新型无粘结剂成型活性炭的吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于成型活性炭在工业生产以及生活的使用中较传统活性炭有更多的优势,受到越来越多的关注。而无粘结剂添加的成型活性炭其吸附以及强度的综合性能更优于普通活性炭,是活性炭发展的重要方向。活性炭成型后,较大的表观尺寸会引起吸附行为的变化。成型活性炭的吸附性能与传统的小尺寸活性炭完全不同,不能沿用各类测试小尺寸活性炭的标准以及方法。为了使成型活性炭能够更有效地被利用,本论文对无粘结剂成型活性炭的吸附性能进行了整体研究。
     在液相吸附实验中,选取碘和亚甲基蓝作为吸附质,分别测试成型活性炭对于小分子和大分子物质的吸附能力。在使用颗粒活性炭、长方形薄片型和蜂窝型无粘结剂成型活性炭进行一系列吸附实验后发现:成型活性炭的吸附性能要用一条吸附量-时间曲线来表示,并且孔结构相同的薄片炭的最小表观尺寸越大,饱和吸附值越低,饱和吸附时间越长,但颗粒炭和蜂窝炭的吸附结果不受表观尺寸影响,且蜂窝炭的吸附时间接近1mm厚薄片炭的吸附时间。这是因为成型活性炭的大尺寸使得吸附质扩散到吸附剂内部这一步骤成为了吸附的关键。吸附温度和搅拌速度对吸附性能的影响也是一个证据。在实验中我们还发现,成型活性炭对亚甲基蓝的吸附效果远小于碘吸附值,这是因为成型活性炭的孔径分布严重阻碍了亚甲基蓝的内扩散。薄片炭含较多微孔,中孔以及大孔数量较少,大尺寸的亚甲基蓝分子的内扩散很难进行。
     气相吸附实验使用添加粘结剂的蜂窝炭和不添加粘结剂的蜂窝炭以及薄片炭静态吸附氯仿、甲苯、四氯化碳和苯的饱和蒸汽,吸附结果同样使用吸附值-时间曲线表示。成型活性炭的表观尺寸对于气相吸附的影响与液相吸附相同,但无粘结剂蜂窝炭表面的酸性含氧官能团较少,其选择吸附性比添加粘结剂的蜂窝炭弱,适应于吸附成分复杂的挥发性有机气体。采用浓氨水浸渍处理后,无粘结剂蜂窝活性炭的部分孔道尤其是微孔被打通,增大了比表面积和微孔比例,表面含氧官能团数量明显减少,炭样表面向非极性转化,对于非极性四氯化碳气体的吸附性能得到大幅度提高。
     本实验所用此类无粘结剂成型活性炭无论是在液相还是气相环境中,对于小分子的物质的吸附能力均较强,应适合用于这类污染物的处理。在制备成型活性炭时,不能一味追求高比表面积而提高微孔的比例,应该根据吸附质的分子的大小制备孔径分布具一定比例的成型活性炭,这样才能达到最优化吸附效果。使用蜂窝炭是提高吸附速率较为有效的一种方法。在成型活性炭的吸附性能测试中,应先将炭样的最小表观尺寸统一,再进行测试。
As the activated carbon monolith (ACM) had more advantages used in industrial production and daily life than the traditional activated carbon (AC), it had been paid closer attention. The overall performances of binder-less ACM, including adsorption and strength, outmatched the ordinary AC. So the study of binder-less ACM was an important development direction. The larger size of ACM would lead to changes in its adsorption property, which was completely different from the one of small size carbon. So the testing of ACM can not follow the various types of testing standards and methods of small size carbon. In order to make full use of ACM, we had to conduct a comprehensive study on the adsorption properties of ACM.
