基于光异构化效应的带隙调制三维光子晶体制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于光子具有的速度快、可实现交叉通过和并行处理等优势,用光子代替电子来传输和处理信息已成为信息技术发展的梦想,光纤的广泛应用是朝这个方向迈出的重要一步。但是目前在信息的输入端和输出端还必须将信息转换为电信号并通过电子电路来处理,这个过程在很大程度上成为限制信息传输和处理速度的一个“瓶颈”。要解决这个问题就必须发展能够直接处理光信号的“集成光路”,将光源、光调制器、光波导等光功能器件集成到“芯片”尺寸级的器件中去,这是传统的光调制器所无法满足的。基于各种不同机理的带隙可调光子晶体的出现,使这个问题得到了解决。然而,目前所报道的有关带隙可调光子晶体的研究工作普遍存在调制范围过窄或者带隙的调制过程是不可逆等问题。因此,可对带隙进行大范围可逆性调制的光子晶体的制备以及性能研究就显得极其重要。
     本论文研究的目的就是通过设计并制备出新颖的含有偶氮苯基团的丙烯酸酯类单体及交联剂,并利用双光子三维微加工技术将其引入到聚合物网状结构中制备出具有光异构化效应的三维光子晶体,从而实现光子晶体带隙大范围可逆性调制,为发展带隙可调谐光子晶体及其器件的应用提供科学基础。
     本论文由七章组成,各章具体内容如下:
     第一章:本章详细的介绍了相关研究背景。概述了光子晶体的基本概念与制备方法,并详细介绍了双光子聚合微加工技术的特点及应用。详细分析了可调制光子晶体的调制机理,阐述了本论文所进行的研究工作的目的和意义。
     第二章:简单介绍了光致变色偶氮苯类化合物的光异构化机理,详细阐述了影响偶氮苯染料光异构化性能的因素,进而提出了本论文的分子设计。分别设计了含有氨基(Ia-Ic)和乙酰氨基(IIa-IIc)的两类偶氮化合物,同时设计了含有偶氮苯基团的丙烯酸酯(丙烯酰胺)类单体(AN-azo-AO、AN-azo-AO3、AN-azo-AO6)。
     第三章:研究了氨基偶氮苯类化合物(Ia-c)和乙酰氨基偶氮苯类化合物(IIa-c)掺杂在PMMA中的单光子异构化行为,评价了含有两类不同取代基的偶氮苯衍生物的光异构化特性以及在PMMA聚合物结构中形成的分子间氢键。相对于乙酰氨基偶氮苯类化合物IIa-c,氨基偶氮苯类化合物Ia-c达到可逆平衡所需要的时间较短,且整体反应速率常数比较大。含有长烷基链的偶氮苯类衍生物(Ic,IIc)的光异构化速率快于短链化合物(Ib,IIb)。而在平衡时,由于分子间氢键的作用,IIa-c系列化合物的顺式(cis)百分含量(49-60 %)明显分别高于Ia-c系列化合物(35 %)。
     第四章,本章主要研究了含偶氮苯官能团(AN-azo-AO和AN-azo-AO3)的光子晶体的带隙调制行为,主要包括一下三个方面的内容。一是含偶氮苯官能团的聚合物的光异构化行为。即便是在紧密交联的聚合物网状结构中,偶氮苯官能团也能够实现光异构化,并且取代基烷基链的不同对光异构化性能并没有明显的影响。二是不同偶氮苯化合物对光子晶体带隙的不同调制。利用双光子聚合技术,把偶氮苯单体化合物(AN-azo-AO和AN-azo-AO3)分别引入到聚合物网状结构中,制备了具有堆栈型结构的光子晶体(PCs-1和PCs-2),其带隙中心波长分别在2130 nm和2240 nm。在紫外灯的照射下,光子带隙的最大反射波长分别向短波长方向蓝移了37 nm和60 nm,通过对比实验的研究发现,此可逆性调制完全是由偶氮苯官能团的光异构化引起的。三是理论模拟了光子晶体PCs-1带隙在光照前后的变化。由制备得到光子晶体(含AN-azo-AO)的实际晶格参数,理论模拟了光子带隙在紫外光作用前后带隙位置的变化,与实验数据得到了很好的符合,且计算得到材料在紫外光照射后折射率下降了0.114,有望在可擦写的高密度存储方面有极高的应用价值
     第五章,设计了具有复合周期的三维光子晶体结构,利用双光子聚合技术成功制备得到了堆栈型复合周期三维光子晶体,其光子带隙中心位置分别出现在2151 nm和2462 nm。并利用偶氮苯官能团(AN-azo-AO)的光异构化特性,成功实现了双带隙的同步可逆性调制(36 nm)。
     第六章,对本研究所获得的研究结果进行了总结,并对其发展进行了展望。
     第七章:测试与合成部分。
Similar with the bandgap of electron in semiconductor, there is a bandgap of photon in periodic dielectric structures named as photonic crystals. Photonic crystals can forbid the propagation of light in a certain frequency range and fetch great opportunities for developing important and interesting scientific and technological applications. One can design and obtain the desired photonic bandgap by changing the various parameters of photonic crystals, such as refractive index, periodicity and space filling factor, then control the propagation of light with a required wavelength. Photonic bandgap can be tuning with external stimulations including electrical field, temperature, strain and light. The realization of reversible photonics bandgap tuning is aspiration and critically important in photonic applications, such as optical switch, optical modulation and so on. As one of the simplest methods for photonics bandgap tuning, light irradiation is much easier and more convenient method for photonics bandgap tuning comparing to other ways. Up to now, many works have been reported to realize photonic bandgap tuning. However, the range of the tunable bandgap is too small and the tunable is irreversible in most reports. Therefore, it is very important to fabricate and investigate the properties of photonic crystals with large range and reversible bandgap tenability.
