~(18)F-脱氧葡萄糖与~(11)C-胆碱PET/CT显像在肺部肿块病变诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是危害人类健康的主要肿瘤之一,肺癌预后与其是否能早期诊断、早期治疗密切相关。影像学检查对肺癌的早期诊断、治疗方案的选择、疗效的观察及预后的评估至关重要。PET与X线、CT、MR等解剖学影像检查的差异在于其是功能学影像,能够无创性、定性、定量显示机体功能和代谢状况,因而具有一定的优势。~(18)F-FDG PET及PET/CT在肺部肿瘤中的应用较广,常以SUVmax值≥2.5作为判断良、恶性病变的标准,但存在较多假阳性和假阴性,如何应用~(18)F-FDG PET/CT显像判断肺良、恶性病变一直是研究的重点问题。~(11)C-胆碱作为一种新型PET显像剂,在临床肿瘤研究中也受到高度重视。
     第一部分~(18)F-脱氧葡萄糖PET/CT显像在肺部肿块病变诊断中的价值
     目的:探讨~(18)F-FDG PET/CT显像对肺部良、恶性病变的诊断价值,并探讨~(18)F-FDG PET/CT显像SUVmax值与肺部肿块病变大小及肺癌的病理类型有无相关性。
     材料与方法:122例肺部肿块病变患者静脉注射~(18)F-FDG 8-10mCi 60分钟后行全身PET/CT显像,将~(18)F-FDG PET及PET/CT显像结果与病理结果进行对照分析:(1)从灵敏度、特异性、准确性、阳性预测值、阴性预测值方面评价~(18)F-FDGPET及PET/CT显像对肺部良、恶性病变的诊断价值;(2)评价肺良、恶性病变~(18)F-FDG PET/CT显像SUVmax的差异;(3)分析~(18)F-FDG PET/CT显像SUVmax值与肺部病变大小有无相关性;(4)分析肺癌不同病理类型SUVmax值的差异。
     结果:(1)~(18)F-FDG PET显像结果:正确诊断肺癌82例,良性病变18例;假阴性8例,假阳性14例。灵敏度、特异性、准确性、阳性预测值、阴性预测值分别为:91.1%、56.3%、81.97%、85.4%、69.2%。~(18)F-FDG PET/CT显像结果:正确诊断肺癌84例,良性病变27例;假阴性6例,假阳性5例。灵敏度、特异性、准确性、阳性预测值、阴性预测值分别为:93.3%、84.4%、91%、94.4%、81.8%。~(18)F-FDG PET/CT显像诊断准确性高于~(18)F-FDG PET显像(X~2=4.24),P<0.05。(2)肺癌SUV_(max)值(9.51±4.80)明显高于肺良性病变SUV_(max)值(2.77±1.73),两者之间的差异有统计学意义;(3)~(18)F-FDG PET/CT显像SUV_(max)与肺部病灶大小有正相关关系;腺癌与鳞癌之间SUV_(max)差异没有统计学意义,肺泡细胞癌SUV_(max)低于腺癌与鳞癌。
     结论:(1)~(18)F-FDG PET/CT显像是一种无创伤性的诊断肺部良、恶性病变的有效方法,诊断效能优于单纯PET检查。(2)病灶越大,~(18)F-FDG PET/CT显像SUV值越高。腺癌与鳞癌SUV值无差别,肺泡细胞癌SUV值明显低于腺癌与鳞癌。
     第二部分~(11)C-胆碱与~(18)F-脱氧葡萄糖PET/CT显像在原发性肺癌中的对比研究
     目的:通过~(11)C-胆碱与~(18)F-FDG PET/CT显像在原发性肺癌中的对比研究,探讨原发性肺癌中~(11)C-胆碱与~(18)F-FDG PET/CT显像的相关性。
     材料与方法:对20例经病理学证实的原发性肺癌患者包括腺癌10例,鳞癌6例,小细胞癌2例,肺泡细胞癌2例行~(11)C-胆碱及~(18)F-FDG PET/CT显像,分别分析~(11)C-胆碱及~(18)F-FDG PET/CT图像,进行半定量分析,计算SUV,并利用统计学方法分析:(1)~(11)C-胆碱与~(18)F-FDG PET/CT显像结果的差异;(2)~(11)C-choline及~(18)F-FDG PET/CT显像SUV值的差异,分析两种显像剂SUV值间的相关性;(3)~(11)C-胆碱PET/CT显像SUV值与病变大小的相关性。
     结果:(1)20例原发性肺癌17例~(11)C-胆碱及~(18)F-FDG代谢增高,3例~(11)C-胆碱及~(18)F-FDG代谢未见明显增高;(2)~(11)C-胆碱的SUV明显低于~(18)F-FDG的SUV,~(11)C-胆碱SUV与~(18)F-FDG的SUV有正相关关系;(3)~(11)C-胆碱的SUV与肺癌病灶大小有正相关关系。
     结论:原发性肺癌~(11)C-胆碱PET/CT显像灵敏度与~(18)F-FDG PET/CT显像相似。病灶越大,~(11)C-胆碱PET/CT显像SUV值越高。~(11)C-胆碱PET/CT显像在原发性肺癌的诊断中具有一定价值。
Pulmonary carcinoma is one of the major malignant tumors which harm human health. The prognosis of pulmonary carcinoma has a close relationship with earlier diagnosis and earlier treatment. Medical imaging played an important role in diagnosis, treatment planning, therapeutic effectiveness and prognosis evaluation. Compared with morphologic imaging modalities such as X-ray plain film, CT and MRI, PET with the merits of functional and anatomical imaging could display function and metabolism noninvasively, quantitively and qualitively. F-FDG PET and PET/CT imaging had wide application in diagnosis of pulmonary tumors. The SUVmax more than or equal to 2.5 was regarded as positive, but this PET diagnostic criteria of pulmonary malignancies had false positive and false negative results. How to use ~(18)F-FDG PET to characterize pulmonary masses is the hot topic. ~(11)C-choline acting as a novel PET tracing agent is emphasized in clinical research of the tumors nowadays.
     PartⅠ
     Application of ~(18)F-FDG PET/CT imaging in the diagnosis ofpulmonary masses
     Objective: To investigate the value of ~(18)F-FDG PET/CT imaging in the diagnosis of benign and malignant pulmonary lesions,to explore the correlation between the F-FDG PET maximum standardized uptake value (SUVmax) and the size of pulmonary lesions and to study the difference of SUVmax between different pathological types.
     Materials and methods: 122 cases with pulmonary masses were underwent ~(18)F-FDG PET/CT imaging.Images were obtained 60min after the injection of 296-370MBq ~(18)F-FDG. PET and PET/CT images were analyzed. The results were compared with pathological results. Statistical analysis was done, including the following issues.(1)Sensitivity, specificity, accuracy, positive predictive value and negative predictive value were computed to evaluate the diagnosis value of ~(18)F-FDG PET and PET/CT in pulmonary benign and malignant lesions.(2)The difference of SUVmax for ~(18)F-FDG PET/CT imaging between benign and malignant lesions.(3)The correlation between SUV of ~(18)F-FDG PET/CT imaging and the size of pulmonary lesions and the difference of SUVmax between different pathological types.
