连作条件下外源一氧化氮对平邑甜茶幼苗影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2009年~2011年在山东农业大学园艺科学与工程学院果树根系实验室与作物生物学国家重点实验室进行,试验以苹果常用砧木—平邑甜茶幼苗为试材,盆栽条件下研究了外源NO对连作平邑甜茶幼苗生物量、根系构型、叶片保护酶活性、氧化损伤及土壤环境等指标的影响,主要结果如下:
     1.与连作土清水处理相比,SNP处理平邑甜茶幼苗株高、鲜重、叶绿素总量和叶面积均显著增加;不同浓度SNP处理对连作条件下平邑甜茶幼苗生长存在差异,其中SNP 200μmol·L-1处理株高、鲜重、叶绿素总量和叶面积均为最高,分别比清水处理增加了59.69%、74.25%、45.70%和116.58%;随SNP处理浓度的增加,株高、鲜重、叶绿素总量和叶面积均表现降低。
     2. SNP处理使平邑甜茶幼苗根系总体积显著大于清水处理;不同浓度SNP处理平邑甜茶幼苗根系平均直径、总体积、总表面积和根尖数不同,其中以SNP 200μmol·L-1处理根系平均直径、总体积、总表面积和根尖数皆为最高,随SNP处理浓度的增加,根系平均直径、总体积、总表面积和根尖数均表现降低,其中SNP 1000μmol·L-1浓度下根系总体积和总表面积分别比SNP 200μmol·L-1处理降低了59.1%和64.7%。
     3.各浓度的SNP处理与清水处理相比,连作土壤中细菌、真菌和放线菌数量差异不显著; SNP处理降低了植食性线虫密度和土壤pH,但不同浓度SNP处理植食性线虫密度和土壤pH有差异,随SNP处理浓度的增加,植食性线虫密度逐渐变小;不同浓度SNP处理相比较,焦性没食子酸、根皮素、对羟基苯甲酸、阿魏酸和咖啡酸含量存在一定差异,但酚酸总量差异不显著。
     4. SNP处理影响了平邑甜茶幼苗叶片SOD、POD、CAT和APX的活性,不同浓度SNP处理表明外源NO对平邑甜茶幼苗叶片SOD、POD、CAT和APX 4种酶活性的影响具有剂量效应,即低浓度提高酶活性,高浓度抑制酶活性。
This study was performed in the fruit roots laboratory of college of horticultural science and engineering, shandong agricultural university and state key laboratory of crop biology from 2009 to 2011. In this study, a commonly apple rootstock M. hupehensis seedlings were used as materials. Effects of exogenous nitric oxide on the biomass, root architecture, activities of protective enzymes, oxidative damage and soil environment of seedlings of Malus hupehensis Rehd. under continuous cropping were investigated. The main results were as follows:
     1. Comparing with clear water treatment, the plant height, fresh weight, chlorophyll content and leaves area were significant increased in continuous cropping soil with. SNP treatment. The growth of seedlings had some differences in different concentrations of SNP under continuous cropping. At 200μmol·L-1 concentration, the plant height, fresh weight, chlorophyll content and leaves area were significantly increased, comparing with clear water treatment, increased 59.69%, 74.25%, 45.70% and 116.58% respectively; with the SNP concentration increasing, plant height, fresh weight, chlorophyll content and leaves area were decreased.
     2. Comparing with SNP treatment, the total root volume were significant decreased in continuous cropping soil with clear water. The average diameter, total root volume, total root surface and number of tips had some differences in different concentrations of SNP under continuous cropping. At 200μmol·L-1 concentration, the average diameter, total root volume, total root surface and number of tips were the highest, with the SNP concentration increasing, root average diameter, total volume, total root surface area and number of tips were significantly decreased. Comparing with SNP 200μmol·L-1 treatment, the total volume and total root surface area decreased 59.1% and 64.7% than SNP 1000μmol·L-1 treatment.
     3. Comparing with SNP treatments, the number of bacteria, fungi and actinomyces had not significantly differences, SNP treatment reduced the density of herbivorous nematodes and soil pH, but different concentrations of SNP treatment herbivorous nematode density and soil pH had some differences, with the SNP concentration increasing, the density of nematode herbivores became smaller. Gallic acid, phloretin, p-hydroxybenzoic acid, ferulic acid and caffeic acid had some differences during with different concentrations of SNP treatment, but total phenolic acids.had not significant differences.
