炯佳等.电动力学及其联用技术降解污染土壤中持久性有机污染物的研究进展[J].环境科学,2006,27(11):2363-2368.
    [27]Saichek R E,Reddy KR. Electrokinetically enhanced remediation of hydrophobic organic compounds in soils:a review[J]. Critical Reviews in Environmental Science and technology, 2005,35(2):115-192.
    [28]Rodolfo Oliveira, Manuel F, Almeida, etal. Experimental Design of 2,4-Dichlorophenol Oxidation by Fenton'S Reaction[J]. Industrial & Engineering Chemistry research,2006, 45(2):1266-1276.
    [29]Yang G C, Long Y W. Removal and degradation of phenol in a saturated flow by in situ electronic remediation and Fentons like process[J]. Journal of Hazard Materials,1999,69(2): 259-271.
    [30]孙振世,杨晔,陈英旭.纳米TiO2薄膜光催化降解2,4-二氯酚的动力学研究[J].环境科学学报,2003,23(6):716-720.
    [31]Park J H, Zhao X, Voice TC. Comparison of biodegradation kinetic parameters for naphthalenein batch and sand column systems by Pseudomona sp utida[J], Environmental Progress,2001,20(2):93-102.
    [32]Ortega-CalvoJ J, PeschC, HarmsH. Biodegradation of sorbed 2,4-dinitrotoluenein a clay-rich, aggregated porous medium[J]. Environmental Science and Technology,1999,3(3): 3737-3742.
    [33]Pettigrew C A, Haigler B E, Spain J C. Simultaneous biodegradation of chlorobenzene and toluene by a P seudomonas strain[J]. Applied and Environmental Microbiology,1991,57(2): 157-162.
    [34]Tros M E, Schraa G, Zehnder AIB, etal. Transformation of low concentrations of 3-chlorobenzoate by Pseudomonas sp. Strain B13:Kinetics and residual concentrations[J]. Applied and Environmental Microbiology,1996,62(5):437-442.
    [35]Zhao J S, Singh A, Huang X D, etal. Biotransformation of hydroxylaminobenzene and aminophenol by Pseudomona sp. Utida 2NP8 cells grown in the presence of 3-nitrophenol[J]. Applied and Environmental Microbiology,2000,66(6):2336-2342.
    [36]Armenante PM, Pal N, Lewandowski G. Role of mycelium and extra cellular protein in the biodegradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology,1994,66(6):1711-1718.
    [37]李慧蓉,陈建海.黄孢原毛平革菌对葱的降解研究.化工环保2000,2:11-14
    [38]James RC, Cascare A, William W M, etal. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol[J]. Applied and Environmental Microbiology,1994,60(5):3536-3542.
    [39]Apajalahtill, Salkinoja-Salonen MS. Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus[J]. Journal of Bacteriology.1987,169(2):675-681.
    [40]Haggblom MM, NohynekLl, Salkinoja-SalonenM S. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains[J]. Applied and Environmental Microbiology,1988,54(12):3043-3052.
    [41]Boyd, S. A. etal. Applied and Environmental Microbiology,1983,46(1):50-57.
    [42]Saber D L, Crawford RL. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol[J]. Applied and Environmental Microbiology,1985,50(6):1512-1528.
    [43]Kirsch E J, EtzelJE. Microbial decomposition of pentachlorophenol. Journal of Water Pollution Control[J].1973,45(2):359-364.
    [44]Dinesh K., Shi J., Michael H.G. Degradation of 2,4,5-trichlorophenol by the lignis-degrading basidiomycete Phanerobhaete chysosporiom[J]. Applied and Environmental Microbiology, 1993,59(4):1779-1785.
    [45]Zhang X., Wiegel J. Sequential anaerobic degradation of 2,4-dichlorophenol in fresh water sediments[J]. Applied and Environmental Microbiology,1990,56:1119-1127.
    [46]Haggblom M.M., Young L.Y. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia[J]. Applied and Environmental Microbiology,1995,61(6): 1546-1550.
