电化学-生物法结合的污泥稳定化新型技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理厂污泥成分复杂、含有大量的有毒有害物质,极易给环境带来二次污染。为降低环境污染风险,我国制定了《城镇污水处理厂污染物排放标准》(GB18918-2002),该标准明确规定:污泥需经稳定化处理后再进行进一步处置。然而,由于经济、技术等方面的原因,我国具有污泥稳定处理设施的污水处理厂很少,污泥大多未经稳定化处理便排放,然而,随着环保法规执行力度的加大,各污水处理厂污泥的稳定化处理势在必行。因此寻求一种处理成本低、运行效果好、操作简单、易于管理的污泥稳定化技术具有深远的意义。
     生物稳定法具有运行成本低、可靠性强等特点,是目前最常用的污泥稳定化方法,但传统的生物稳定法具有污泥处理时间长、设施占地大、处理效率低等缺点,从而给一些用地紧张的大中城市带来了建设成本过高、征地困难等问题。为解决这一难题,本课题在污泥好氧消化相关研究基础上,采用电化学方法作为剩余污泥好氧消化之前的预处理措施,以提高污泥处理效率、节约单位污泥稳定化处理设施的占地面积。本文通过研究电化学反应中不同工艺参数对于剩余污泥稳定化的影响,得出最佳的工艺参数,并通过药剂添加的方式进一步提高其处理效率。根据上述研究所得结果,将药剂添加、电化学反应等作为预处理,与污泥的好氧消化相结合,考察不同的预处理方式对剩余污泥好氧消化的影响,以达到污泥稳定化的标准。主要得出以下研究结果:
     (1)以网状RuO_2/Ti电极板为电极,进行剩余污泥的稳定化处理,最佳的工艺参数为:在污泥pH为11,极板间距为2.0cm,工作电压为15V,通过气流曝气搅拌(曝气量为0.78~0.80 m~3/h·m~3)的条件下处理30min后,剩余污泥(污泥浓度约18.35~20.50g/L)的MLVSS去除率可达10.5%左右,剩余污泥的SCOD值由原来的202 mg/L上升至2191 mg/L,TN、TP和NH_3-N等指标均有所上升;剩余污泥固体的热稳定性及污泥沉降性能和脱水性能有所降低。
     (2)尿素、NaCl及Fenton试剂的添加均能有效提高电化学处理对于剩余污泥的稳定化效果。当尿素投加量为1.5g/L时,污泥MLVSS去除率为13.4%;当NaCl投加量为0.025mol/L时,污泥MLVSS去除率为13.9%;在Fenton反应最佳参数污泥初始pH为3,n(H2O2/Fe2+)为10,H2O2投加量为1.00mL/L,反应60min条件下,MLVSS去除率为6.9%,电化学处理后为13.3%。
     (3)电化学预处理能够显著提高剩余污泥的好氧消化效率,实验表明,在电化学最佳工艺参数件下进行电化学预处理后进行好氧消化处理,消化14d后MLVSS的去除率达40.0%,达到稳定化指标,比空白对照组提前了6d。
     (4)分别将尿素、Fenton试剂与电化学反应结合作为预处理,与好氧消化相结合,对剩余物污泥的稳定化效果均具有非常显著的促进作用。在最佳工艺参数下进行预处理后进行好氧消化,其达到污泥稳定化标准的所用时间分别比空白对照组分别提前了8d和10d。故Fenton试剂与电化学相结合的预处理方式,对于污泥好氧消化的效果最佳。在好氧消化结束时,剩余污泥的SCOD值稳定在300mg/L左右,同时剩余污泥的沉降性能有所降低,其MLVSS去除率、OUR及TTC-脱氢酶活性等相关指标表明:经过上述预处理及污泥的好氧消化后,剩余污泥已到达稳定化标准。
The sludge produced by municipal sewage plants contains many different kinds of hazardous substances, which is responsible to the secondary environment pollution. In order to reduce the pollution risk, Pollutant Emission Standards of Municipal Sewage Treatment Plant (GB18918-2002) was developed. It rules that the sludge must be stabilized before further treatment. However, only few sewage plants apply sludge stabilization treatment because of the economical and technological difficulties. As a result, large mounts of sludge is discharged without treatment. It has become a growing trend that sewage plants apply sludge stabilization treatment, since the execution of the Environmental Protection Law is becoming stronger. So it is of great significance to develop a new sludge stabilization technique, which has a low cost, great effects, easy performance and management.