     4. The activities of SOD, POD, CAT and APX were affected by different concentrations of SNP treatment. Different concentrations of SNP treatment showed that, exogenous NO had dose effect with SOD, POD, CAT and APX, That was low concentrations increased enzyme activity, but tall concentrations decreased enzyme activity.
引文
曹志强,金慧,许永华,宋心东.老参地连续种参试验报告[J].中药材, 2004, 27(8): 554-555
    陈贻竹, B帕特森.低温对植物叶片中超氧物歧化酶、过氧化物酶和过氧化氢水平的影响[J].植物生理学报, 1988, 14: 323-328
    杜长春,吴林.栽培和繁殖郁金香应注意的几个问题[J].吉林蔬菜, 1995, (4): 28-29 杜长玉,李东明,庞全国.大豆连作对植株营养水平、叶绿素含量、光合速率及其产量影响的研究[J].大豆科学, 2003, 22(2): 146-150
    杜长玉,赵华强,李明琴.大豆连作对植株形态和生理指标的影响[J].内蒙占农业科技, 2003, (4): 14-15
    杜连凤,武淑霞,刘建玲.腐熟秸杆有机肥改良土壤次生盐渍化研究[J].土壤肥料科学, 2005, 21(8): 224-225
    付艳丽,张庆文,韩树文,郑文博,王春佚.落叶果树再植病的原因与对策[J].河北林业, 2005(4): 37
    高相彬,胡艳丽,赵凤霞,毛志泉,沈向,杨树泉,苏立涛.外源苯甲酸对平邑甜茶幼苗根系膜脂过氧化的影响[J].林业科学, 2009, 45(12): 129-134
    高相彬,赵凤霞,沈向,胡艳丽,郝云红,杨树泉,苏立涛,毛志泉.肉桂酸对平邑甜茶幼苗根系呼吸速率及相关酶活性的影响[J].中国农业科学, 2009, 42(12): 4308-4314
    高云超,朱文珊,陈文新.秸秆覆盖免耕土壤真菌群落结构与生态特征研究[J].生态学报2001,21(10):137-143
    郭巧生.药用植物栽培学[M].高等植物出版社,北京. 2004: 257-262
    韩丽梅,鞠会艳.大豆连作微量元素营养研究Ⅲ.连作对锰营养的影响[J].大豆科学, 1999, 18(3): 207-211
    焦娟,王秀峰,杨凤娟,孙家正,魏珉,史庆华,王秀红.外源一氧化氮对硝酸盐胁迫下黄瓜幼苗生长及抗氧化酶活性的影响[J].应用生态学报, 2009, 20(12): 3009-3014
    靳学慧,辛惠普,郑雯,台莲梅,张亚玲,闫凤云长期轮作和连作对土壤中大豆胞囊线虫数量的影响[J].中国油料作物学报, 2006, 28(2): 189-193
    晋艳,杨宇虹,段玉琪,孔光辉.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报, 2004, 17: 267-272
    梁文举,张万民,李维光,段玉玺.施用化肥对黑土地区线虫群落组成及多样性产生的影响[J].生物多样性, 2001, 9(3): 237-240
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000: 260-261 李淑芬,吴志红.花卉土壤传染病防治[J].云南农业, 2001, (10): 14
    刘方,卜通达.连作烤烟土壤养分变化分析[J].贵州农学院学报, 1997, 16(2): 1-4
    刘方,何腾兵.长期连作黄壤烟地养分变化及其施肥效应分析[J].烟草科技, 2002, 6: 30-33
    刘正鲁,朱月林,胡春梅,魏国平,杨立飞,张古文.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响[J].应用生态学报, 2007, 18(3): 537-541
    泷岛.防治连作障碍的措施[J].日本土壤肥料学杂志,1983, 2: 170-178
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000
    聂呈荣,骆世明,曾任森.玉米化感物质异轻肝酸的研究进展[J].应用生态学报, 2004, 15(6):1079-1082
    阮海华,沈文飚,叶茂炳,徐朗莱.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报, 2001, 46: 1993-1997
    阮维斌,刘默涵,潘洁,王静,陆文龙,马成仓,王敬国,高玉葆.不同饼肥对连作黄瓜生长的影响及其机制初探[J].中国农业科学, 2003, 36 (12): 1519-1524
    苏立涛,沈向,郝云红,毛志泉.有机物料对连作平邑甜茶幼苗生长及微生态环境的影响[J].中国农学通报, 2010, 26(20):187-192
