基于电子授受作用的硝基芳烃检测用薄膜荧光传感器的设计、制备和传感性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基芳烃是常见爆炸物和典型的有机污染物,具有突出的公共安全威胁性、生态破坏性和生物毒性,也是潜在的致癌物质。因此研究微痕量硝基芳烃的快速检测新方法,对于及时发现隐藏炸药,预防恐怖犯罪,跟踪环境质量都具有十分重要的意义。目前见著文献的检测硝基芳烃的传感器中,以共轭荧光聚合物作为传感元素的薄膜荧光传感器被人们研究得最为深入。这是由于这类荧光物质具有所谓的“分子导线”或“一点接触、多点响应”效应。此类薄膜具有良好的光稳定性,超高的检测灵敏度,尤其适用于对气相硝基芳烃类化合物的检测。但是也存在一些突出缺点。主要是薄膜通透性不好:且由于荧光物种泄露的缘故,薄膜难以用于溶液样品测定。因此,有必要发展新的薄膜荧光传感器,克服共轭荧光聚合物薄膜存在的缺陷。
     本论文的研究工作拟采用自组装单层膜(self-assembled monolayers SAMs)技术,将荧光小分子多环芳烃化学固定于玻片表面,制备既能用于气相又能用于液相硝基芳烃检测的薄膜荧光传感器。选用具有富电子特征的多环芳烃作为传感元素的主要考虑是:缺电子硝基芳烃和多环芳烃之间存在电子授受作用,能猝灭薄膜的荧光发射,而且有助于硝基芳烃在薄膜表面的聚集,提高检测的灵敏度。由于SAMs膜高度的稳定性和结构特点,确保了此类薄膜在使用中基本没有荧光物种泄露;且传感元素暴露在薄膜表面可以直接与待分析物作用,在理论上不存在通透性问题.
     基于以上考虑和本实验室已有的研究基础,本论文的第一部分研究采用SAMs技术,以芘为传感元素,将其经由柔性长连接臂共价结合在以环氧基为功能末端的玻片表面,制备了一种对硝基芳烃蒸汽敏感的荧光传感薄膜。与已有的对硝基芳烃化合物敏感的荧光薄膜相比,该薄膜的不同之处在于连接臂微结构的不同,柔性和长度均有所增加。荧光猝灭实验表明,该薄膜的检测灵敏度主要与待检测硝基芳烃化合物的饱和蒸汽压及其分子体积有关,其对常见炸药的标示物如三硝基甲苯和2,4-二硝基甲苯在空气中的最低检出限分别为7.14×10~(-12)和5.49×10~(-11)g·mL~(-1)。相对于采用较短柔性连接臂的薄膜,以柔性长链为连接臂的传感薄膜对硝基芳烃的响应速度较慢,但是对硝基芳烃化合物的分子体积表现出一定的选择性,较小体积的硝基芳烃更容易接近膜内的传感元素,猝灭其荧光。此外,苯、甲苯、乙醇和香水等对测定均无明显干扰。该膜对硝基芳烃类化合物的响应还具有良好的可逆性,为其实际应用提供了可能。
     本论文的第二部分工作以丹磺酰为传感元素,同样采用SAMs技术,将其经由长柔性连接臂化学组装于以环氧基为功能末端的玻片表面,制备了一种可用于液相硝基芳烃检测的薄膜荧光传感器。该薄膜稳定性好,在液相中使用时,几乎不存在泄露问题。与短连接臂的类似薄膜相比较,该薄膜对硝基苯的传感性能有所不同。猝灭实验表明薄膜荧光在水相中对硝基苯的响应比三硝基甲苯,2,4-间二硝基甲苯,对氯硝基苯,对二硝基苯,间二硝基苯等其它硝基芳烃化合物更敏感。这可能是由于长柔性连接臂在水中采取压缩构象产生的屏蔽效应引起的.同时,实验中还证明硝基苯对薄膜荧光的猝灭过程在本质上属于静态猝灭,且具有较快的响应速度和良好的传感可逆性。
Nitroaromatic compounds(NACs) are typical explosives and common organic contaminants which are a real threat to public security,terrible destroyers to environment and toxics to biological systems.Moreover,they are considered as potential carcinogens.So developing a sensitive sensor for detect trace amount of NACs has eminent significance for discovering hidden landmines,preventing terrorist attacks and monitoring environment qualities.Among NACs sensitive sensors reported in the documents,fluorescent conjugated polymer film sensors have gained the closest and the most extensive studies,due to its "molecular wire" or "wring molecular recognition sites in series" effect.These sensing films display high photo-stability and ultra-high sensitivity and it has been demonstrated to be effective sensor for the NACs in air.However,they also have unavoidable disadvantages,slow diffusion of analytes in the film system and leaching of the fluorophores,which make it hard to be used in solution systems.Therefore,developing novel fluorescent film sensors to avoid these problems is real in need.
     Our program in this dissertation was aimed to fabricate NACs sensitive fluorescent film sensors via chemically bonding the polycyclic aromatic on the glass plate in a SAMs way.Employing polycyclic aromatic as the sensing element is due to the donating and accepting interaction between the NACs and polycyctic aromatics,which will help the NACs close to the surface of the film and produce the fluorescent quenching of the film sensors.The SAMs technique to immobilize the fluorophores on the outmost layer of the SAMs-functional glass plate is an effective way to solve the leaching and diffusion problems.This is because a SAMs film displays high stability and sensing elements in these films can directly contact with analytes.
     Given the above consideration and the previous work in our group,a fluorescent film sensor for NACs vapors was designed in the first part of this dissertation.It was prepared by immobilizing the pyrene derivatives on the epoxide-terminated glass plate via long spacers in a SAMs way.As discovered in the study,the sensitivity of the film to the NACs analytes mainly depends on the vapor pressure of a given NAC and the quencher size.The detection limits to the common explosive vapors, 2,4,6-trinitrotoluene and 2,4-dinitrotoluene,are 7.14×10~(-12) and 5.49×10~(-11) g·mL~(-1),respectively. Compared to the film with shorter spacers,this film shows slower response to NACs,but higher selectivity to the quencher sizes.In addition,the response of the film to NACs is barely influenced by the presence of some common chemical vapors,such as benzene,toluene,ethanol and perfume. Moreover,the detecting process of the film for NACs is reversible,which promises its potential for practical applications.
     In the second part of this dissertation,another fluorescent film sensor for the detection of NACs in aqueous phase has been developed via chemical immobilization of dansyl group on an epoxy-terminated self-assembled monolayer on glass plate.Thank to chemical attachment of the chromophore on the substrate,the present film shows a satisfying stability and avoids the problem of leaching of the chromophores.Increasing the length of the spacers results in a dramatic improvement in the performance of the film compared to those with similar structures.Fluorescence quenching experiments demonstrates that in aqueous medium,the emission of the film is more sensitive to nitrobenzene than to other NACs,including 2,4,6-trinitrotoluene,2,4-dinitrotoluene, p-chloronitrobenzene,m-dinitrobenzene,p-dinitrobenzene,and etc.This exceptional result has been rationalized by considering the possible hindrance effect induced by the compact conformation of the long flexible spacer.It is also demonstrated that the nitrobenzene quenching is static in nature,and the response of the film to nitrobenzene is fast and reversible.
引文
[1] K. J. Albert, D. R. Walt. High-Speed Fluorescence Detection of Explosives-Like Vapors[J].Anal. Chem., 2000, 72(9): 1947-1955.
    
