一类单层饱和多孔介质问题一维瞬态响应精确解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于Biot理论,考虑惯性、粘滞和机械耦合作用,系统研究了上表面作用任意竖向荷载、给定任意孔隙流体压力,下表面给定任意固体骨架位移和相对位移这一类非齐次边界条件下单层饱和可压缩和不可压缩多孔介质的一维瞬态响应问题,得到了考虑和忽略相对位移惯性项时的精确解。
     从一维Biot基本方程出发,对可压缩情况导出了以无量纲位移表示的矩阵形式的控制方程,并将边界条件齐次化。采用分离变量法求解不考虑粘滞耦合作用的特征值问题,得到一组关于空间坐标的正交函数基。利用变异系数法和基函数的正交性,得到一系列可以通过状态空间法求解的相互解耦的、关于时间的二阶常微分方程组及相应的初始条件,并采用状态空间法求解常微分方程组,得到位移分量,并进而求得总应力和孔隙流体压力。对固体颗粒和流体可压缩的情况,可直接根据物理方程确定总应力和孔隙流体压力。
     对固体颗粒和流体均不可压缩的情况,首先从连续方程出发得到固体骨架位移和相对位移必须满足的关系式。通过边界条件齐次化和分离变量法求得固体骨架的位移。对整体平衡方程关于空间坐标积分,并根据边界条件确定总应力,进而求得孔隙流体压力。
     当相对位移惯性项不计时,采用考虑相对位移惯性项对应的正交函数基,将控制方程化为一系列相互解耦的关于时间的常微分方程求解。算例验证了本文解法的正确性和适用性。
Based on the Biot Theoiy, the one-dimensional transient response of single-layer fluid-saturated porous media loaded arbitrarily at its top surface are studied thorouly, where the inertial, viscous and mechanical couplings are taken into account. Exact solutions are developed for both the Fully Dynamic Formulation and the Partly Dynamic Formulation.
     Firstly, dimensionless governing equations in matrix form for the compressible constituents are derived, with the boundary conditions homogenized. Then, the eigen-value problem for the corresponding nonviscous system is solved to get an orthogonal function base in spatial domain. Applying variation coeffient method and making use of the orthogonality of the base functions, a series of decoupled second-order ordinary differential equations together with its corresponding initial conditions are obtained in time domain. To get the solutions for displacement components, the second-order ordinary differential equations are solved by the state-space method.The total stress and fluid pressure can be determined directly by the constitutive equations.
     For the incompressible constituents, the relationship, which the displacement of solid particles and the relative displacement must satisfy, is derived from the continuity equation. By homogenizing the boundary conditions and using the method of separation of variables, the displacement of solid particles can be obtained. The total stress and fluid pressure can be determined by integrating the dynamic equilibrium equation of porous media and using the boundary conditions.
     For the Partly Dynamic Formulation, where the inertial term of relative displacement is not considered, the problem can be solved by making use of the same orthogonal function base as what is used in the Fully Dynamic Formulation. Finally, examples are studied to demonstrate the correctness and applicability of the presented solutions.
引文
[1]de Boer R. Theory of Porous Media [M]. Berlin:Springer-Verlag,2000.
    [2]Truesdell C, Toupin R. The Classical Field Theories [M]. Handbuch der Physik, Vol. Ⅲ/1, S. Fliigge, ed., Berlin:Springer-Verlag,1960:226-793.
    [3]Bedford A, Drumheller D S. Theories of Immiscible and Structured Mixtures [J]. Int. J. Eng. Sci.1983,21:863-960.
    [4]Green A E, Naghdi P M. A Theory of Mixtures [J]. Arch. Ration. Mech. Anal.1967,24: 243-263.
    [5]Green A E, Naghdi P M. A Note on Mixtures [J]. Int. J. Eng. Sci.1968,6:631-635.
    [6]Biot M A. General Theory of Three-Dimensional consolidation [J]. Journal of Applied Physics. 1941,12:155-164
    [7]Biot M A. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid [J]. Journal of Applied Physics.1955,26:182-185.
    [8]Biot M A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid Ⅰ. Low-Frequncy Range [J]. The Journal of the Acoustical Society of America.1956,28: 168-178.
    [9]Biot M A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid Ⅱ. Higher Frequncy Range [J]. The Journal of the Acoustical Society of America.1956,28:179-191.
    [10]Bowen R M. Incompressible Porous Media Models by Use of the Theory of Mixtures [J]. International Journal of Engineering Science,1980,18:1129-1148.