    宿庆瑞,李卫孝,迟凤琴.有机肥对土壤盐分及水稻产量的影响[J].中国农学通报, 2006, 22(4): 299-301
    孙秀山,封海胜.连作花生川卞要微生物类群与土壤酶活性变化及其交互作用[J].作物学报, 2001, 27(5): 617-620
    王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯, 1990, 26 (6): 55-57
    王娟.草莓连作障碍综合防治技术研究[J].中国林副特产, 2009, (4):84-88 王茹华,周宝利,张启发,张凤丽,付亚文.嫁接对茄子根际微生物种群数量的影响[J]. 园艺学报, 2005, 32(1): 124-126
    王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植物生理与分子生物学学报, 2004, 30(2): 195-200
    吴凤芝,黄彩虹,赵凤艳.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学, 2002, 35(7): 821-825
    吴凤芝,孟立君,文景芝.黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J].中国蔬菜, 2002 (5): 26-27
    吴凤芝,赵凤艳.根系分泌物与连作障碍[J].东北农业大学学报, 2003, 34(1): 114-118
    吴彤东,沈明星,陆长婴,刘风军,王海候.有机无机肥配施比例对大棚番茄产量及品质的影响[J].上海农业科技, 2006, 86-87
    肖宏,毛志泉,于明革,王丽琴,束怀瑞.连作土与灭菌土对平邑甜茶幼苗生长发育的影响[J].果树学报, 2004, 21(4): 370-372
    肖宏,于明革.不同连作苹果园土壤酶活性及微生物状况的调查研究[J].山西果树, 2006, 112(4): 5-6
    谢洪刚,李坤.果树连作障碍机理及控制途径[J].辽宁农业职业技术学院学报, 2008, 10(4): 6-8
    徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报, 2003, 32(3): 19-24
    许艳丽,韩晓增.重迎茬对大豆病、虫害发生与危害的研究.大豆重迎茬研究[M].哈尔滨工程大学出版社, 1995
    许艳丽,李兆林,韩晓增,王守宇,何喜云.大豆重茬障碍研究进展Ⅱ.大豆重茬障碍研究机制[J].大豆通报, 2000, (5): 11-12
    许艳丽,刘晓冰,韩晓增,李兆林,王守宇,何喜云,于莉.大豆连作对生长发育动态及产量的影响[J].中国农业科学, 1999, 32(增刊): 64-68
    薛炳烨,杨兴洪,罗新书.落叶果树连作障碍的研究进展[J].1989, (S1): 84-87
    杨洪强,接玉玲,张连忠,崔明刚,罗新书.断根和剪枝对盆栽苹果叶片光合蒸腾及WUE的影响[J].园艺学报, 2002, 29(3) : 197- 202
    杨树泉,沈向,毛志泉,尹承苗,王峰,王青青.环渤海湾苹果产区老果园与连作园土壤线虫群落特征[J].生态学报, 2010, 30(16): 4445-4451
    杨晓霞,周启星,土铁良.土壤健康的内涵及生态指小与研究展望[J].生态科学,2007, 26(4): 374-380
    杨兴洪,罗新书.果树再植问题研究进展[J].果树科学, 8(4): 239-244
    杨兴洪,王寿华,武修英.苹果再植病及病原线虫种的研究[J].植物病理学报, 24(2): 165-168
    喻敏,余均沃,曹培根,梁火娣,潇洪东,土蕴波,崔志新.百合连作土壤养分及物理性状分析[J].土壤通报, 2004, 35(3): 377-379
    袁龙刚,张军林,张朝阳,别国勇.连作对辣椒根际土壤微生物区系影响的初步研究[J]. 陕西农业科学, 2006(2): 49-50
    张凤丽,周宝利,王茹华,何雨.嫁接茄子根系分泌物的化感效应[J].应用生态学报, 2005, 16 (4): 750-753
    张爱君,张明普,张洪源.果树苗圃土壤连作障碍的研究初报[J].南京农业大学学报, 2002, 25(1): 19-22
    张辰露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报, 2005, 25(5): 1029-1034
    张江红.酚类物质对苹果的化感作用及重茬障碍影响机理的研究[D].山东泰安:山东农业大学, 2005
    张江红,毛志泉,王丽琴,束怀瑞.根皮苷对平邑甜茶幼苗生理特性的影响[J].中国农业科学, 2007, 40(3): 492-498
    张江红,张殿生.苹果砧木幼苗根系分泌物的分离与鉴定[J].河北农业大学学报, 2009, 32(4): 29-32
    张锐,严慧峻,魏由庆,单秀枝,刘继芳.有机肥在改良盐渍土中的作用[J].土壤肥料, 1997(4): 11-14
    张绪成,上官周平,高世铭. NO对植物生长发育的调控机制[J].西北植物学报, 2005, 25( 4) : 812-818