     Biological stabilization is the most common treatment method because of its low cost and reliability. However, its shortages, such as time-consuming, space-consuming and low efficiency, cause high construction expense and great difficulty of land acquisition in some land-lacking cities. In order to raise the efficiency and to save the construction land, this research applied electrochemical treatment method based on the relevant study on sludge aerobic digestion. By the way of value operation, optimal values of factors were obtained, and the treatment efficiency was improved by chemicals insertion. On the basis of the test results above, electrochemical pretreatment and sludge aerobic digestion were combined, and the effects the different pretreatment brought to the sludge aerobic digestion were analyzed. The results mainly show that:
     (1) The mixed liquor volatile suspended solid (MLVSS) removal rate of waste activated sludge (18.35~20.50g/L) reached to about 10.5% after 30min electrochemical treatment with RuO2/Ti polar plates when optimum operating conditions were as follows: pH was 11, polar plate spacing was 2.0cm, and voltage was 15V. SCOD of waste activated sludge was increased to 2191 mg/L from 202 mg/L. Simultaneously, the index of TN、TP and NH3-N increased. Thermal stabilization and dewatering performance were reduced.
     (2) The effect of electrochemical treatment could be greatly improved by adding urea, NaCl and Fenton agent. MLVSS removal efficiency was increased to 13.4% when the dosage of urea was 1.5g/L; MLVSS removal efficiency was increased to 13.9% when the dosage of NaCl was 0.025mol/L.
     (3) After electrochemical pretreatment under optimum operating conditions, the performance of aerobic digestion was greatly enhanced. The MLVSS removal rate reached to 40.0% after 14 days’aerobic digestion, while the MLVSS removal rate of WAS without any pretreatment just reached to 33.2%, and it reached to 40.2% after 20 days’aerobic digestion.
     (4) Electrochemical pretreatment by adding urea, Fenton agent will greatly improve the performance of aerobic digestion and sludge stabilization. When adding urea and Fenton before electrochemical pretreatment under optimum operating conditions, the aerobic digestion time could be shortened by 8 and 10 days respectively comparing with the one without pretreatment. It was found the performance of aerobic digestion was the best with Fenton reaction and electrochemical pretreatment. At the end of aerobic digestion, MLVSS removal rate, sludge OUR and TTC-DHA activity values showed that sludge stabilization had reached to the standard.
引文
[1]尹军,谭学军等.污水污泥处理处置与资源化利用.北京:化学工业出版社,2005.
    [2]梁鹏,黄霞,钱易等.污泥减量化技术的研究进展.环境污染治理技术与设备,2003, 4(1):44-52.
    [3]国家环境保护总局,国家质量监督检验检疫总局.《城镇污水处理厂污染物排放标准》(GB18918-2002).北京:中国建筑工业出版社, 2003:7-8.
    [4]高廷耀,顾国维.水污染控制工程下册(第二版).北京:高等教育出版社,1999.
    [5] A. R. Mels, et al. Sustainability criteria as a tool in the development of new sewage treatment methods. Water Science and Technology,1998,39(5):243-245.
    [6] P. J. Roeleveld, et al. Sustainability of municipal wastewater treatment. Water Science and Technology, 1994,35(10):221-223.
    [7] Kamitani Yoshinori,Aoi Chikai. Method for production of electrolyzed disinfection water,1999.
    [8]尾崎正明.污泥处理(7):污泥溶融.下水道协会志,1997,34(414):84-86.
    [9] S. Sakai,M. Hiraoka. Municipal solid waste incinerator residue recycling by thermal processes. Waste Management,2000,20:249-253.
    [10] Wang Kaijun. Integrated anaerobic and aerobic treatment of sewage. Wageningen Agricultrual University,1994,23(3):32-36.
    [11] Hawash S,IbiariN E. Kinetic study of thermophilic aerobic stabilization of sludge. Biomass and Bioenergy,1994,6(4):283-286.
    [12]吴崇丹,杨平,郭勇.污泥的后置生物处理技术的发展.环境与可持续发展,2006 ,12:114-116.
    [13] Jeff Guild,Mike Boyle, Larry Sasser, et al. Vertad TM Auto Thermophilic Aerobic Digestion: Demonstration scale test results. Canada: Jeffrey Joseph Guild, 2002.
    [14]尹军,刘韬,宋显东.污泥好氧消化处理的若干问题探讨.中国给水排水, 2001, 17(8):23-25.
    [15]曹申存等.剩余活性污泥好氧消化的研究.中国环境科学,1986,6(9):43-45.
    [16] Jianpen Zhou, Donald S Mavinic, Harlan G Kelly, Effects of temperatures and extra cellular proteins on dewaterability of thermophilically digested biosolids. Environmental Engieneer and Science, 2002,1(11):409-415.