    [11]Bowen R M. Compressible Porous Media Models by Use of the Theory of Mixtures [J]. International Journal of Engineering Science.1982,20:697-735.
    [12]Ehlers W. Compressible, Incompressible and Hybrid Two-Phase Models in Porous Media Theories [J]. ASME.1993, AMD-Vol 158:25-38.
    [13]Ehlers, W.. Constitutive Equations for Granular Materials in Geomechanical Context [M]. Continuum Mechanics in Environmental Sciences and Geophysics (CISM Courses and Lecture, Notes No.337) K. Hutter, ed., Wien:Springer-Verlag,1993:313-402.
    [14]Schanz M, Diebels S. A Comparative Study of Biot's Theory and The Linear Theory of Porous Media for Wave Propagation Problems [J]. Acta Mechanica.2003,161:213-235.
    [15]Schanz M, Cheng AHD. Transient Wave Propagation in a One-Dimensional Poroelastic Column [J]. Acta Mechanica.2000,145:1-8.
    [16]Deresiewicz H, Skalak R. On Uniqueness in Dynamic Poroelasticity [J]. Bull. Seismol. Soc. Am.1963,53:783-788.
    [17]J.-F. Thimus, A. H.-D. Cheng, O. Coussy, E. Detournay, eds. Poromechanics-A Tribute to Maurice A. Biot [C], A.A. Balkema, Rotterdam.1998.
    [18]J.-L. Auriault, C. Geindreau, P. Royer, J. F. Bloch, C. Boutin, J. Lewandowska, eds. Poromechanics Ⅱ, Proceedings of the Second Biot Conference on Poromechanics [C]. Balkema, Lisse, Niederlande,2002.
    [19]Y. N. Abousleiman, A. H.-D. Cheng, F.-J. Ulm, eds. Poromechanics Ⅲ, Biot Centennial (1905-2005) Proceedings of the Third Biot Conference on Poromechanics [C], A.A. Balkema, Leiden.2005.
    [20]Burridge R., Vargas C A. The Fundamental Solution in Dynamic Poroelasticity [J]. Geophys. J. R. Astron. Soc.1979,58:61-90.
    [21]Norris AN. Radiation From a Point Source and Scattering Theory in a Fluid-Saturated Porous Solid[J]. J. Acoust. Soc. Am.1985,77:2012-2023.
    [22]Philippacopoulos A J. Spectral Green's Dyadic for Point Sources in Poroelastic Media [J]. J. Eng.Mech.1998,124:24-31.
    [23]Bonnet G. Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range [J]. J. Acoust. Soc. Am.1987,82:1758-1762.
    [24]Wiebe T, Antes H. A Time Domain Integral Formulation of Dynamic Poroelasticity [J]. Acta Mech.1991,90:125-137.
    [25]Chen J. Time Domain Fundamental Solution to Biot's Complete Equations of Dynamic Poroelasticity. Part Ⅰ:Two-Dimensional Solution [J]. Int. J. Solids Struct.1994,31:1447-1490.
    [26]Chen J. Time Domain Fundamental Solution to Biot's Complete Equations of Dynamic Poroelasticity. Part Ⅱ:Three-Dimensional Solution [J]. Int. J. Solids Struct.1994,31:169-202.
    [27]Jones J P. Pulse Propagation in a Poroelastic Solid [J]. J. Appl. Mech.1969,36(4):879-880.
    [28]Halpern M R et al. Dynamic impedance of a poroelastic subgrade [C]. Third ASCE-EMD Specialty Conf Univof Texas, Austin,1979.
    [29]Paul S. On the Displacements Produced in a Porous Elastic Half-Space by an Impulsive Line Load Non-Dissipative Case [J]. PureAppl. Geo-phys.1976,114:605-614.
    [30]Paul S. On the Disturbance Produced in a Semi-Infinite Poroelastic Medium by a Surface Load. PureAppl. Geophys.1976,114:615-627.
    [31]Gazetas Q Petrakis E. Offshore Caissons on Porous Saturated Soil [C]. Proceedings of International Conference on Recent Advances in Geo-technical Earthquake Engineering and Soil Dynamics, S. Parkash, ed., Rolla:Uni-versity of Missouri-Ro'lla,1981:381-386.
    [32]Halpern M R, Christiano P. Response of Poroelastic Halfspace to Steady-State Harmonic Surface Tractions [J]. Int. J. Numer. Analyt. Meth. Geomech.1986,10:609-632.
    [33]Halpern M R, Christiano P. Steady-State Harmonic Response of a Ridgid Plate Bearing on a Liquid-Saturated Poroelastic Halfspace [J], Earthquake Eng. Struct. Dyn.1986,14:439-454.