     The iodine and methylene blue were selected as adsorbates in the liquid phase adsorption experiments, used for testing the adsorption capacity to small molecules and macromelocules respectively. The granular activated carbon (GAC), the rectangular slice and honeycomb binder-less ACM were used as adsorbants. The results of series experiments showed that the adsorption property of ACM had to be expressed by an adsorption value-time curve, which was a better reflection. The adsorption properties of ACM to iodine and methylene blue were affected by the minimum size, and with the increase of size, much more time was needed to achieve equilibrium and saturation value is lower. However, the adsorption results of GAC and honeycomb binder-less ACM were not influenced and the equilibrium time of the honeycomb samples closed to the sample whose thickness was 1mm, because the mass transfer played an important role in adsorption process. The affections from adsorption temperature and stirring velocity were also evidences. We also had found that the adsorption value to methylene blue was much less than the iodine. The reason was that the pore size distribution was particularly prominent in ACM that the matching of aperture diameter and the target size.
     The binder-less ACM disc and honeycomb, as well as two kinds of activated carbon honeycomb monolith (ACHM) were used in gas adsorption to compare their adsorption capacity to saturated steam of chloroform, toluene, carbon tetrachloride (CTC) and benzene and the results were also showed by adsorption value-time curves. The experiments indicated that the influence from the apparent size in gas adsorption was the same as in liquid adsorption. The amount of acidic oxygen-containing functional groups on BACMs was less than that on normal ACMs. It meant that the selective adsorption of BACMs to VOCs was weaker. So BACMs were more suitable to absorb VOCs of complex ingredients than other ACMs. After ammonia impregnation, some pores especially the micropores in BACH had been opened. The proportion of SSA and micropore increased and the amount of oxygen-containing functional groups significantly reduced. As a result, the adsorption performance to non-polar VOCs had been improved a lot.
     The binder-less ACM used in this study had good removal efficiency on small molecules pollutants, whether in liquid or gas environment. During the preparation of ACM, we should not blindly pursue high specific surface area to increase the micropore proportion, but considering the pore size distribution as an important parameter. It must be the most optimal result. And the use of honeycomb ACM could improve the adsorption rate a lot. Samples of the same minimum size as produces should be used in the assessment of performance on ACM.
引文
[1] Hofmann U,Wilm D. Z E1ektrochem, 1936, 42: 504
    [2] Biscoe J, Warren B E. J Appl Phys, 1942, 13: 364
    [3] Riley H L. Quart Rev5, 1947,1: 59
    [4] BINUIAK S,PAKULA M,SZYMANSKI G S,SWIATKOWSKI A. Effect of activated carbon surface oxygen and/or nitrogen-containing groups on adsorption of copper(II) from aqueous solution[J]. Langmuir, 1999,15: 6117–6122.
    [5] M. Jordá-Beneyto, D. Lozano-Castelló, F. Suárez-García, et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures [J]. Carbon, 2007, 45(2):293-303
    [6] D. Lozano-Castelló, J. Alca?iz-Monge, M. A. de la Casa-Lillo, et al. Advances in the study of methane storage in porous carbonaceous materials[J]. Fuel, 2002, 81(14): 1777-1803
    [7] E. García-Bordejé, F. Kapteijn, J. A. Moulijn. Preparation and characterisation of carbon-coated monoliths for catalyst supports. Carbon, 2002, 40(7):1079-1088
    [8] K. M. de Lathouder, D. Lozano-Castelló, A. Linares-Solano, et al. Carbon–ceramic composites for enzyme immobilization[J]. Microporous and Mesoporous Materials, 2007,99(1-2): 216-223
    [9]陈立宝,谢晓华,王可,等.碳包覆硅/碳复合材料的制备与性能研究[J].电源技术,2007,31(1):34-37
    [10]王树刚,吴静怡,李香荣,等.吸附剂固化的发展与固化活性炭块的试验研究[J].太阳能学报,2004,25(3):283-286
    [11] M. Molina-Sabio, C. Almansa, F. Rodr′?guez-Reinoso. Phosphoric acid activated carbon discs for methane adsorption[J]. Carbon, 2003, 41(11): 2113-2119
    [12]甘琦,周昕,赵斌元,等.成型活性炭的制备研究进展[J].材料导报,2006,20(1):61-64
    [13] Ramos-Fernández J M,Martínez-Escandell M,Rodríguez-Reinoso F. Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials [J]. Carbon,2008,46(2):384-386.