    [17]何晶晶,邵立明,李国建等.热处理在活性污泥稳定技术中的应用.环境科学,1995,6(3):75.
    [18] Kevin L Staton,James E Alleman,Richard L Pressley. 2nd generation autothermal thermophilic aerobic digestion: conceptual issues and process advancements. WEF/AWWA /CWEA/Joint Residuals and Biosolids Management Conference Biosolids,2001[C]. USA: Building Public Support, 2001.
    [19]陈同斌,黄启飞,高定等.市污泥堆肥温度动态变化过程及层次效应.态学报,2002, 22(5):34-38.
    [20] Finstein M S,Miller F C,Strom P F. Waste treatment composting as a controlled system. Biotechnology,1986, 8(3):396-443.
    [21] Suler K J, Finstein M S. Effect of temperature, aeration and moisture on carbon dioxide formationin bench scale, continuous thermophilic composting of solid waste. Applied and Environmental Microbiology, 1977, 33(2):345-350.
    [22] Campbell C D,Darbyshire J F. The composting of tree bark in small reactors self-heating experiments. Biological Wastes,1990,31(2):145-161.
    [23] Campbell C D,Darbyshire J F. The composting of tree bark in small reactors adiabatic and fixed temperature experiments. Biological Wastes, 1990, 31(3):175-185.
    [24] Miller F C,Harper E R,Macauley B J. Composting based on moderately thermophilic and aerobic conditions for the production of commercial mushroom growing compost. Australian Journal of Experimental Agriculture,1990,30(2):287-296.
    [25] Mosher D,Anderson R K. Composting sewage sludge by high rate suction aeration techniques the process as conducted at Bang or, M E, and some guides of general applicability. Washington: United States of America Government Printing Office,1977.
    [26] Russell S J,Barry J. M, Howard JM. Characterization of Temperature and Oxygen Profiles in Windrow Processing System. Compost Science and Utilization,1998,4(6):15-28.
    [27]贾金平,申哲民,周红.电化学方法治理废水的研究与进展.上海环境科学,1999,18(1):29-32.
    [28] BrinaA.Donlon,Elias Razo-flores,Jim A. Field. Gazte Lettinga. Toxicity of N-substituted aronatics to acetoclastic methanogenic activity in granular sludge. Appl.Environmental Microbiology 1995,61(11):3889-3893.
    [29] Gattrell,D.W.kirk. Study of Electrode Passivity during Aqueous Phenol Electrolysis. Journal of the Electrochemical Society.1993,140(4):903-911.
    [30] D.Gnadini,E.Mhae,P.A.Michuad,et al.Oxidation of Carboxylic Acids at Boron doped Diamond Electrodes for Wastewater. Journal of Applied Electrochemistry.2000,30(12):1345-1350.
    [31] J.Iniesta,P.A.Michaud,G.Cerisola, et al. Electrochemical Oxidation of Phenol at Boron-doped Diamond Electrode.Electrochemica Acta.2001,46(23):3573-3578.
    [32]陈武,李凡修,梅平.废水处理的电化学方法研究进展.湖北化工,2001,1:1-12.
    [33]陈卫国,朱锡海.电催化产生H2O2和·OH机理及在有机物降解中的应用.水处理技术,1997,23(6):354-357.
    [34] Trasatti. Electrochemistry and Environment, the role of electro catalysis. IntJ. Hydrogen Energy.1995,20:835.
    [35]谢茂松,王学林,徐桂芬等.用电-多相催化反应处理二硝基苯酚工业废水的方法.中国专利,961155.45.0.
    [36] Lin,Sheng H.and Chang,Chih C. Treatment of landfill leachate by comined electro-Fenton oxidation and sequencing batchreactor method. Water Research,2000,34(17):4243-4240.
    [37] James D. Rodgers, et al. Electrochemical oxidation of chlorinated phenols. Environmental science and technology,1999,22(5):1453-1457.
    [38] Z.Shen, et al. Catalytically assisted electrochemical oxidation of dye acid red B. Water Environmental Research,2002,74(2):117-121.
    [39]李天成,曹宏斌,李鑫钢等.处理含重金属离子有机废水的研究.农业环境保护,2002,21(4):369-371.
    [40] Tsuzuki Koichi,et al. Effects of electrochemical treatment on microcystis extinction. Mizu KankyoGakkaishi,1999,22(3):228-231.
    [41] Ito Kimikazu. Method and device for production of disinfection water having stable residual chlorine content. P05756,2000.
    [42]李伟森.新型电解槽处理含氰镀铜废水.上海环境科学,1996,15(1):28-29.