    [34]陈龙珠,陈胜立.饱和地基上刚性基础的竖向振动分析[J].岩土工程学报.1999,21(4):392-397.
    [35]Jin B, Liu H. Vertical Dynamic Response of a Disk on a Saturated Poroelastic Half-Space [J]. Soil Dyn. Earthquake Eng.1999,18:437-443.
    [36]Jin B, Liu H. Horizontal Vibrations of a Disk on a Poroelastic Half-Space [J]. Soil Dyn. Earthquake Eng.2000,19:269-275.
    [37]Jin B, Liu H. Rocking Vibrations of Rigid Disk on Saturated Poroelastic Medium [J]. Soil Dyn. Earthquake Eng.2000,19:469-472.
    [38]Lin C H., Lee V W, Trifunac M D. The Reflection of Plane Waves in a Poroelastic Half-Space Saturated With Inviscid Fluid [J]. Soil Dyn. Earthquake Eng.2005,25:205-223.
    [39]Philippacopoulos A J. Lamb's Problem for Fluid-Saturated Porous Media [J]. Bull. Seism, Soc. Am.1988,78(2):908-923.
    [40]Sharma M D. Comments on'Lamb's Problem for Fluid-Saturated Porous Media [J]. Bull. Seismol. Soc. Am.1992,82:2263-2273.
    [41]Philippacopoulos A J. Axisymmetric Vibrations of Disk Resting on Saturated Layered Half-Space [J]. J. Eng. Mech.1989,115:2301-2322.
    [42]王立忠.饱和、各向异性土体中的弹性波[博士学位论文][D].杭州:浙江大学,1995.
    [43]Zienkiewicz O C, Chang C T. Bettess P., Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils:Limits of Validity [J]. Geotechnique.1980,30:385-395.
    [44]王立忠,陈云敏,吴世明等.饱和弹性半空间在低频谐和集中力下的积分形式解[J].水利学报.1996,2:84-88.
    [45]杨峻,吴世明,陈云敏.弹性层饱和半空间体系稳态动力响应[J].土木工程学报.1997,30:39-47.
    [46]Jin B, Liu H. Dynamic Response of a Poroelastic Half Space to Tangential Surface Loading, Mechanics Research Communication [J].2001,28(1):63-70.
    [47]Zeng X, Rajapakse, R K N D, Vertical Vibrations of a Rigid Disk Embedded in a Poroelastic Medium [J]. Int. J. Numer. Analyt. Meth. Geomech.1999,23:2075-2095.
    [48]Senjuntichai T, Rajapakse R K N D. Dynamic Green's Functions of Homogeneous Poroelastic Half-Plane [J]. J. Eng. Mech.1994,120:2381-2404.
    [49]Kausel E. Discussion on'Dynamic Response of a Multi-Layered Poroelastic Medium'[J]. Earthquake Eng. Struct. Dyn.1996,25:1165-1167.
    [50]Rajapaks R K N D, Senjuntichai T. Dynamic Response of a Multi-Layered Poroelastic Medium [J]. Earthquake Eng. Struct. Dyn.1995,24:703-722.
    [51]Bougacha S, Tassoulas J T, Roesset J M. Analysis of Foundations on Fluid-Filled Poroelastic Stratum [J]. J. Eng. Mech.1993,119:1632-1648.
    [52]Bougacha S, Roesset J M, Tassoulas J T. Dynamic Stiffness of Foundations on Fluid-Filled Poroelastic Stratum [J]. J. Eng. Mech.1993,119:1649-1662.
    [53]Jin B, Liu H. Dynamic Response of a Poroelastic Half Space to Horizontal Buried Loading [J]. Int. J. Solids Struct.2001,38:8053-8064.
    [54]Philippacopoulos A J. Buried Point Source in a Poroelastic Half-Space [J]. J. Eng. Mech. 1997,123:860-869.
    [55]Degrande G, De Roeck G, Van Den Broeck P. Wave Propagation in Layered Dry, Saturated and Unsaturated Poroelastic Media [J].Int. J. Solids Struct.1998,35:4753-4778.
    [56]王建华,陆建飞,沈为平.半空间饱和土在内部简谐垂直力作用下的Green函数[J].水利学报.2001,3.
    [57]Garg SK, Adnan H, Nayfeh, Good AJ. Compressional Waves in Fluid-Saturated Elastic Porous Media [J]. Journal of Applied Physics 1974,45:1968-1974.