     The purpose of this thesis was to demonstrate the reversible photonic bandgap tuning of three-dimensional photonic crystals performed simply by light irradiation. Based on this, we designed and synthesized several novel arcylate compounds with azobenzene group in the subsititute (AN-azo-AO、AN-azo-AO3、AN-azo-AO6 ). The azobenzenes were introduced into the polymer networks by using two-photon induced polymerization and three-domensional photonic crystals with reversible photonic bandgap were obtained.
     This thesis consists of seven parts. The main point of each part is listed as following:
     Chapter 1: The background and fabrication, analyses the modulate mechanism of photonic crystals are reviewed. After discussed the microfabrication technology of two-photon polymerization, we addressed the purpose, significance and contents of this thesis.
     Chapter 2: The mechanism and factor of the photoisomerization of azobenzene derivatives were introduced and the design of azobenzene derivatives in this work was illustrated. We designed two kinds of aminoazobenzene derivatives containing amino- (Ia-Ic) and acetylamino- (IIa-IIc), respectively. And designed novel acrylate compounds with azobenzene group in the substitute (AN-azo-AO、AN-azo-AO3、AN-azo-AO6 ).
     Chapter 3: The photoisomerization behaviors of two series of azobenzenes in the polymer matrix (PMMA) were investigated by UV-Vis spectra. The rate constants were calculated according to dynamics equations for reversible photoisomerization. Aminoazobenzenes Ia-c exhibited faster photoisomerization and had larger integration rate constants than the corresponding acetylamino derivatives IIa-c. Azobenzenes with a longer alkyl chain (Ic, IIc) showed a faster photoisomerization rate than those with shorter chains (Ib, IIb). At equilibrium, cis ratios of IIa-c (49-60%) were higher than those of Ia-c (35%) due to larger steric limitation and intermolecular hydrogen bonding interactions between acetylamino groups.
     Chapter 4: This chapter included three parts. Firstly, the photoisomerization of polymer with azobenzene in the polymer network was investigated. The photoisomerization of azobenzene units occurred even they were embedded in the tightly crosslinking polymer network. The properties of the azobenzene with different acryl chain in the substitute show no significant difference. Secondly, the photonic badgap modulation was investigated. By using two-photon polymerization, the azobenzene (AN-azo-AO, AN-azo-AO3) was introduced into the polymer network and obtained two log-pile structures (PCs-1, PCs-2), respectively. The center wavelengths of these photonic bandgaps were measured as 2130 nm and 2245 nm. They showed a blue shift of ~60 nm and ~37 nm after ultraviolet light irradiating, respectively. The reversible photonic band gap tuning resulted from the photoisomerization of azobenzene. Thirdly, by using a finite-difference time domain (FDTD) with a commercial software (Rsoft FullWave), we simulated the spectra change of the photonic bandgap (PCs-1) and calculate that the refractive index of the material have a decrease of 0.114 after ultraviolet irradiation. The simulation has a good fit with the experiments.