     Results: (1)82 cases with pulmonary carcinoma and 18 cases with benign pulmonary lesions were correctly diagnosed with 8 false negative results and 14 false positive results for ~(18)F-FDG PET imaging in 122 cases with pulmonary lesions. The Sensitivity, specificity, accuracy, positive predictive value and negative predictive value of PET imaging were 91.1%, 56.3%, 81.97%, 85.4% and 69.2 % respectively. 84 cases with pulmonary carcinoma and 27 cases with pulmonary benign lesions were correctly diagnosed with 6 false negative results and 5 false positive results for PET/CT imaging. The Sensitivity, specificity, accuracy, positive predictive value and negative predictive value of PET/CT imaging were 93.3%, 84.4%, 91%, 94.4% and 81.8 % respectively. The accuracy of ~(18)F-FDG PET/CT imaging was higher than that of ~(18)F-FDG PET imaging (X~2=4. 24, P<0. 05 ) . (2)SUVmax of pulmonary carcinoma (9.51±4.80) was significantly higher than the values of benign pulmonary lesions (2.77±1.73) for ~(18)F-FDG PET/CT imaging.(3)There was a positive correlation between SUVmax of ~(18)F-FDG PET/CT imaging and the size of pulmonary lesions, and there was no statistical significance for SUVs between adencarcinoma and squamous carcinoma. SUV of bronchioalveolar carcinoma was significantly lower than adencarcinoma and squamous carcinoma.
     Conclusions: (1) ~(18)F-FDG PET/CT imaging is an effective and noninvasive method in the diagnosis of benign and malignant pulmonary lesions. The diagnosis efficiency is superior to that of PET imaging.(2)SUVmax of ~(18)F-FDG PET imaging increases with the enlargement of the lesion.There is no difference for SUVs between adencarcinoma and squamous carcinoma and SUV of bronchioalveolar carcinoma is significantly lower than adencarcinoma and squamous carcinoma.
     PartⅡ
     Comparison of ~(11)C-Choline and ~(18)F-FDG PET/CT imaging in thediagnosis of primary pulmonary carcinoma
     Objective: To compare the diagnostic value of ~(11)C-choline and ~(18)F-FDG PET/CT imaging in the detection of primary pulmonary carcinoma, to explore the relationship of ~(11)C-choline PET/CT imaging and ~(18)F-FDG PET/CT imaging in primary pulmonary carcinoma.
     Materials and methods: 20 cases with histologically proven primary pulmonary carcinoma (10 cases with adencarcinoma, 6 cases with squamous carcinoma, 2 cases with small cell carcinoma, 2 case with bronchioalveolar carcinoma) were done with ~(11)C-choline PET/CT imaging and ~(18)F-FDG PET/CT imaging. Images were analyzed semi-quantitively and SUV of the lesions with the differential imaging agent were calculated. Finally statistical analyses were done, including the following issues. (1) The difference of results for ~(11)C-Choline and ~(18)F-FDG PET/CT imaging.(2) The difference of SUVs between ~(11)C-choline and ~(18)F-FDG PET/CT imaging, the relationship of SUVs between ~(11)C-choline and ~(18)F-FDG PET/CT imaging.(3) The relationship between SUVs of ~(11)C-choline PET/CT imaging and the size of lesions.
     Results: (1)Both ~(11)C-choline and ~(18)F-FDG PET/CT imaging showed an increase in tracer uptake in 17 of 20 patients with primary pulmonary carcinoma. However neither ~(11)C-choline nor ~(18)F-FDG PET/CT imaging showed an increase in tracer uptake in the other three patients.(2)SUVs of the lesions using the ~(11)C-choline PET/CT imaging were lower significantly than the values of ~(18)F-FDG PET/CT imaging. There was a positive correlation between SUVs of ~(18)F-FDG and ~(11)C-choline PET/CT imaging in pulmonary carcinoma. (3) SUVs of ~(11)C-choline PET/CT imaging had a positive correlation with the size of the lesions.
     Conclusions: The sensitivity of ~(11)C-choline PET/CT imaging is similar to that of ~(18)F-FDG PET/CT imaging in primary pulmonary carcinoma. SUVmax of ~(11)C-choline PET/CT imaging increases with the enlargement of the lesion.~(11)C-choline PET/CT imaging is valuable in differentiating primary pulmonary carcinoma.
引文
1.Swensen SJ, Jett JR, Payne WS, et al. An integrated approach to evaluation of the solitary pulmonary nodule. Mayo Clin Proc, 1990,65: 173-186.
    