    [14] Zhi-Guo Shi, Yu-Qi Feng, Li Xu, et al. Preparation of porous carbon–silica composite monoliths[J]. Carbon , 2003, 41(13): 2668-2670
    [15] T. Valdés-Solís, G. Marbán, A. B. Fuertes . Preparation of microporous carbon–ceramic cellular monoliths [J]. Microporous and Mesoporous Materials, 2001, 43(1):113-126
    [16]蒋煜,张跃,刘宝山.大同煤生产柱状活性炭的工艺探讨[J].洁净煤技术,2002,8(2):26-30
    [17]谷天野.大同煤生产柱状活性炭的工艺开发[J].中国煤炭,2004,30(1):47-49
    [18]武亮,郭树霞,白玉花.大同弱粘结性烟煤生产柱状活性炭的工艺分析[J].煤炭加工与综合利用,2001,6:19-21
    [19] Renán Arriagada, Germán Bello, Rafael García, et al. Carbon molecular sieves from hardwood carbon pellets:The influence of carbonization temperature in gas separation properties[J]. Microporous and Mesoporous Materials,2005, 81(1-3): 161-167
    [20] Liu, L., Liu, Z. , Yang, J. , et al. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith[J]. Carbon, 2007, 45(14): 2836-2842
    [21] A. P. Carvalho, A. S. Mestre, J. Pires, et al. Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours[J]. Microporous and Mesoporous Materials, 2006, 93(1-3): 226-231
    [22]李建刚,李开喜,凌立成,等.成型活性炭的制备及其甲烷吸附性能的研究[J].新型炭材料,2004,19(2):114-117
    [23] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, et al. Activated carbon monoliths for methane storage: influence of binder[J]. Carbon, 2002, 40(15): 2817-2825
    [24]袁爱军,查庆芳,李兆丰,等.天然气储存用多孔炭的研究Ⅰ.高比表面积多孔炭的制备[J].炭素技术,2003,6:2-5
    [25]袁爱军,查庆芳,李兆丰,等.天然气储存用多孔炭的研究Ⅱ.粉状多孔炭的成型及其二次活化[J].炭素技术,2004,23(1):2-5
    [26]袁爱军,查庆芳,李兆丰,等.天然气储存用多孔炭的研究Ⅲ.成型多孔炭储存天然气的研究[J].炭素技术,2004,23(2):2-4
    [27] Ruth Ubago-Pérez, Francisco Carrasco-Marín, David Fairén-Jiménez, et al. Granular and monolithic activated carbons from KOH-activation of olive stones[J]. Microporous and Mesoporous Materials, 2006, 92(1-3): 64-70
    [28] M. Yates, J. Blanco, M. A. Martin-Luengo, et al. Vapour adsorption capacity of controlled porosity honeycomb monoliths[J]. Microporous and Mesoporous Materials, 2003, 65(2-3): 219-231
    [29] M. Yates, J. Blanco, P. Avila, et al. Honeycomb monoliths of activated carbons for effluent gas purification[J]. Microporous and Mesoporous Materials, 2000, 37(1-2): 201-208
    [30] F. Rodríguez-Reinoso, M. Molina-Sabio, J. C. González. Preparation of activated carbon–sepiolite pellets[J]. Carbon, 2001, 39(5): 776-779
    [31] M. Molina-Sabio, J. C. González, F. Rodríguez-Reinoso. Adsorption of NH3 and H2S on activated carbon and activated carbon–sepiolite pellets [J]. Carbon, 2004, 42(2): 448-450
    [32] Danh Nguyen-Thanh, Teresa J. Bandosz. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon, 2005, 43(2): 359-67