     Chapter 5: A three-dimensional photonic crystals composed of woodpile structures with different periodic parameters by a two-photon polymerization technique in a novel resin containing azobenzene (AN-azo-AO) was successfully designed and fabricated. The center wavelengths of these photonic bandgaps were measured as 2151 nm and 2462 nm, with a maximum reflectivity of 9.8 % and 8.5 %, respectively. A reversible tuning of this dual photonic bandgap was achieved as a shift of 36 nm by irradiating the structures with ultraviolet light. Such a three-dimensional photonic bandgap, showing multiple photonic bandgaps with reversible tunability, could be expected to play an important role in photonic applications, such as polymeric integrated photonic circuits and multiple frequency filters.
     Chapter 6: The conclusions were drawn in this chapter and the future researches were discussed.
     Chapter 7: Experimental part including measurement and synthesis.
引文
1. 黄昆, 韩汝琦, "固体物理学," 高等教育出版社 (1988).
    2. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters 58, 2059-2062 (1987).
    3. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices " Physical Review Letters 58, 2486-2489 (1987).
    4. E. M. Purcell, "Spontaneous emission probalities at radio frequencies," Physical Review Letters 69, 681-684 (1946).
    5. S. John, "Locatization of light," Physics Today 32, 33 (1991).
    6. J. M. Drake, and A. Z. Genack, "Observation of nonclassical optical diffusion," Physical Review Letters 63, 259-262 (1989).
    7. R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, "Micro-wave localization by two-dimensional random scattering," Nature 354, 53-55 (1991).
    8. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
    9. H.-B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Applied Physics Letters 74, 786-788 (1999).
    10. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    11. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    12. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G.von Freymann, "Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses," Advanced Materials 18, 265-+ (2006).
    13. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Advanced Materials 18, 457-+ (2006).
    14. K. M. Ho, C.T.Chan, and C.M.Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters 65, 3152-3155 (1990).
    15. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band st ructure : The face-centered-cubic case employing nonspherical atoms," Physical Review Letters 67, 2295-2298 (1991).
    16. S. Kirihara, Y. Miyamoto, K. Takenaga, M. W. Takeda, and K. Kajiyama, "Fabrication of electromagnetic crystals with a complete diamond structure by stereolithography," Solid State Commun. 121, 435-439 (2002).
    17. F. Jonsson, C. M. S. Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. H. Ye, and R. Zentel, "Artificially inscribed defects in opal photonic crystals," Microelectron. Eng. 78-79, 429-435 (2005).
    18. Q. F. Yan, Z. C. Zhou, and X. S. Zhao, "Introduction of three-dimensional extrinsic defects into colloidal photonic crystals," Chem. Mat. 17, 3069-3071 (2005).
    19. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, "Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths - art. no. 171107," Applied Physics Letters 88, 71107-71107 (2006).
    20. Q. F. Yan, X. S. Zhao, and Z. C. Zhou, "Fabrication of colloidal crystal heterostructures using a horizontal deposition method," J. Cryst. Growth 288, 205-208 (2006).
    21. S. G. Romanov, C. M. S. Torres, J. Ye, and R. Zentel, "Light propagation in triple-film hetero-opals," Progress in Solid State Chemistry 33, 279-286 (2005).
    22. M. Deubel, M. Wegener, S. Linden, G. v. Freymann, and S. John, "3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing," Optics Letters 31,805-807 (2006).
    23. J. B. Pendry, and A. MacKinnon, "Calculation of photon dispersion relations," Physical Review Letters 69, 2272-2275 (1992).
    24. E. ?zbay, E. Michel, G. Tuttle, and R. Biswas, "Micromachined millimeter-wave photonic band-gap crystals," Applied Physics Letters 64, 2059-2061 (1994).
    25. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "Athree-dimensional photonic crystal operating at infraredwavelengths," Nature 394 (1998).