    [58]Cheng A H D, Badmus T, Beskos D. Integral Equations for Dynamic Poroelasticity in Frequency Domain With BEM Solution [J]. J. Eng. Mech.1991,117:1136-1157.
    [59]Simon BR, Zienkiewicz OC, Paul DK. An Analytical Solution for the Transient Response of Saturated Porous Elastic Solids [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1984,8:381-398.
    [60]de Boer, R. Ehlers, W, Liu, Z., One-Dimensional Transient Wave Propagation in Fluid-Saturated Incompressible Porous Media [J]. Arch. Appl. Mech.1993,63:59-72.
    [61]Garg S K. Wave Propagation Effects in a Fluid-Saturated Porous Solid [J]. J Geophys Res. 1971,76(32):7947-7962
    [62]Garg S K, Brownell D H, Pritchett J W, Herrmann R G. Shock-Wave Propagation in
    Fluid-Saturated Porous Media [J]. J A ppl Phys.1975,46(2):702-713.
    [63]崔杰,门福录,张志林.饱和土层中骨架变形等因素对波传播的影响[J].地震工程与工程振动.1998,18(2):8-17.
    [64]Chen B F, Hung T, Dynamic Pressure of Water and Sediment on Rigid Dam [J]. J. Engng. Mech. Div., ASCE.1993,119(7):1411-1433.
    [65]Ghaboussi J, Wilson E L. Variational Formulation of Dynamics of Fluid-Saturated Porous Elastic Solids [J]. J. Eng. Mech.1972,98:947-963.
    [66]Ghaboussi J, Wilson E L. Seismic Analysis of Earth Dam-Reservoir System [J] J. Soil Mech. Found. Div., ASCE.1973,99(10):849-862.
    [67]Ghaboussi J, Dikmen S U. Liquefaction Analysis of Horizontally Layered Sands [J]. J. Geotech. Engng. Div., ASCE.1978,104(3):341-356.
    [68]Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics With Special Reference to Earthquake Engineering [M]. Chichester:Wiley, 1999.
    [69]Zienkiewicz O C, Shiomi T. Dynamic Behaviour of Saturated Porous Media:The Generalized Biot Formulation and Its Numerical Solution [J]. Int. J. Numer. Anal. Methods Geomech.1984,8:71-96.
    [70]Zienkiewicz O C, Chan A H C, Pastor M, Paul D K, Shiomi T. Static and Dynamic Behaviour of Soils:A Rational Approach to Quantitative Solutions. I. Fully Saturated Problems [M]. Proc. R. Soc. London, Ser. A,1990,429:285-309.
    [71]Simon B R, Wu J S S, Zienkiewicz O C, Paul D K. Evaluation of u-w and u-p FEM for the Response of Saturated Porous Media Using One-Dimensional Models [J]. Int. J. Numer. Analyt. Meth. Geomech.1986,10:461-482.
    [72]Simon B R, Wu J S S, Zienkiewicz O C. Evaluation of Higher Order, Mixed and Hermitean Finite Element Procedures for Dynamic Analysis of Saturated Porous Media Using One-Dimensional Models [J]. Int. J. Numer. Analyt. Meth. Geomech.1986,10:483-499.
    [73]Prevost J H. Wave Propagation in Fluid-Saturated Porous Media:An Efficient Finite Element Procedure [J]. Soil Dyn. Earthquake Eng.1985,4:183-202.
    [74]Diebels S, Ehlers W. Dynamic Analysis of a Fully Saturated Porous Medium Accounting for Geometrical and Material Non-Linearities [J]. Int. J. Numer. Methods Eng.1996,39:81-97.
    [75]Chen Z, Steeb H, Diebels S. A Time-Discontinuous Galerkin Method for the Dynamical Analysis of Porous Media [J]. Int. J. Numer. Analyt. Meth. Geomech.2006,30:1113-1134.
    [76]Sandhu R S, Hong S J. Dynamics of Fluid-Saturated Soils-Variational Formulation [J]. Int J Numer Anal Methods Goemech.1987,11:241-255.
    [77]Sandhu R S, Shaw H L, Hong S J. A Three-Field Finite Element Procedure for Analysis of Elastic Wave Propagation through Fluid-Saturated Soils [J]. Soil Dynamics and Earth Eng. 1990,9 (2):58-65.
    [78]Degrande G, De Roeck G. An Absorbing Boundary Condition for Wave Propagation in Saturated Poroelastic Media-Part Ⅰ:Formulation and Efficiency Evaluation [J]. Soil Dyn. Earthquake Eng.1993,12:411-421.