    2. Gambhir SS , Czernin J , Schinmmeer J, et al. A tabulated summary of theFDG PET. J Nucl Med 2001,42(supply):1s-93s.
    
    3.关志伟,姚树林,田嘉禾等.PET诊断肺部肿瘤的SUV值与灵敏度分析.中国临 床医学影像杂志,2003,14(3):169-172.
    
    4.汪涛,孙玉鹦,于长海等.肺细支气管肺泡癌对FDG的摄取特点.中华胸心血管 外科杂志,2003,19(6):348-350.
    
    5. Gould MK, MacLeanCC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions:a meta-analysis. JAMA, 2001,285(7):914-924.
    
    6.汪涛,孙玉鹦,田嘉禾等.肺肉芽肿性炎症FDG摄取特点初步研究.中华胸心血 管外科杂志,2003,19(2):95-97.
    
    7.汪涛,孙玉鹦,于长海等.原发性肺隐球菌病的外科治疗.中华外科杂志,2005,43(22):1447-1449.
    
    8. Delbeke D, Martin WH, Patton JA, et al. Practical FDG Imaging:A Teaching File. New YORk, NY:Springer, 2002, (2):150-188.
    
    9. Aquino SL, HalPem EF, KtlesterLB, et al. FDG- PET and CT features of non-small cell lung cancer based on tumor type . Int J Mol Med, 2007, 19(3) :495-499.
    