    张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响[J].南京农业大学学报, 1998, 21(3): 62-66y
    甄文超,代丽,胡同乐,曹克强,孔俊英.连作对草苟生长发育和根部病害发生的影响[J]. 河北农业大学学报, 2004, 27(5): 68-73
    尹文英.中国土壤动物检索图鉴[M].北京科学出版社: 1998
    赵世杰,刘华山,董新纯.植物生理学试验指导[M].北京:中国农业科学技术出版社, 1998: 149-161
    郑杜萍,赵九洲.连作大豆根际土及根系、冠部三要素含量变化动态的研究[J].大豆科学, 1995, 14(4): 310-315
    郑良永,胡剑非,林昌华等.作物连作障碍的产生及防治[J].热带农业科学, 2005, 25 (2): 58-62
    Alvey S, Bagayoko M, Neumann G, Buerkert A. Cereal/legume rotations affect chemical properties and biological activities in two west African Soils[J]. Plant and Soi1, 2001, 231: 45-54
    Angelika Rumberger, Shengrui Yao, Ian A. Merwin, Eric B. Nelson, Janice E. Thies. Rootstock genotype and orchard replant position rather than soil fumigation or compostamendment determine tree growth and rhizosphere bacterial community composition in an apple replant soil[J]. Plant and Soil, 2004, 264(12): 247-260
    Baca F, Jovanovic Z, Veskovic M, Kaitovic Z. Effects of different growing systems and fertilizer rates on attractiveness of maize crop to beetles of Diabrotica virgifera LeConte and larvae damage[J]. Communication Agricultural Applied Biological Science, 2003, 68: 59-66
    Beligni M V, Lamattina L. Is nitric oxide toxic or protective? [J], Trends in Plant Science, 1999, 4: 299-300
    Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants[J]. Nitric Oxide Biol Chem. 1999, 3: 199-208
    Beligni M V, Lamattina L. Nitric oxide in plants: The history is just beginning[J]. Plant Cell Environ. 2001, 24: 267–278
    Borner H I. The apple replant problem I.The excretion of phlorizin from apple root residues. Contrib Boyce[J].Thompson.Inst.1959, 20: 39-56
    Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance[J]. Trends plant Sci., 2000, 5(6): 241-246
    Brown, G S,Koutoulis, L.Overcoming apple replant disease: Treatment effects over the first 7 years of orchard life[J]. Acta Horticulturae, 2008, 722: 121-125
    Browne, G T, Connell, Almond J H. Replant disease and its management with alternative pre-plant soil fumigation treatments and rootstocks[J]. Plant Disease, 2006, 90(7): 869-876
    Campbell R. Biological Control of Microbial Plant Pathogens[M]. Cambridge University Press, Cambridge, 1989, 112-160.