    [79]Degrande G, De Roeck G. An Absorbing Boundary Condition for Wave Propagation in Saturated Poroelastic Media-Part Ⅱ:Finite Element Formulation [J]. Soil Dyn. Earthquake Eng.1993,12:423-432.
    [80]Akiyoshi T, Fuchida K, Fang H L. Absorbing Boundary Conditions for Dynamic Analysis of Fluid-Saturated Porous Media [J]. Soil Dynam. Earthq. Engng.1994,13:387-397.
    [81]Akiyoshi T, Sun X, Fuchida K. General Absorbing Boundary Conditions for Dynamic Analysis of Fluid-Saturated Porous Media [J]. Soil Dynam. Earthq. Engng.,1998:397-460.
    [82]邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法[J].地球物理学报.2000,43(2):264-278.
    [83]Beskos D E. Boundary Element Methods in Dynamic Analysis [J]. Appl. Mech. Rev.1987, 40:1-23.
    [84]Beskos D E. Boundary Element Methods in Dynamic Analysis:Part Ⅱ (1986-1996)[M]. Appl. Mech. Rev.1997,50(3):149-197.
    [85]Cheng A H D, Cheng D. Heritage and Early History of the Boundary Element Method [J]. Eng. Anal. Boundary Elem.2005,29:268-302.
    [86]Chopra M. Poro-Elasticity Using BEM [M]. Coupled Field Problems (Advances in Boundary Elements Vol.11), A. J. Kassab and M. H. Aliabadi, eds., WIT,2001:211-240.
    [87]Manolis G D, Beskos D E. Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity [J]. Acta Mech.1989,76:89-104.
    [88]Cheng A H D, Badmus T, Beskos D. Integral Equations for Dynamic Poroelasticity in Frequency Domain With BEM Solution [J]. J. Eng. Mech.1991,117:1136-1157.
    [89]Dominguez J. Boundary Element Approach for Dynamic Poroelastic Problems [J]. Int. J. Numer. Methods Eng.1992,35:307-324.
    [90]Chen J, Dargush G F. Boundary Element Method for Dynamic Poroelastic and Thermoelastic Analysis [J]. Int. J. Solids Struct.1995,32:2257-2278.
    [91]Khalili N, Valliappan S, Tabatabie Y J, Yazdchi M. One-Dimensional Infinite Element for Dynamic Problems in Saturated Porous Media [J]. Comu. Numer. Methods Engng.1997,13: 727-738.
    [92]Khalili N, Yazdchi M, Valliappan S. Wave Propagation Analysis of Two-Phase Saturated Porous Media Using Coupled Finite-Infinite Element Method [J]. Soil Dynam. Earthq. Engng. 1999,18:533-553.
    [93]Biot M A and Willis D G. The Elastic Coefficients of the Theory of Consolidation [J]. the Journal of Applied Mechanics for December.1957:594-601.
    [94]Zienkiewicz O C, Chang C T, Bettess P. Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils [M]. Geotechnique.1980,30(4):385-395.
    [95]Diebels S. Mikropolare Zweiphasenmodelle:Formulierung auf der Basis der Theorie Poro" ser Medien. Bericht Nr. II-4, Universita" t Stuttgart, Institut fu" r Mechanik, Lehrstuhl Ⅱ, 2000.
    [96]Schanz M. Poroelastodynamics:Linear Models, Analytical Solutions, and Numerical Methods [J]. Applied Mechanics Reviews.2009,62:1-15.
    [97]Hong S J, Sandhu R S, Wolfe W E. On Grag's Solution of Biot's Equations for Wave Propagation in a One-Dimensional Fluid-Saturated Elastic Porous Solid. International Journal for Numerical and Analytical Methods in Geomechanics.1988,12:627-637.
    [98]Gajo A, Mongiovi L. Analytical Solution for The Transient Response of Saturated Linear Elastic Porous Media[J]. International Journal for Numerical Methods in Engineering.1995, 19:399-413.
    [99]Gajo A. Influence of Viscous Coupling in Propagation of Elastic Waves in Saturated Soil [J]. Journal of Geotechnical Engineering.1995,121:636-644.
    [100]M. B. C. Ulker, M. S. Rahman. Response of Saturated and Nearly Saturated Porous Media: Different Formulations and Their Applicability [J]. Int. J. Numer. Anal. Meth. Geomech. 2009,33:633-664.
    [101]van der Grinten JGM, van Dongen MEH, van der Kogel Hans. Strain and Pore Pressure Propagation in a Water-Saturated Porous Medium [J]. Journal of Applied Physics.1987,62: 4682-4687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700