    7. Miehael K, Gould MK, Gilban D, et al. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med. 2003, 343:1724-1772.
    
    10. GoerresGW, Kamel E, Selfert B, et al. Accuracy of image coregistration of pulmonary lesion in patients with non-small cell lung cancer using??an integrated PET/CT system. J Nucl Med. 2002, 43:1469.
    
    11.Hara T, Kosaka N, Suzuki T, et al. Uptake rates of 18F-fluorodeoxyglucose and "Ocholine in lung cancer and pulmonary tuberculosis A Positron Emission Tomography study.Chest 2003,124(3): 893-901.
    
    12. Vesselle H, Schmidt RA, Pugsley JM, et al.Lung cancer proliferation correlates with (F-18) fluorodeoxyglucose uptake by positron emissiontomography. Clin Caneer Res.2000, 6(10):3837-3844.
    
    13. Downey RJ , Akhurst T , Gone M , et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection.J clin Oncol. 2004, 22(16) : 3255-3260.
    
    14.刘芳颖,王全师,裴著果.非小细胞肺癌与增殖细胞核抗原表达的关系.中华核医学杂志.2003,23:14-16.
    
    15.汪涛,孙玉鹦,周乃康,等.三种类型肺癌~(18)氟脱氧葡萄糖摄取量的初步研究. 中华外科杂志,2002,40(6):437-440.
    1. 唐刚华, 胆碱代谢PET显像的临床应用. 同位素, 2004 , 17 (1): 53-58.
    2. Yanagawa T, Watanabe H, Inoue T, et al. Carbon-llcholine Positron Emission Tomography in Musculoskeletal Tumors: Comparison with Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography J Comput ASSIST Tomogr, 2003, 27(2):175-182.
    3. Roivainen A, Forsback S, Gronroons T, et al, Blood Metabolism of [methyl- ~(11)C]choline; Implications for in Vivo Imaging with Positron Emission Tomography [J], Eur J Nucl Med ,2000,27 (1) :25-32.
    4. Katz-Brull R, Degani H, Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res,1996,16 (3B) :1375-1380.
    5. Brostschi EA, Hilbinger CL, Kahl EA, et al, Radioactive choline metabolism in guinea pig gallbladders. Is there measurable acetylcholine release? Dig Dis Sci, 1995,40 (9) :1982-1989.
    6. Wright P, Morand J, Kent C, Regulation of phosphatidylcholine biosynthesis in Chinese hamster ovary cells by reversible membrane association of CTP:Phosphocholine Cytidylyltransferase. J Biol. Chem. 1985; 260 (13) :7919-7926.
    7. Hara T, Kosaka N, Shinoura N, et al. PET Imaging of Brain Tumor With [methyl-~(11) C] [J]. J Nucl Med, 1997, 38 (6) :842-847.
    8. Ackerstaff E, Glunde K, Bhujwalla ZM. Choline Phospholipid metabolism:a target in cancer cells? J Cell Biochem, 2003, 90 (3) :525-533.
    9. Brown GD, Osman S, Wilson HK, et al. Metabolism of [methyl-~(11)C]choline methyl-~(11)C]betaine. J labeled Cpd Radiopham, 2001, 44(suppl1):S107-S109.
    10. Pieterman RM, Que TH, Elsinga PH, et al. Comparison of "C-choline??and 18F-FDG-PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 2002;43(2):167-172.
    
    11. Khan N, Oriuchi N, Zhang H, et al. A comparative study of 11C-Choline PET and [18F] fluorodeoxyglucose PET in the evaluation of lung cancer.Nucl Med Commun. 2003, 24(4): 359-366.
    
    12. Hara T, Kosaka N, Suzuki T, et al. Uptake rates of 18F-fluorodeoxyglucose and ~(11)C-choline in lung cancer and pulmonary tuberculosis A Positron Emission Tomography study. Chest 2003, 124(3): 893-901.
    
    13. Toshihiko Hara. ~(11)C-choline and 2-Deoxy-2-[18F]Fluoro-D-Glucose in Tumor Imaging With Position Emission Tomography Molecular Imaging and Biology, 2002, 4(4) :267-273.
    
    14.Martin WH, Delbeke D, Patton JA, Sandlen MP. Detection of malignancies with SPECT versus PET, with 2-[fluorine-18] flouro-2-deoxy-D-glucose. Radiology 1996; 198 (1) : 225-231.
    