    [43] V Smith De Sucre,A P Watkinson. Anodic Oxidation of Phenol for wastewater Treatment. The Canadian Journal of Chemical Engineering,1981,59(1):582-591.
    [44] H Sharifian,D W Kirk. Electrochemical Oxidation of Phenol. Journal of Electrochemistry Society, 1986,133(5):921-924.
    [45] D W Kirk,H Sharifian, F R Foulkes. Anodic oxidation of aniline for wastewater treatment. Applied Electrochemistry.1985,15(2):285-292.
    [46] Pulgarin G,Adler N,Peringer P. Electrochemical detoxification of a 14 benzoquinone solution in wastewater treatment. Water Research,1994,28(4):887-893.
    [47]李大鹏.电化学氧化处理印染废水的过程和特性.中国给水排水, 2002,18(5): 6-9.
    [48] J.Casado,et al. Electrochemical mineralization of aniline:the peroxi-coagullation and electro-fenton process. 10th Int.forum Electrolysis chem. Ind. Electrosynthesis: Lancaster, N.Y., 1996,192-198.
    [49] U. Leeffrang,et al. Combination of indirect electrochemistry with supercritical fluid extraction for hazardous waste and organic synthesis. Science and technology,1997,32(1-4):447-457.
    [50] Pekol Teresa Marie. Membrane-based preconcentration and electrocatalytic degradation of seleceted orgnic compounds. Dissertation Abstracts International,B,1997,57(8):5022.
    [51]贾金平等.光电化学处理水体中腐殖酸的研究.上海环境科学,1997,16(3):24-36.
    [52]宋卫锋,马前,李义久等.电化学催化降解苯胺的试验研究.环境污染与保护,2001, 23(4):157-159.
    [53] A. Urtiaga, A. Rueda, A. Anglada, et al. Integrated treatment of landfill leachates including electrooxidation at pilot plant scale, Journal of Hazardous Materials, 2009, 166:1530-1534.
    [54]刘勇,郝赟,张书廷.低强度超声波与酸、碱协同对污泥溶胞的影响.环境科学学报,2009,29(4):683-688.
    [55] J A Conesa,A Marcilla,D Prat s, et al. Kinetic Study of the Pyrolysis of Sewage Sludge. Waste Manage. Res,1997,15(3):293-305.
    [56]张云鹏,李海滨,赵增立等.利用热重分析不同废水污泥的热解和燃烧.环境科学与技术,2005,5(28):34-36.
    [57]高健磊,闫怡新,吴建平,万耀强.城市污水处理厂污泥脱水性能研究.环境科学与技术, 2008, 31(2): 108-131.
    [58]何文远,杨海真,顾国维.酸处理对活性污泥脱水性能的影响及其作用机理.环境污染与防治,2006,18(9):680-706.
    [59]张月锋,金一中,徐灏.电解阳极间接氧化法处理制药废水的研究.工业水处理,2002,22 (11):22-24.
    [60] Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazard Materials, 2003,98B: 33-50.
    [61] Yoon J,Lee Y,Kim S. Investigation of the reaction pathway of OH radicals produced by Fentonoxidation in the conditions of wastewater treatment. Water Science Technology,2001,44(5):15-21.
    [62] Ming-Chun Lu,Chien-Jung Lin,Chih-Hsiang, et al. Dewatering of activated sludge by Fenton’s reagent. Advances in Environmental Research,2003,7:667-670.
    [63] Tokumura M,Sekine M, Yoshinari M, et al. Photo2Fenton process for excess sludge disintegration. Process Biochemistry, 2007,42(4): 627-633. [64 ] Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazard Materials, 2003,98B:33-50.
    [65] Lu M C, Lin C J, Liao C H, et al. Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Science Technology,2001,44(10):327-332.
    [66] D. Rajkumar, K. Palanivelu. Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials,2004,B113:123-129.
    [67] S.Bernard, N. F. Gray1Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature. Water Research, 2000,34(3):725-734.
    [68]王勇,王桂勋.城市污水厂混合污泥好氧消化处理研究.中国环境管理干部学院学报,2005,15(1):61-63.
    [69]韩相奎,王海山,刘颖等.投加无机营养盐对污泥好氧消化的影响.环境科学学报,1992,12(2):138-143.
    [70]尹军,王雪峰,王建辉等. SBR工艺活性污泥比耗氧速率与控制参数的关系.环境污染与防治,2007,29(7):481-483.
    [71]周春生,尹军.剩余污泥好氧消化处理的效能及机理研究.中国给水排,1992,8(1):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700