    Catska V. Interrelationships between vesicular-arbuscularmycorrhiza and rhizospherem icroflora in apple replant disease[J]. Biological Plant, 1994, 36:99-104
    Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities ofsuperoxide dismutase, ascorbate peroxidase, and glutathione reducatse in bean leaves[J]. Plant Physiology, 1992, 98: 1222-1227
    Capone R, Tiwari B S, Levine signals from roots to shoots A. Rapid transmission of oxidative and nitrosative stress in Arabidopsis[J]. Plant Physiol. Biochem., 2004,42: 425-428
    Chandok M R, Ekengren S K, Martin G B, Klessig DF. Suppression of pathogen-inducible No synthase (iNOS) activity in tomato increases susceptibility to Pseudomonas syringae[J]. Proc. Nat. Aca. Sci., 2004, 101(21): 8239-8244
    Chang X C, Juma N G. Impact of crop rotation on microbial biomass, faunal populations, and plant C and N in a Gray Luvisol(Typic Cryoboralf) [J]. Biology Fertility of Soil, 1996, 22(1): 31-39
    Corpas F J, Barroso J B, Cameras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants [J]. Plant Physiol., 2004, 136: 2722-2733
    Correa-Aragunde N, Graziano M, Lamattina L Nitric oxide plays a central role in determining lateral root development in tomato [J]. Planta, 2004, 218:900–905
    Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory functions[J]. Trends Plant Sci., 2005, 10: 195-200
    De Ceuster T J J, Hoitink H A J. Prospects for composts and biocontrol agents as substitutes for methyl bromide in biological control of plant diseases [J]. Compost Sci. Util. 1999, 7: 6-15
    Dobermann A, Dawe D, Roetter R P, Cassman K G.Reversal of rice yield decline in a long-term continuous cropping experiment [J]. Journal of Agronomy (Soil fertility) 2000, 92: 633-643
    Dullahide S R, Stirling G R, Nikulin A, Stirling A M. The role of nematodes, fungi, bacteria, and abiotic factors in the etiology of apple replant problems in the Granite Belt of Queensland [J]. Australian Journal of Experimental Agriculture, 1994, 34: 1177-1182
    Durzan D J, Pedroso M C.Nitric oxide and reactive nitrogen oxide species in plants [J]. Biotech. Genetic Eng. Revs, 2002, 19: 293–337
    Edwards C A. The importance of earthworms as key representatives of the soil fauna / / Edwards CA[J]. Earthworm ecology. Boca Raton: CRC Press LLC, 2004: 3-9
    Fininsa C, Yuen J. Temporal progression of bean common bacterial blight (Xanthomonas Campestris Pv. phaseoli) in sole and intercropping systems[J]. European Journal of Plant Pathology, 2002, 108(6): 485-495
    Gabaldon C, Gomez Ros L V, Pedreno M A, Ros Barcelo A. Nitric oxide production by the differentiating xylem of Zinnia elegans[J]. New Phytol., 2005, 165: 121-130
    Gouvea C M C P, Souza J F, Magalhaes A C N, Martins I S. NO—releasing substances that induce growth elongation in maize root segments[J]. Plant Growth Regul, 1997, 21: 183–187
    Graziano M, Beligni M V, Lamattina L. Nitric oxide improves internal iron availability in plants[J]. Plant Physiol., 2002, 130: 1852-1859
    Graziano M, Lamattina L. Nitric oxide and iron in plants: an emerging and converging story[J]. Trends Plant Sci., 2005, 10(1): 4-8
    Guenzi W D, Mccalla T M. Inhibition of germination and seedling development by crop residues[J]. Soil Sci. Soc.Am.Pro, 1962, 26: 456-458
    Gu Y H, Mazzola, M. Modification of pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner[J]. Appl. Soil Ecol. 2003, 24: 57-72
    Hiradate S, Morita S, Furubayashi A, Fujii Y, Harada J. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid[J]. Journal of Chemical Ecology, 2005, 31: 591-601
    Hoitink H A J, Stone A G Han D Y. Suppression of plant diseases by composts[J]. Hort Science. 1997, 32: 184-187
    Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana[J]. Planta, 2004, 218: 93 8-946
    Inderjit, Rawat D S, Foy C L. Multifaceted approach to determine rice straw phytotoxicity[J]. Canada Journal of Botany, 2004, 82: 168-176
    Kopyra M, Gwozdz EA Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metal and salinity on root growth of Lupinus luteus[J]. Plant Physiol. Biochem, 2003, 41:1011-1017
    Kowalchuk G A, Os G J, Aaririjk J, Veen J A. Microbial community responses to disease management soil treatment used in flower bulb cultivation[J]. Biology and Fertility of Soil, 2003, 37: 55-63
    Kummeler M. Investigations into the causesofsoil sickness in fruit trees·Part I·Influence of soil treatment and soil sickness on vegetative growth of BittenfelderSeedling[J]. Erwerbsobstbau, 1981, 23(7): 162-168
    Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule[J]. Annu. Rev. Plant Biol., 2003, 54: 109-136
    Laspina et al., N.V. Laspina, M.D. Groppa, M.L. Tomaro and M.P. Benavides, Nitric oxide protects sunflower leaves against Cd-induced oxidative stress[J]. Plant Sci, 2005, 169: 323–330
    Lazarovits G Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past[J]. Can. J. Plant Pathol. 2001, 23:1-7
    Leshem Y Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn foliage[J]. Journal of Plant Physiology, 1996, 148: 258-263
    Liang W J, Li Q, Jiang Y, et al. Nematode faunal analysis in an aquic brown soil fertilized with slow-release urea, Northeast China[J]. Applied Soil Ecology, 2005, 29: 185-192
    Lin G X, Shi W L, Hong M S, Hu Y F, Shi J X, Li Z A. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium[J]. Current Microbiology, 2007, 55(4): 294-301
    Li Q Y, Niu H B, Yin J, Wang M B, Shao H B, Deng D Z, Chen X X, Ren J P, Li Y C. Protective role of exogenous nitric oxide against oxidative stress induced by salt stress in barley (Hordeum vulgare) [J]. Colloids and Surfaces B: Biointerfaces, 2008, 65(2): 220-225.