    1. Rohren EM, TurkingtonTG, Coleman RE. Clinical applications of PET in oncology. Radiology, 2004, 231 (2) :305-332.
    
    2. Von Schulthess GK,Steinert HC, Hang TF, et al. Intergrated PET/CT:current applications and future directions. Radiology, 2006, 238(2) :405-422.
    
    3. Goo JM, IM IG, Do KH,et al. Pulmonary tuberculoma evaluated in by means of FDG PET:findings in 10 cases.Radiology, 2000, 216 (1) :117-121.
    
    4.田嘉禾,主编.正电子发射体层显像(PET)图谱.北京:中国协和医科大学出版 社,2002.22-290.
    
    5.汪涛,孙玉鹦,田嘉禾等.肺肉芽肿性炎症FDG摄取特点初步研究.中华胸心 血管外科杂志,2003,19(2):95-97.
    
    6. Lee J, Aronchick JM , Alavi A. Accuracy of F-18 Fluorodeoxyglucose Positron emission tomography for the evaluation of malignancy in patients presenting with new lung abnormalities:a retrospective review[J]. Chest,2001, 120(6):1791-1797.
    
    7.汪涛,孙玉鹦,于长海等.原发性肺隐球菌病的外科治疗.中华外科杂志,2005, 43(22):1447-1449.
    
    8.袁志斌,~(11)C-胆碱和~(18)F-FDG在肿瘤PET中的比较.国外医学(放射医学核医学 分册)2003,27(6):251-254.
    
    9.WANG T, SUN YE, CHANG P, et al. FDG-PET in bronchial alveolar carcinoma. Chinese-German J Clinoneol, 2006, 5 (1) :54-57.
    
    10.汪涛,孙玉鹦,周乃康等.三种类型肺癌~(18)氟脱氧葡萄糖摄取量的初步研究.中 华外科杂志,2002,40(6):437-440.
    
    11.Nomori H, Watanabe K, Ohtsuka T, et al. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than??3 cm in diameter, with special reference to the CT images[J].Lung Cancer, 2004, 45(1): 19-27
    
    12. Aeker MR, Burrell SC. Utility of 18F-FDG PET in evaluating cancers of lung. J Nucl Med Technol, 2005, 33(2) :69-74.
    
    13. Shim SS, Lee KS, Kim B, et al.FoCeal parenchymal lung lesions showing a potential of false-positive and false-negative interpretations on integrated PET/CT. AJR Am J Roentgenol, 2006, 186(3):639-648.
    
    14.林祥通,赵军.PET在肺癌诊断和分期中的应用,中国癌症杂志,2003, 13(5):402-404.
    
    15.汪涛,孙玉鹦,于长海等.肺细支气管肺泡癌对FDG的摄取特点.中华胸心血管 外科杂志,2003,19(6):348-350.
    
    16. Delbeke D, Martin WH, Patton JA, et al. Practical FDG Imaging:A Teaching File. New YORk, NY:Springer,2002:150-188.
    
    17.唐刚华,胆碱代谢PET显像的临床应用.同位素,2004,17(1):53-58.
    
    18. Yanagawa T, Watanabe H, Inoue T, et al. Carbon-llcholine Positron Emission Tomography in Musculoskeletal Tumors :Comparison with Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography J Comput ASSIST Tomogr, 2003, 27 (2) :175-182.
    
    19. Roivainen A, Forsback S, Gronroons T, et al, Blood Metabolism of [methyl- ~(11)C]choline; Implications for in Vivo Imaging with Positron Emission Tomography [J],Eur J Nucl Med ,2000,27 (1) :25-32.
    