    [33]王慎敏.胶黏剂合成、配方设计与配方实例[M].北京:化学工业出版社.2003,30-31
    [34]陈进富,刘晓君,冯英明.粘接剂对天然气型炭吸附剂的作用机理研究[J].天然气工业,2004,24(12):108-110
    [35]左宋林,高尚愚,周建斌.活性炭及基材种类对活性炭成型物性能的影响[J].南京林业大学学报,2000,24(2):55-59
    [36]高尚愚,安部郁夫,周建斌,等.胶接过程对活性炭孔隙结构影响的研究[J].林产化学与工业,2000,20(3):60-63
    [37]左宋林,高尚愚.胶粘剂及其用量对活性炭胶炭混合物液相吸附性能的影响[J].林产化工通讯,2005,39(3):5-8
    [38]无.无粘结剂炭或石墨制品的生产方法[J].碳素译丛,1994,2:2-5
    [39] Wenming Qiao, Yozo Korai, Isao Mochida, et al. Preparation of activated carbon form II. roles of activated carbons on the strength of activated carbon form using a thermoplastic polymer as binder[J]. New carbon materials, 2001, 16(2): 1-7
    [40] Wenming Qiao, Yozo Korai, Isao Mochida, et al. Preparation of an activated carbon artifact: oxidative modification of coconut shell-based carbon to improve the strength[J]. Carbon, 2002, 40(3): 351-358
    [41] Peter D. A. McCrae, Tiejun Zhang, David R. B. Walker. Method of making shaped activated carbon[P]. US Pat, 6696384. 2004
    [42] Wenming Qiao, Yozo Korai, Isao Mochida, et al. Preparation of an activated carbon artifact: factors influencing strength when using a thermoplastic polymer as binder[J]. Carbon, 2001, 39(15): 2355-2368
    [43]李建刚.成型活性炭的制备及其甲烷吸附性能的研究[D].中国科学院山西煤炭化学研究所.2004
    [44]宋燕,凌立成,李开喜,等.粘结剂添加量及后处理条件对成型活性炭甲烷吸附性能的影响[J].新型炭材料,2000,15(2):6-9
    [45]贺持缓,周声励,刘其城等.生石油焦制备高密度炭素材料的工艺研究[J].炭素,1999,(3):15—19.
    [46]肖勇,夏金童,李闯,商玲玲,吴旭升,谭海龙。两种不同原料制备无粘结剂高强度碳材料的研究。碳素。2006 128(4):3-7
    [47]钱慧娟。日本活性炭生产信息。林产化工通讯。2001 35(5):34
    [48] Matranga K R, Myers A I, Glandt E D. Storage of natural gas by adsorption on activated carbon[J]. Chemical Engineering Science, 1992, 47(7): 1569.
    [49] C. Almansa, M. Molina-Sabio, F. Rodr?′guez-Reinoso. Adsorption of methane into ZnCl2-activated carbon derived discs[J]. Microporous And Mesoporous Materials, 2004, 76: 185-191
    [50] A. Silvestre-Albero, J.M. Ramos-Ferna′ndez, M. Mart?′nez-Escandell, A. Sepu′lveda-Escribano, J. Silvestre-Albero *, F. Rodr?′guez-Reinoso. High saturation capacity of activated carbons prepared from mesophase pitch in the removal of volatile organic compounds, Carbon, 2010, 28(2): 548-556
    [51]李开喜.活性炭纤维对模拟烟气中SO2的脱除[D].太原:中国科学院山西煤化所,1999.
    [52]Boehm H P.Some Aspects of the Surface Chemistry of Carbon Black and Other Carbons[J].Carbon,1994,32: 759-769.
    [53]Kienle H,Bader E.活性炭材料及其工业应用[M].魏同成,译.北京:中国环境科学出版社,1990: 7-13.
    [54]Lahaye J Q.The Chemistry of Carbon Surfaces[J].Fuel,1998,77(6): 543-54.
    [55]谭小耀.改性活性炭低温催化脱除H2S的研究[J].石油化工,1995,24(10): 716-720.
    [56]刘军利,古可隆.高温处理对活性炭孔隙结构的影响[J].林产化学与工业,1999,19(3):37-40.