    Litterick A M, Harrier L. A review: the role of uncomposted materials, compost, manures, andcompost extracts in reducing pest disease in cidenceand severity in sustainable temperate agriculture and horticulture crop production[J]. Crit. Rev. Plant Sci. 2004, 23:453-479
    Schoor L van, Denman S, Cook N C. Characterisation of apple replant disease under South African conditions and potential biological management strategies[J]. Scientia Horticulturae, 2009, 119(2): 153-162
    Magarey R C. Reduced productivity in long term monoculture: where are we placed[J]?Australas. Plant Pathol. 1999, 28: 11-20
    Manici, L.M., Ciavatta, C., Kelderer, M., Erschbaumer, G.. Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards[J]. Plant and Soil, 2003, (256): 315-324
    Martinez G R, Mascio P D, Bonini M G, Augusto O, Briviba K. Peroxynitrite does not decompose to singlet oxygen ( 1ΔgO2 ) and nitroxyl (NO-)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(19): 10307-10312
    Mazzola, M, Brown, J. Interaction of Brassicaceous seed meal and apple rootstock on recovery of Pythium spp. and Pratylenchus penetrans from roots grown in replant soils[J]. Plant Disease, 2009, 93(1): 51-57
    Mata C G, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiology, 2001, 126: 1196-1204
    Mazzola, M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington[J]. Phytopathology, 1998, 88: 930-938
    Mazzola, M, Gu Y H. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials[J]. Phytopathology 2000, 90: 114-119
    Mazzola M. Transformation of soil microbial community structure and rhizoctonia suppressive potential in response to apple roots[J]. Phytopathology, 1999, 89: 920-927
    Mazzola M, Andrews P K, Reganold J P, Lévesque C A. Frequency, virulence and metalaxyl sensitivity of Pythium spp. isolated from apple roots under conventional and organic production systems[J]. Plant Disease, 2002, 86: 669-675
    Mittler R. Oxidative stress, antioxidants, and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410
    Moran R, Schup J.The effect of preplant monoammonium phosphate and apple compost on the growth of newly planted apple trees[J]. Hort Science 2001, 36: 451
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22: 867-880
    Neher D A, Peck S L, Raveling J Q. Measures of nematode community structure for an agroecosystem momtormg program and sources of variability among and within agricultural fields[J]. Plant Soil, 1995, 170: 167-181
    Neill S. NO way to die-nitric oxide, programmed cell death and xylogenesis[J]. New Phytol., 2005, 165: 5-7
    Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants[J]. New Phytol., 2003, 159:11-35
    Noble R, Coventry E. Suppression of soil-borne plant diseases with composts: a review[J].Biocontrol Sci. Technol. 2005, 15: 3-20
    Pagnussat G C, Lanteri M L, Lombardo M L, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development[J]. Plant Physiol, 2004, 135: 279-286
    Pagnussat G C, Lanteri M L, Lamattina L .Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process[J]. Plant Physiol, 2003, 132: 1241-1248
    Pagnussat G C, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis[J]. Plant Physiol , 2002, 129: 954-956
    Ristaino J B, Thomas W. Agriculture, methyl bromide, and the ozone hole-can we fill the gaps[J]? Plant Dis. 1997, 81: 964-977
    Ruan H H, Shen W B, Xu L L. Nitric oxide involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress[J]. Acta Bot. Sin., 2004a, 46(11): 1307-1315
    Ruan H H, Shen W B, Xu L L. Nitric oxide modulates the activities of plasma membrane H+-ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress[J]. Acta Bot. Sin., 2004b, 46(4): 415-422
    Rumberger A, Merwin I A and Janice E. Microbial community development in the rhizosphere of apple trees at a replant disease site[J]. Soil Biology and Biochemistry, 2007, 39(7): 1645-1654