    20. Katz-Brull R, Degani H, Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res, 1996, 16 (3B) :1375-1380.
    
    21.Brostschi EA, Hilbinger CL, Kahl EA, et al, Radioactive choline metabolism in guinea pig gallbladders. Is there measurable acetylcholine release? Dig Dis Sci 1995, 40 (9) :1982-1989.
    22. Wright P, Morand J, Kent C, Regulation of phosphatidylcholine biosynthesis in Chinese hamster ovary cells by reversible membrane association of CTP:Phosphocholine Cytidylyltransferase. J Biol. Chem. 1985;260 (13) :7919-7926.
    23. Hara T, Kosaka N, Shinoura N, et al. PET Imaging of Brain Tumor With [methyl-~(11)C] [J]. J Nucl Med, 1997, 38 (6) :842-847.
    24. Ackerstaff E, Glunde K, Bhujwalla ZM. Choline Phospholipid metabolism:a target in cancer cells? J Cell Biochem, 2003, 90 (3) :525-533.
    25. 钱桂生. 肺癌的诊断与治疗进展. 临床内科杂志, 2002, 19(5):323-325.
    26. Stanwell P, Gluch L, Clark D, et al. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at1. 5 T. Eur Radiol,2005, 15 (5) : 1037-1043.
    27. Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res, 2004,64 (12) :4270-4276.
    28. Mori N, Delsite R, Natarajan K, et al. Loss of P53 function in colon cancer cells results in increased Phosphocholine and total choline. Mol Imaging, 2004,3 (4) :319-323.
    29. Rosen MA, Jones RM, Yano Y, et al. Carbon-11 Choline: Synthesis, Purification, and Brain uptakes inhibition by 2-dimethlam inoethanol[J], J Nucl Med, 1985, 26 (12) :1424-1428.
    30. Hara T, Yuasa M, Automated synthsis of ~(11)C-choline,A Positron-emitting Tracer for tumor imaging[J], Appl Radiat Isot, 1999, 50 (3) :531-533.
    31. Hara T, Kosaka N, Kondo T, et al. Imaging of Brain Tumor , Lung cancer, Esophagus cancer, Colon cancer, Prostate cancer, and Bladder cancer??With 11C-choline [J]. J Nucl Med, 1997, 38(Suppl) :250.
    
    32. MD Masahiro, Nishijima, PhD Tetsuo Hara, et al. Brain tumors:Detection With C-11 choline PET. RSAN Radiology. 1997, 202 (2) :497-503.
    
    33. Hara T, Kosaka N, Kishi H: PET imaging of prostate cancer using carbon-llcholine. J Nucl Med .1998, 39 (6) : 990-995.
    
    34.张锦明,田嘉禾,杨志等,自动化制备(N-甲基-~(11)C)胆碱及初步临床应用,中 华核医学杂志2004,24(1):46-48.
    
    35. Zheng QH, Gardner TA, Raikwar S, et al. [HC]Choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem, 2004, 12(11) :2887-2893.
    
    36. Zheng QH, Stone KL, Mock BH, et al. [HC]Choline as a potential PET marker for imaging of breast cancer athymic mice. Nucl Med Biol, 2002, 29(8) :803-807.
    
    37. Tian M, Zhang H, Oriuchi N, et al. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors.Eur J Nucl Med Mol Imaging, 2004,31 (8) :1064-1072.
    
    38. Ohtani T, Kurihara H,Ishiuchi S, et al.Brain tumour imaging with carbon-llcholine:comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med, 2001, 28 (11) :1664-1670.
    
    39.Utriainen M, Komu M, Vuorinen V, et al.Evaluation of brain tumor metabolism with [HC]choline PET and 1H-MRS. J Neurooncol, 2003,62 (3) :329-338.
    
    40. Ninomiya H, Oriuchi N, Kahn N, etal. Diagnosis of tumor in the nasal cavity and paranasal sinuses with[HC]choline PET :comparative study with 2-[18F]fluoro-2-deoxy-D-glucose(FDG)PET. Ann Nucl Med, 2004, 18 (1) : 29-34.
    41. Khan N, Oriuchi N, Ninomiya H, et al. Positron emission tomographic imaging with 11C-choline in differential diagnosis of head and neck turmors: comparison with 18F-FDG PET. Ann Nucl Med, 2004, 18 (5) :409-417.
    42. Jager PL, Que TH, Vaalburg W, et al. Carbon-11 choline or FDG- PET for staging of oesophageal cancer?Eur J Nucl Med, 2001, 28(12) : 1845-1849.
    43. Zhang H, Tian M, Oriuchi N, et al. 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Cormmnun, 2003,24 (3) :273-279.
    44. Torizuka T, Kanno T, Futatsubashi M, et al. Imaging of gynecologic tumors:comparison of (11)C-choline PET with(18)F-FDG PET. J Nucl Med, 2003,44 (7) : 1051-1056.
    45. Yoshida S, Nakagomi K, Goto S, et al. HC-choline positron emission tomography in Prostate cancer: primary staging and recurrent site staging. Urol Int, 2005,74 (3) :214-220.
    46. FarsadM, SchiavinaR, Castellucci P, et al. Detection and localization of prostate cancer: correlation of(11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med, 2005, 46:1642-1649.
    47. de Jong IJ, Pruim J, Elsing PH, et al. Visualisation of bladder cancer using(11)C-choline PET:first clinical experience. Eur J Nucl Med Mol Imaging, 2002, 29 (10) :1283-1288.
    48. Gambbir SS, Czernin J, Schwinmmeer J, et al. Atabulated summary of the FDG-PET[J]. J Nucl Med,2001,42(suppl):ls-93s.
    49. Kubota K, Furumoto S, Iwata R, etal. Comparison of 18F-fluoromethyteholine and 2-deoxy-D- glucose in the distribution of tumor and inflammation. Ann Nucl Med, 2006, 20(8):527-533.
    50. Tsuduki E, Kawana A, Takeda Y, ET al. The Usefulness of -Position??Emission Tomography in the Diagnosis of Scleraosing Hemangioma of the Lung a case Report[J].Nihon Kokyuki Gakkai Zasshi, 2002,40(5):402 -407.
    