    [47]Bea-ven Chang, Kao-tzung Liao, Tzu-miang Pan etal. Biotransformations of chlorophenols in rivers ediments[J]. Chmistry and Ecology.1995,10(6):105-114.
    [48]Spain J.C, Zylstra G J., Blake C.K. Monohydroxylation of phenol and 2,5-dichlorophenol by toluenedioxygenase in Pseudomona sputida P1[J]. Applied and Environmental Microbiology, 1989,55:2648-2652.
    [49]施汉昌,王颖哲,韩英健等.补充碳源对厌氧生物处理2,4,6-三氯代酚的影响.环境科学,1999,20(4):11-15.
    [50]Gee J M, Peel J L. Metabolism of 2,3,4,6-tetrachlorophenol by Microorganisms from Broiler House Litter[J]. Trends of Gene Microbiology,1974,85(3):237-243.
    [51]Curtis R F, Land D G, Griffiths N M, etal.2,3,4,6-tetrachloroanjsole Association with Musty Taint in Chickens and Microbiological Formation[J]. Nature,1972,235(5):223-224.
    [52]Walker N. Metabolism of Chlorophenols by Rhodotorula Glutinis[J]. Soil Biology and Biochemistry,1973,5(1):525-530.
    [53]Deckwer W.D. etal. Microbial removal of ionic mercury in a three-phase fluidized bed reactor[J]. Environmental Science and Technology,2004,38(6):1858-1865.
    [54]Bumpus J A, Tien M, Wright D, etal. Oxidation of Persistent Environmental Pollutants by White-rot Fungus[J]. Science,1982,228(2):1434-1436.
    [55]邓耀杰,林鹿,詹怀宇.白腐菌对芳香化合物的降解及机制[J].环境科学与技术,1999,44(3):8-12.
    [56]Conner M A. Materials Recovery and Energy Production form Solid Wastes[J]. Advanced and Applied Microbial,1976,28(8):878-885.
    [57]Scott C D. Immobilized cells:A review of recent literature[J]. Enzyme and Microbial Tcchnology,1987,9(2):66-73.
    [58]韩静淑,赵振英,周礼恺等.生物细胞的固定化技术及其应用[M].北京:科学出版社,1993:57-58.
    [59]范L-S.气液固流态化工程.北京:中国石化出版社,1993:213-214.
    [60]Leon R P, Pinheir H M, Cabral J M. Whole-cell Biocatalysis In Organic Media[J]. Enzyme and Microbial Technology,1998,23(15):483-500.
    [61]Scott C D, Arepai S, Nikolae V P, etal. Growth mechanism for sigle wall carbon nanotubes in a laserablation process[J]. Materials Science and Procession,2001,72(5):573-580.
    [62]Nuncz M J, Lema J M. Enzymac pretreatmentto enhance oil extraction form fruits and oilseeds[J]. Enzyme and Microbial technology,1987,9(6):942-951.
    [63]Bimbaum S, Larsson P O, Nisbach K. In Process Engineering Aspects Of Immobilized Cells System[M]. Elmsford, New York:Perganlon Press,1986,45-47.
    [64]许苏癸.固定化细胞发酵酒精的菌株选育及其新工艺的研究[D].沈阳:中国科学院沈阳应用生态研究所,1998:44-56.
    [65]Cabfal J M S. Cell Partitioning in Aqueous Two-Phase Polymer Systems[J]. Annals of the New York Academy of Science,1994,434(9):483-486
    [66]Gainer J L, Kirwan D J. Immobilization of microorganism[J]. Annals of the New York Academy of Sciences,1984,434(5):465-467
    [67]W B, Bonham B, Gainer J L. Covalent coupling of microoraganjsms to a cellulosic suppon[J]. Biotechnology and Bjoengineering,1985,27(5):632-637.
    [68]Willians D, Munnecke D M. The production of ethanol by immobilized yeast cells[J]. Biotechnology and Bioengineering,1981,23(8):1813-1825.