    26. A. Imhof, and D. J. Pine, "Ordered macroporous materials by emulsion templating," Nature 389, 948-951 (1997).
    27. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, "Porous silica via colloidal crystallization," Nature 389, 447-448 (1997).
    28. J. E. G. J. Wijnhoven, and W. L. Vos, "Preparation of Photonic Crystals Made of Air Spheres in Titania " Science 281, 802-804 (1998).
    29. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, "Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths " Science 282, 897-901 (1998).
    30. V. Mizeikis, H.-B. Sun, A. Marcinkeviius, J. Nishii, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser micro-fabrication for tailoring photonic crystals in resins and silica," Journal of Photochemistry and Photobiology A: Chemistry 145, 41-47 (2001).
    31. S. Kawata, and H.-B. Sun, "Two-photon photopolymerization as a tool for making micro-devices," Applied Surface Science 208-209, 153-158 (2003).
    32. M. Goeppert-Mayer, "Uber Elementarakte mit zwei quantensprungen," Ann. Physik 9, 273-294 (1931).
    33. W. Kaiser, and C. G. B. Garrett, "Two-Photon Excitation in CaF2: Eu2+ " Physical Review Letters 7, 229-231 (1961).
    34. D. A. Parthenopoulos, and P. M. Rentzepis, "Three-Dimensional Optical Storage Memory," Science 245, 843-845 (1989).
    35. W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescencemicroscopy " Science 245, 73-76 (1990).
    36. A. Mukherjee, "Two-photon pumped upconverted lasing in dye doped polymer waveguides," Applied Physics Letters 62, 3423-3425 (1993).
    37. M. Watanabe, S. Juodkazis, H. B. Sun, S. Matsuo, and H. Misawa, "Two-photon readout of three-dimensional memory in silica," Applied Physics Letters 77, 13-15 (2000).
    38. K. Yamasaki, S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, and H. Misawa, "Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films," Applied Physics Letters 76, 1000-1002 (2000).
    39. S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, D. W. Tomlin, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Applied Physics a-Materials Science & Processing 69, 461-464 (1999).
    40. J. H. Strickler, and W. W. Webb, "Three-dimensional optical data storage in refractive media by two-photon point excitation," Optics Letters 16, 1780-1782 (1991).
    41. A. Diaspro, and M. Robello, "Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures," Journal of Photochemistry and Photobiology B-Biology 55, 1-8 (2000).
    42. H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, "Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes," Applied Physics Letters 79, 1411-1413 (2001).
    43. S. M. Kuebler, M. Rumi, T. Watanabe, K. Braun, B. H. Cumpston, A. A.Heikal, Lael L. Erskine, S. Thayumanavan, Stephen Barlow, S. R. Marder, and J. W. Perry, "Optimizing Two-Photon Initiators and Exposure Conditions for Three-Dimensional Lithographic Microfabrication," Journal of Photopolymer Science and Technology 14, 657-668 (2001).
    44. H. B. Sun, and S. Kawata, "Two-photon laser precision microfabrication and its applications to micro-nano devices and systems," Journal of Lightwave Technology21, 624-633 (2003).
    45. S. H. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," Journal of Photochemistry and Photobiology A-Chemistry 181, 1-11 (2006).
    46. K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, "Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications," Polymers for Advanced Technologies 17, 72-82 (2006).
    47. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angewandte Chemie International Edition 46, 6238-6258 (2007).
    48. D. A. Parthenopoulos, and P. M. Rentxepis, "Three-Dimensional Optical Storage Memory," Science 245, 843-845 (1989).
    49. 龚莹, 蒋中伟, 周拥军, "飞秒激光双光子微细加工技术及研究现状," 光学技术 30, 637-640 (2004).
    50. Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
    51. E.-S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, "Two-photon lithography for microelectronic application," Proceedings of SPIE 1674, 776-782 (1992).
    52. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Optics Letters 24, 646-648 (1999).
    53. E. Fertein, C. Przygodzki, H. Delbarre, A. Hidayat, M. Douay, and P. Niay, "Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 cm," Applied Optics 40, 3506-3508 (2001).
    54. F. Korte, S. Adams, A. Egbert, C. Fallnich, and A. Ostendorf, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Optics Express 7, 41-49 (2000).
    55. S. Maruo, K. Ikuta, and H. Korogi, "Submicron manipulation tools driven by light in a liquid," Applied Physics Letters 82, 133-135 (2003).