    51.Tian M, Zhang H, Oriuchil N, et al. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 2004, 31 (8) : 1064-1072.
    
    52. Pieterman RM, Que TH, Elsinga PH, et al. Comparison of ~(11)C-choline and 18F-FDG-PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 2002, 43 (2) :167-172.
    
    53. Khan N, Oriuchi N, Zhang H, et al. A comparative study of 11C-Choline PET and [18F] fluorodeoxyglucose PET in the evaluation of lung cancer. Nucl Med Commun. 2003, 24 (4) : 359-366.
    
    54. Hara T, Kosaka N, Suzuki T, et al. Uptake rates of 18F-fluorodeoxyglucose and ~(11)C-choline in lung cancer and pulmonary tuberculosis A Positron Emission Tomography study. Chest 2003,124(3) :893-901.
    
    55. Tian M, Zhang H, Higuchi T, et al. Oncological diagnosis using ~(11)C-choline Position Emission Tomography in comparison with 2-Deoxy-2-[18F]Fluoro-D-Glucose Position Emission Tomography .Mol Imaging Biol,2004, 6 (3) :172-179
    
    56. Toshihiko Hara. ~(11)C-choline and 2-Deoxy-2-[18F]Fluoro-D-Glucose in Tumor Imaging With Position Emission Tomography Molecular Imaging and Biology, 2002, 4(4):267-273
    
    57.郭喆,张锦明,田嘉禾,等.~(11)C-胆碱PET显像鉴别肺部病变性质及探查肺癌转 移灶的价值.中华核医学杂志,2006,26(1):13-15.
    
    58.汪涛,孙玉鹦,姚树林,等.11C-胆碱正电子发射体层显像在肺部病变诊断中??的应用.中华外科杂志,2006,44(6):405-408.
    
    59. Waarde AV, Jager PL, Ishiwata K, et al. Comparison of Sigma-Ligands and Metabolic PET Tracers for Differentiating Tumor from Inflammation J Nucl Med, 2006,47 (1): 150-154.
    
    60. Hara T, Inagaki K, Kosaka N, et al. Sensitive detection of mediastinal lymph node metastasis oflung cancer with 11C-choline PET. J Nucl Med, 2000, 41 (9) :1507-1513.
    
    61.de Jong IJ, Prum J, Elsinga PH, et al, ~(11)C-choline Position Emission Tomography for the evaluation after treatment of localized prostate cancer . Eur Urol, 2003, 44 (1): 33-38.
    
    62. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med, 2001,42 (12) : 1805-1814.
    
    63. Hara T, Yuasa M, Yoshida H. Automated synthsis of Fluorine-18 labeled choline analogue 2-fluoethyl-2oxyethylammonium [J], J Nucl Med, 1997,38(Suppl):44.
    
    64.唐刚华,唐小兰,张岚,等.~(18)F-胆碱类似物的制备及其动物体内分布研究中华 核医学杂志,2002,22(3):172-174.
    
    65.DeGrado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of ~(18)F-labeled choline as oncologic tracers for Positron Emission Tomography: Initial finding in prostate cancer. Cancer Res,2000,61 (1) :110-117.
    
    66.DeGrado TR, Reiman RE, Price DT, et al. Pharmacokinetios and radiation dosimetry of 18F-fluorocholine[J]. J Nucl Med, 2002,43 (1) :92-96.
    
    67.吴战宏,王世真,周前,等,~(18)F标记氟乙基胆碱的合成与动物显像,中华核医学 杂志,2005,25(3):138-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700