    [69]Kinner N E, Ejghmy T T. Biological fixed-film systems[J]. Federal Water Pollution Control Act,1985,57(3):526-531
    [70]施翔,任谦树.脂吸附法处理对硝基苯酚废水的研究[J].南京工业职业技术学院学报,2004,4(2):34-35.
    [71]张秋香,华志明,赵培,等,活性炭吸附法处理对氨基苯酚生产的废水[J].华东理工大学学报,2004,3(3):245-249.
    [72]Sahasrabudhe A, Pande A, Modivinod. Dehalogenation of a mixlure of chloroaromatics by immobilized Pseudomonas sp. USI ex cells[J]. Applied Microbiology and Biotechnology,1991, 35(6):830-832.
    [73]Ferschl A, Loidl M, Ditzelmuller G, etal. Continuous degradation of 3-chloroaniline by calcium alginate-entrapped cells of Pseudomonas acidovorus CA 28:influence of addjtional sustrates[J]. Apllied Microbiology and Biotechnology,1991,35(4):544-550.
    [74]Wiesel I, Wubker S M, Rehm H J. Degradation of polycycljc aromatic hydrocafbons by an immobilized mixed bacterial culture[J]. Applied Microbiology and Biotechnology,1993, 39(1):110-116.
    [75]Wagner K, Hempel D C. Biodegradation by immobilized bacteria in an airlift-loop reactor-Influence of biofilm diffusion limitation[J]. Biotechnology and Bioengineering,1988, 31(6):559-566.
    [76]Lee S T, Rhee S K, Lee G M. Biodegradation of pyridine by freely and suspended immobilized Pimelobacter sp[J]. Applied Microbiology and Biotechnology,1994,41(6): 652-657.
    [77]HALDANE J B S. Enzymes[M]. Cambrige, MA:MIT Press,1965,84.
    [78]WolfeJ,Y anZ,Pope.Continuous degradation of 3-chloroaniline by calcium alginate-entrapped cells of Pseudomonas acidovorus CA 28:influence of addjtional sustrates[J].Biophysics and Chemical,1994,49(2):51
    [79]CannonW R,P etitB M,M ccammonJ A. Cabral J M. Whole-cell Biocatalysis In Organic Media[J]. Journal of Physic and Chemical.1994,98:6225
    [80]李济吾,李峰.降解酸性蓝B的镰刀菌(Fusarium sp.)HJ01的分离和降解特性研究[J].环境科学学报,2005,25(12):1641-1646.
    [81]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:460-462.
    [82]Liu T, Zhang CK, Xue Y etal. Purification and proterties of Catechol 2,3-Dioxygenase from Strain L68[J]. Journal of Food Science and Biotechnology.2002,21:53-57.
    [83]Bradford, M. M, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem.72 (1976) 248-254.
    [84]Dorn, E., and H J. Knackmuss, Chemical structure and biodegradability of halogenated compounds:substituent effects on 1,2-dioxygenation of catechol, Biochem. J.174 (1978)85-94.
    [85]Juliane Hollender, Wolfgang Dott, Johanna Hopp, Regulation of Chloro-and Methylphenol Degradation in Comamonas testosteroni JH5, Appl.Microbiol.Biotechnol.60 (1994) 2330-2338.
    [86]M.J. Frouws, K. Vellenga, H.G.J. De Wilt, Combined external and internal mass transfer effects in heterogeneous (enzyme) catalysis, Biotechnol. Bioeng.18 (2004) 53-62.
    [87]Zoppellaro G, Sakurai T, Huang H. A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center[J]. Biochem-Tokyo,129:649-653.
    [88]Trejo-Hernandez M.R, Lopez-Munguia A, Quintero Ramirez R. Residual compost of Agarious bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds[J].Process Biochemistry,2001,36:635.
    [89]Pu H T, Yang R Y K. Diffusion of sucrose and yohinobine in calcium alginate gel beads with or without entrapped plant cells[J]. Biotechnology and Bioengineering,1988,32(1):891-896.
    [90]张珍.固定化镰刀菌讲解苯酚废水的研究[D].浙江:浙江工商大学环境科学与工程学院,2007:56-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700