    56. 潘传鹏, 周. 明, 刘立鹏, 蔡. 兰, 刘会霞, 任乃飞, 高传玉, 王亚伟, "双光子微加工技术与应用研究," 纳米技术与精密工程(Nanotechnology and Precision Engineering) 2, 278-283 (2004).
    57. Kurt Busch, and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Physical Review Letters 83, 967-970 (1999).
    58. Katsumi Yoshino, Yuki Shimoda, Yoshiaki Kawagishi, Keizo Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Applied Physics Letters 75, 932-934 (1999).
    59. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Go¨sele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Physical Review B 61, R2389-R2392 (2000).
    60. Chul-Sik Kee, H. Lim, Young-Ki Ha, Jae-Eun Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Physical Review B 64, 085114-008120 (2001).
    61. Q.-B. Meng, C.-H. Fu, S. Hayami, Z.-Z. Gu, O. Sato, and A. Fujishima, "Effects of external electric field upon the photonic band structure in synthetic opal infiltrated with liquid crystal," Journal of Applied Physics 89, 5794-5796 (2001).
    62. Daeseung Kang, Joseph E. Maclennan, Noel A. Clark, Anvar A. Zakhidov, and R. H. Baughman, "Electro-optic Behavior of Liquid-Crystal-Filled Silica Opal Photonic Crystals: Effect of Liquid-Crystal Alignment," physical Review Letters 86, 4052-4055 (2001).
    63. Gajendra K. Johri, Akhilesh Tiwari, Manoj Johri, and K. Yoshino., "Theoretical Study of Temperature Tuning and Anisotropy of Liquid Crystal Infiltrated Synthetic Opal as Photonic Crystal " Jpn. J. Appl. Phys. 40, 4565-4569 (2001).
    64. H. J. Coles, and M. N. Pivnenko, "Liquid crystal 'blue phases' with a wide temperature range," Nature 436, 997-1000 (2005).
    65. E. P. Kosmidou, and E. E. Kriezis, "Studies of photonic crystal structures infiltrated with liquid crystals," Proeeedings of SPIE 6182, 618213-618224 (2006).
    66. Z. Z. Gu, S. Hayami, Q. B. Meng, T. Iyoda, A. Fujishima, and O. Sato, "Controlof photonic band structure by molecular aggregates," Journal of the American Chemical Society 122, 10730-10731 (2000).
    67. K. Yoshino, S. Satoh, Y. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki, "Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal," Synthetic Metals 121, 1459-1452 (2001).
    68. S. A. Asher, J. Holtz, J. Weissman, and G. S. Pan, "Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing," Mrs Bulletin 23, 44-50 (1998).
    69. Z. B. Hu, X. H. Lu, and J. Gao, "Hydrogel opals," Advanced Materials 13, 1708-1712 (2001).
    70. J. D. Debord, S. Eustis, S. B. Debord, M. T. Lofye, and L. A. Lyon, "Color-tunable colloidal crystals from soft hydrogel nanoparticles," Advanced Materials 14, 658-662 (2002).
    71. Y. Takeoka, and M. Watanabe, "Controlled multistructural color of a gel membrane," Langmuir 19, 9554-9557 (2003).
    72. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, "Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region," Langmuir 19, 977-980 (2003).
    73. H. Fudouzi, and Y. N. Xia, "Photonic papers and inks: Color writing with colorless materials," Advanced Materials 15, 892-+ (2003).
    74. H. Fudouzi, and Y. N. Xia, "Colloidal crystals with tunable colors and their use as photonic papers," Langmuir 19, 9653-9660 (2003).
    75. H. Fudouzi, and T. Sawada, "Photonic rubber sheets with tunable color by elastic deformation," Langmuir 22, 1365-1368 (2006).
    76. A. C. Arsenault, T. J. Clark, G. Von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, "From colour fingerprinting to the control of photoluminescence in elastic photonic crystals," Nat. Mater. 5, 179-184 (2006).
    77. J. Li, Y. Wu, J. Fu, Y. Cong, J. Peng, and Y. C. Han, "Reversibly strain-tunableelastomeric photonic crystals," Chem. Phys. Lett. 390, 285-289 (2004).