    [57]邱介山.低温等离子体技术在炭材料改性方面的应用[J].新型炭材料,2001,16(3):58-63.
    [58]Menende J A. Modification of the surface chemistry of active carbons by means of microwave-induced treatments[J].Carbon,1999,37(7): 1115-1121.
    [59]江霞,蒋文举,朱晓帆,等.微波改性活性炭的吸附性能[J].环境污染治理技术与设备,2004,5(l):43-46.
    [60]曹晓强.活性炭吸附-微波解吸-催化燃烧处理甲苯废气的研究,2008,5:65
    [61]Vinke P,Verbree M,VoskamP A F,et al. Modification of the surfaces of gas-activated carbon and chemically activated carbon with HNO3[J].Carbon,1994,32(4):675-686.
    [62]Parkand S J,Kin K D. Adsorption behaviors of CO2 and NH3 on chemicalsurface-treated activated carbons[J].J.Colloid and Interface Science,1999,221: 186-189.
    [63]王重庆,刘晓勤,姚虎卿.表面改性活性炭对CO2的吸附性能[J].南京化工大学学报,2002,22(2):63-65.
    [64]高尚愚,安部郁夫.表面改性活性炭材料对苯酚及苯磺酸吸附的研究[J].林产化学与工业,1994,24(3):29-34.
    [65]Kllnik J,Grzybek T. The influence of cobalt,nickl,manfanese and vanadium to active carbons on their efficiency in SO2 removal from stack gases[J].Fuel,1992,71(11):1303.
    [66]活性炭的微波低温等离子体处理及其表面性能[J].等离子体应用技术快报,1999,(5):16-17.
    [67]刘军利,古可隆.高温处理对活性炭孔隙结构的影响[J].林产化学与工业,1999,19(3):37-40.
    [68]邱介山.低温等离子体技术在炭材料改性方面的应用[J].新型炭材料,2001,16(3):58-63.
    [69]笠冈,日本化学会志。1987,990.
    [1]曾汉民,陆耘,朱世平,何志红,离子交换与吸附[J],1990,6(1):4
    [2]章燕豪,吸附作用,上海:上海科学技术文献出版社,1989
    [3]扬骏,黄止而,王定珠,高比表面活性炭的制备及表征,炭素技术1994,(6):5-9
    [4]廖乾初,蓝芬兰,扫描电镜原理及应用技术,北京:冶金土业出版社,1990
    [1] IUPAC, K.S.W. Sing, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.
    [2]木质颗粒活性炭试验方法,GB/T 7702.7-1997
    [3] Standard Test Method for Carbon Black-Iodine Adsorption Number, D 1510-06a
    [4] Test methods for activated carbon, JIS K1474: 2007
    [5] (日)北川浩,等[著].鹿政理[译].吸附的基础与设计[M].北京:化学工业出版社.1983.
    [6] Rice R G,Do D D.Applied mathematics and modeling for chemical en ners[M].New Y0d(:Viley,1995.
    [7]近藤精一,石川达雄,安部郁夫。李国希译,吸附科学,化学工业出版社,2006。
    [8] M.M. Dubinin, H.F. Stoeckli, Homogeneous and heterogeneous micropore structure in carbonaceous adsorption, J. Colloid Interf. Sci. 75 (1980) 34–42.
    [9]芮昱,伍海辉,朱斌,等.饮用水深度处理中活性炭的筛选试验研究[J].给水排水,2005,31(1):27—32.
    [10] Roop Chand Bansal, Meenakshi Goya1. Activated carbon adsorption [M].Boca Raton:Taylor and Francis/CRC Press,2005.
    [11]高尚愚,左宋林,周建斌,等.几种活性炭的常规性质及孔隙性质的研究[J].林产化学与工业,1999,19(1):18—22
    [12] Li Lei,Patricia A Quinlivan,Detlef R U Knappe.Efects of activated carbo n surface chemistry an d pore structure on the adsorption of organic contaminan ts from aqueous solution [J]. Carbon,2002,40:2085—2100.