    Ruan W B, Wang J G, Zhang F S, Shen J B. The Application of Rhizosphere Micro-ecosystem Theory to Continuous Cropping Problem[J]. Review of China Agricultural Science and Technology, 1999, 4(1): 53-58
    Salako F K. Effects of cropping frequency on soil physical properties in Southwesterm Nigeria[J]. Journal of Sustainable Agriculture, 2003, 22: 133-147
    Serigne T K, Callistus K P O, Alain A. Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya[J]. Applied Soil Ecology, 2001, 18: 143-157
    Singh P H, Batish D R, Kohli R K. Allelopathy in agroecosystems: an overview[J]. Journal of Crop Production, 2001, 4(2): 1-41
    Stenberg B. Monitoring soil quality of arable land: Microbiological indicators[J]. Acta Agric Scand SectionB-Soil Plant Sci, 1999, 49(1): 1-24
    Wilson S, Andrews P, Nair T S. Non-fumigant management of apple replant disease[J]. Scientia Horticulturae, 2004, 102(2): 221-231
    Tang C, Young C. Collection and Identification of Allelopathic Compounds from the Undisturbed Root system of Bigalta Limpograss[J]. Plant Physiol, 1982, 69: 155-160
    Tian X, Lei Y. Nitric oxide treatment alleviates drought stress in wheat seedlings[J]. Biologia Plantarum, 2006, 50(4) : 775-778
    Tustin D S, Horner I J, Breen K, Dayatilake D, Bigwood E Growth responses of young apple replants induced by soil remediation treatments for specific apple replant disease[J]. Acta Horticulturae, 2008, 772: 407–411
    Uchida A, Jagendorf A T, Hibino T, Takabe T. Effects of hydrogen peroxide and nitric oxideon both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515-523
    Wasilewska L. Changes in the structure of the soil nematode community over long-term secondary grassland succession in drained fen peat[J]. Applied Soil Ecology, 2006, 32: 165-179
    Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signalling and defense responses[J]. Curr. Opin. Plant Biol., 2004, 7: 449-455
    Willis R J. The historical bases of the concept of allelopathy[J]. Journal of History of Biology 1985,18. 71-102
    Xing H, Tan L, An L, Zhao Z, Wang S, Zhang C. Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings inverse correlation between leaf abscisic acid accumulation and leaf water loss[J]. Plant Growth Regul., 2004, 42: 61-68
    Yao S, Merwin I A, Abawi G. S, Thies J E.Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site[J]. Soil Biology and Biochemistry, 2006, 38(3): 587-599
    Yeates G W, Bongers T. Nematode diversity in agroecosystems[J]. Agriculture, Ecosystems and Environment. 1999, 74: 113-135
    Yu J Q, Matsui Y. Extraction and Identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato[J]. Soil Sci. Plant Nutr., 1993, 9(4): 691-700
    Yu J Q, Matsui Y. Exaction and identification of phytotoxic substances accumulated in the nutrient solution for the hvdroponic culture of tomato[J]. Soil Sci&Plant Nutri. 1993, 39:13-22
    Yu J Q, MatsuiY. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.) [J]. J.Chem.Ecol. 1994, 20(1):21-31
    Yu J Q, Matsui Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings[J]. J. Chem. Ecol. 1997, 23:817-827
    Yu J Q, Ye S F, Zhang M F. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals on photosynthesis and antioxidant enzymes in cucumber[J]. Biochemical Systematics and Ecology, 2003,31:129-139
    Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions[J]. Plant Physiol., 2004, 136: 2875-2886
    Zhang H, Shen W B, Xu L L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Bot. Sin., 2003, 45: 901-905
    Zhao L, He J X, Wang X M, Zhang L X. Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures[J]. Journal of Plant Physiology, 2008, 165(2): 182-191
    Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings[J]. Aust. J. Plant Physiol., 2001, 28: 1055-1061
    Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed[J]. Plant Physiol., 2004, 134: 849-857

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700