    78. M. Z. Li, J. X. Wang, L. Feng, B. B. Wang, X. R. Jia, L. Jiang, Y. L. Song, and D. B. Zhu, "Fabrication of tunable colloid crystals from amine-terminated polyamidoamine dendrimers," Colloid Surf. A-Physicochem. Eng. Asp. 290, 233-238 (2006).
    79. G. Cho, M. Jung, H. Yang, B. Lee, and J. H. Song, "Photonic crystals with tunable optical stop band through monodispersed silica-polypyrrole core-shell spheres," Mater. Lett. 61, 1086-1090 (2007).
    80. Young-Ki H, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Applied Physics Letters 79, 15-17 (2001).
    81. Liang Feng, Xiao-Ping Liu, Yue-Feng Tang, Yan-Feng Chen, Jian Zi, Shi-Ning Zhu, and Y.-Y. Zhu, "Tunable negative refraction in a two-dimensional active magneto-optical photonic crystal," Physical Review B 71, 195106-195111 (2005).
    1. J. A. Delaire, and K. Nakatani, "Linear and nonlinear optical properties of photochromic molecules and materials," Chem. Rev. 100, 1817-1845 (2000).
    2. S. Kawata, and Y. Kawata, "Three-Dimensional Optical Data Storage Using Photochromic Materials," Chem. Rev. 100, 1777-1788 (2000).
    3. A. Natansohn, and P. Rochon, "Photoinduced Motions in Azo-Containing Polymers," Chem. Rev. 102, 4139-4175 (2002).
    4. M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, "Light-Driven Side-On Nematic Elastomer Actuators " Advanced Materials 15, 569-572 (2003).
    5. Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light," Nature 425, 145-145 (2003).
    6. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, And M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
    7. M. Eich, and J. Wendorff, "Laser-induced gratings and spectroscopy in monodomains of liquid crystalline polymers," Journal of the Optical Society of America B 7, 1428-1430 (1990).
    8. X. Meng, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage: 13. Photoorientation of rigid side groups containing two azo bonds," Polymer 38, 2677-2682 (1997).
    9. N. Nishimura, T. Sueyoshi, H. Yamanaka, E. Imai, S. Yamamoto, and S. Hasegawa, " Thermal Cis-to-Trans Isomerization of Substituted Azobenzenes II. Substituent and Solvent Effects " Bulletin of the Chemical Society of Japan 49, 1381-1387 (1976).
    10. N. Kuramoto, and T. Kitao, J. Soc. Dyers Colour. 96, 529- 534 (1980).
    11. T. Omura, Y. Kayane, and Y. Tezuka, "Design of chlorine-fast reactive dyes : Part 1: The role of sulphonate groups and optimization of their positions in an arylazonaphthol system," Dyes and Pigments 20, 227-246 (1992).
    12. M. S. Ho, A. Natansohn, and P. Rochon, "Azo Polymers for Reversible OpticalStorage. 7. The Effect of the Size of the Photochromic Groups," Macromolecules 28, 6124-6127 (1995).
    13. P. D. Wildes, J. G. Pacifici, J. Gether Irick, and D. G. Whitten, "Solvent and Substituent Effects on the Thermal Isomerization of Substituted Azobenzenes. A Flash Spectroscopic Study," Journal of the American Chemical Society 93, 2004-2008 (1971).
    14. J. Pajak, M. Rospenk, and L. Sobczyk, "Liquid crystalline properties and IR spectra of 2'-hydroxy-4'-octyloxyazobenzenes," Spectrochimica Acta Part A 59, 2131-2140 (2003).
    15. K. G. Yager, and C. J. Barrett, "Novel photo-switching using azobenzene functional materials," Journal of Photochemistry and Photobiology A: Chemistry 182, 250-261 (2006).
    1. 樊美公等, "光化学基本原理与光子学材料科学," 科学出版社 (2001).
    2. A. Natansohn, J. P. Rochon, J. Gosselin, and S. Xie, "Azo Polymers for Reversible Optical Storage. 1. Poly[4'- [ [2- (acr yloyloxy)ethyll ethylaminol-4-ni troazo benzene]," Macromolecules 25, 2268-2273 (1992).
    3. S. Kawata, and Y. Kawata, "Three-Dimensional Optical Data Storage Using Photochromic Materials," Chem. Rev. 100, 1777-1788 (2000).