    [13]王占生,刘文君.微污染水源饮用水处理[j].北京:中国建筑工业出版社,1999
    [14] Seiichi K,Tatsuo I,Kiuo A.Adsorption Science(吸附科学). Li Guoxi(李国希), trans. Beijing: Chemical Industry Press, 2006: 202
    [15] Chien-To Hsieh, Hsisheng Teng. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous lolutions. Carbon 38(2000)863-869
    [16] Matthew F. Tennant, David W. Mazyck *, The role of surface acidity and pore size distribution in the adsorption of 2-methylisoborneol via powdered activated carbon, carbon, 45 (2007) 858-864
    [17] K.S.W. Sing, The practical importance of porosity, Chem. Ind. 17 (1982)475–480.
    [18] Kwang-Hyun Park, M.S. Balathanigaimani, Wang-Geun Shim , Jae-Wook Lee, Hee Moon , Adsorption characteristics of phenol on novel corn grain-based activated carbons,microporous and mesoporous materials
    [1]近藤精一,石川达雄,安部郁夫.吸附科学.北京,化学工业出版社,2006:69-70.
    [2]严继民,张启元,高敬琮.吸附与凝聚[M].北京:科学出版社,1986. 113~137.
    [3]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552~556.
    [4] Sing K S W,Everett D H,Haul R A W,et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure Appl. Chem.,1985,57(4):603-619.
    [5] Kruk M,Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J].Chem. Mater.,2001,13(10):3169-3183.
    [6] Christian L. Mangun*, Kelly R. Benak, James Economy, Kenneth L. Foster. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39: 1809-1820.
    [7] Kruk M,Jaroniec M,Sayari A. Adsorption study of surface and structural properties of MCM-41 materials [J]. J. Phys. Chem. B,1997,101(1):588-589.
    [8]叶振华.华工吸附分离过程[M].北京:中国化工出版社,l992.
    [9]S1EGELL J H.Control loading emissions[J].Hydrocarbon Processing,1998,(5):61-66,70.
    [10]Chiang Y C,Pen-C C,Huang C P.Effects of Pore structure and temperature on VOC adsorption O11 activated carbon[J].Carbon,2001,39:523—534.
    [11]R R Bansode, J N Losso, W E Marshall, R M Rao, R J Portier. Adsorption of volatile organic compounds by pecan shell and almond shell-based granular activated carbon [J]. Bioresource Technology, 2003, 90: 175-184.
    [12] Sanae Sato, Kazuya Yoshihara, Koji Moriyama, Motoi Machida, Hideki Tatsumoto, Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution[J]. Applied Surface Science, 2007,253: 8554-8559。
    [13] Radovic L R ,Moreno2Castilla C , Rivera2Utrilla J . Carbon materials as adsorbents in aqueous solutions (Vol 27) [M]PPChemistry and physics of carbon (Vol 27) . New York :Marcel Dekker ,2000 : 227-405.
    [14] Kwon S ,Vidic R ,Borguet E. Enhancement of adsorption on graphite (HOPG) by modification of surface chemical functionality and morphology [J] . Carbon ,2002 ,40 (13) : 2351-2358.
    [15] Chien-To Hsieh, Hsisheng Teng. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous lolutions. Carbon 38(2000)863-869
    [16] Matthew F. Tennant, David W. Mazyck *, The role of surface acidity and pore size distribution in the adsorption of 2-methylisoborneol via powdered activated carbon, carbon, 45 (2007) 858-864
    [17] K.S.W. Sing, The practical importance of porosity, Chem. Ind. 17 (1982) 475–480.
    [18] Kwang-Hyun Park, M.S. Balathanigaimani, Wang-Geun Shim , Jae-Wook Lee, Hee Moon , Adsorption characteristics of phenol on novel corn grain-based activated carbons,microporous and mesoporous materials. [1]羌宁.城市空气质量管理与控制[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700