    4. D. A. Parthenopoulos, and P. M. Rentxepis, "Three-Dimensional Optical Storage Memory," Science 245, 843-845 (1989).
    5. J. A. Delaire, and K. Nakatani, "Linear and nonlinear optical properties of photochromic molecules and materials," Chemical Reviews 100, 1817-1845 (2000).
    6. K. G. Yager, and C. J. Barrett, "Novel photo-switching using azobenzene functional materials," Journal of Photochemistry and Photobiology A: Chemistry 182, 250-261 (2006).
    7. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Applied Physics Letters 66, 1166-1168 (1995).
    8. J. P. Chen, F. o. L. Labarthet, A. Natansohn, and P. Rochon, "Highly Stable Optically Induced Birefringence and Holographic Surface Gratings on a New Azocarbazole-Based Polyimide," Macromolecules 32 (1999).
    9. M. Bǔchel, Z. Sekkat, S. Paul, B. Weichart, H. Menzel, and W. Knoll, "Langmuir-Blodgett-Kuhn Multilayers of Polyglutamates with Azobenzene Moieties: Investigations of Photoinduced Changes in the Optical Properties and Structure of the Films," Langmuir 11, 4460-4466 (1995).
    10. H. C. Kang, B. M. Lee, J. Yoon, and M. Yoon, "Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group," J. Colloid Interface Sci. 231, 255-264 (2000).
    11. Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light,"Nature 425, 145-145 (2003).
    12. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, And M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nature Materials 3, 307-310 (2004).
    13. M. S. Ho, A. Natansohn, and P. Rochon, "Azo Polymers for Reversible Optical Storage. 7. The Effect of the Size of the Photochromic Groups," Macromolecules 28, 6124-6127 (1995).
    14. S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, "Two-Photon-Induced Photoisomerization of an Azo Dye," Chemistry of Materials 17, 2059-2062 (2005).
    15. X. Meng, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage: 13. Photoorientation of rigid side groups containing two azo bonds," Polymer 38, 2677-2682 (1997).
    16. A. Natansohn, and P. Rochon, "Photoinduced Motions in Azo-Containing Polymers," Chemical Reviews 102, 4139-4175 (2002).
    17. J. Pajak, M. Rospenk, and L. Sobczyk, "Liquid crystalline properties and IR spectra of 2'-hydroxy-4'-octyloxyazobenzenes," Spectrochimica Acta Part A 59, 2131-2140 (2003).
    18. A. Wedel, P. Strohriegl, and R. Danz, "In-situ absorption studies of nonlinear optically active side-chain polymers during corona poling," Acta Polymerica 44, 302-307 (1993).
    19. N. Tsutsumi, T. Ono, and T. Kiyotsukuri, "Internal Electric Field and Second Harmonic Generation in the Blends of Vinylidene Fluoride-Trifluoroethylene Copolymer and Poly(methy1 methacrylate) with a Pendant Nonlinear Optical Dye," Macromolecules 26, 5447-5456 (1993).
    20. W.-Q. Chen, Q. Ya, and X.-M. Duan, "N-(4-Hydroxyphenyl)acrylamide," Acta Crystallographica Section E E62, ol45-50 (2006).
    1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters 58, 2059-2062 (1987).
    2. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices " Physical Review Letters 58, 2486-2489 (1987).
    3. T. F. Krauss, and R. M. D. L. Rue, "Photonic crystals in the optical regime - past, present and future " Progress in Quantum Electronics 23, 51-96 (1999).
    4. A. Watson, "Optical Circuits Turn a Corner," Science 282, 207-207 (1998).
    5. G. v. Freymann, T. Y. M. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photonics and Nanostructures – Fundamentals and Applications 2, 191-198 (2004).
    6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters 65, 3152-3155 (1990).
    7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "Athree-dimensional photonic crystal operating at infraredwavelengths," Nature 394, 251-253 (1998).
    8. H.-B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Applied Physics Letters 74, 786-788 (1999).
    9. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    10. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    11. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses," Advanced Materials 18, 265-+ (2006).
    12. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Applied Physics Letters 83, 2091-2093 (2003).
    13. M. Straub, and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Optics Letters 27, 1824-1826 (2002).
    14. Vygantas Mizeikis, Kock Khuen Seet, Saulius Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Optics Letters 29, 2061-2063 (2004).
    15. Rui Guo, Zhiyuan Li, Zhongwei Jiang, Dajun Yuan, W. Huang,, and A. Xia, "Log-pile photonic crystal fabricated by two-photon photopolymerization," Journal of Optics: Pure and Applied Optics 7, 396-399 (2005).
    16. M. Buchel, Z. Sekkat, S. Paul, B. Weichart, H. Menzel, and W. Knoll, "Langmuir-Blodgett-Kuhn Multilayers of Polyglutamates with Azobenzene Moieties: Investigations of Photoinduced Changes in the Optical Properties and Structure of the Films," Langmuir 11, 4460-4466 (1995).
    17. V. Cimrova, D. Neher, R. Hildebrandt, M. Hegelich, A. v. d. Lieth, and G. Marowsky, "Comparison of the birefringence in an azobenzene-side-chain copolymer induced by pulsed and continuous-wave irradiation," Applied Physics Letters 81, 1228-1230 (2002).
    18. E. Ortyl, and S. Kucharski, "Kinetics of Refractive Index Changes in Polymeric Photochromic Films," Macromolecular Symposia 212, 321-326 (2004).
    19. A. Sobolewska, and A. Miniewicz, "Analysis of the Kinetics of Diffraction Efficiency during the Holographic Grating Recording in Azobenzene Functionalized Polymers," Journal of Physical Chemistry B 111, 1536-1544 (2007).
    20. S. Bian, J.-A. He, L. Li, J. Kumar, and S. K. Tripathy, "Large PhotoinducedBirefringence in Azo Dye/Polyion Films Assembled by Electrostatic Sequential Adsorption," Advanced Materials 12, 1202-1205 (2000).
    21. J. A. Delaire, and K. Nakatani, "Linear and nonlinear optical properties of photochromic molecules and materials," Chem. Rev. 100, 1817-1845 (2000).
    22. 陈禧, 陈胜立, 黄亚萍, "两种偶氮聚合物光致异构的全光光开关过程的稳态研究," 中山大学学报(自然科学版) 41, 15-18 (2002).
    23. S. Kawata, and Y. Kawata, "Three-Dimensional Optical Data Storage Using Photochromic Materials," Chem. Rev. 100, 1777-1788 (2000).
    1. V. Radisic, Y. x. Qian, and T. Itoh, "Broad—band power amplifier using dielectric photonic bandgap structure," IEEE Microwave and Guided Wave Letters 8, 13-15 (1998).
    2. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla, "Multiple-frequency-tuned photonic bandgap microstrip structures," IEEE Microwave and Wireless Components Letters 10, 220-222 (2000).
    3. I. RUMSEY, P. MAY M, and P. K. KELLY, "Photonic bandgap structure used as filters in microstrip circuits," IEEE Microwave and Guided Wave Letters 8, 336-338 (1998).
    4. 刘海文, 李征帆, 孙晓玮, "一种具有双频率带隙特性的 PBG 微带线," 压电与声光 25 (2003).
    5. Q. F. Yan, X. S. Zhao, and Z. C. Zhou, "Fabrication of colloidal crystal heterostructures using a horizontal deposition method," J. Cryst. Growth 288, 205-208 (2006).
    6. M. Deubel, M. Wegener, S. Linden, G. v. Freymann, and S. John, "3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing," Optics Letters 31, 805-807 (2006).
    7. G. v. Freymann, T. Y. M. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photonics and Nanostructures – Fundamentals and Applications 2, 191-198 (2004).
    1. H. C. Kang, B. M. Lee, J. Yoon, and M. Yoon, "Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group," J. Colloid Interface Sci. 231, 255-264 (2000).
    2. P. Ruggli, and C. Petitjean, "über poly-azobenzole," Helvetica. Chimica. Acta. 21, 711-720 (1938).
    3. A. S. Angeloni, D. Caretti, C. Carlini, E. Chilellini, G. Galli, A. Altomare, R. Solao, and M. Laus, "Photochromic liquid-crystalline polymers Main chain and side chain polymers containing azonenzene mesogens," Liquid Crystals 4, 513-527 (1989).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700