    [2] R. J. Colton, J. N. Russell. Making the World a Safer Place[J]. Science, 2003, 299(5603):1324-1325.
    [3] J. S. Yang, T. M. Swager. Fluorescent Porous Polymer Films as TNT Chemosensors:Electronic and Structural Effects[J]. J. Am. Chem. Soc, 1998, 120(46): 11864-11873.
    [4] A. J. Pope, U. M. Haupts, K. J. Moore. Homogeneous Fluorescence Readouts for Miniaturized High-Throughput Screening: Theory and Practice[J]. Drug Discov. Today, 1999, 4(8):350-362.
    [5] A. P. de. Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. Mccoy, J. T.Rademacher, T. E. Rice. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem. Rev., 1997, 97(5): 1515-1566.
    [6] E. U. Akkaya, M. E. Huston, A. W. Czarnik. Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution[J]. J. Am. Chem. Soc, 1990,112(9): 3590-3593.
    [7] S. Y. Liu, Y. B. He, G. Y. Qing, K. X. Xu, H. J. Qin. Fluorescent Sensors for Amino Acid Anions Based on Calix[4]Arenes Bearing Two Dansyl Groups[J]. Tetrahedron: Asymmetry,2005, 16(8): 1527-1534.
    [8] L. Z. Meng, G. X. Mei, Y. B. He, Z. Y. Zeng. Synthesis and Anion Recognition Properties of Two Novel Tetraamide Calix[4](Aza)Crowns for Optical Anion Sensor[J]. Acta Chim. Sinica,2005, 63(5): 416-420.
    [9] J. Y. Lee, S. K. Kim, J. H. Jung, J. S. Kim. Bifunctional Fluorescence Calix[4]Arene Chemosensor for Both a Cation and an Anion[J]. J. Org. Chem., 2005, 70(4): 1463-1466.
    [10] S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, E. V. Anslyn. Teaching Old Indicators New Tricks[J]. Acc. Chem. Res., 2001, 34(12): 963-972..
    
    [11] M. A. Hortala, L. Fabbrizzi, N. Marcotte, F. Stomeo, A. Taglierti. Designing the Selectivity of the Fluorescent Detection of Amino Acids: A Chemosensing Ensemble for Histidine[J]. J. Am.Chem. Soc, 2003, 125(1): 20-21.
    
    [12] S. L. Tobey, E. V. Anslyn. Determination of Inorganic Phosphate in Serum and Saliva Using a Synthetic Receptor[J]. Org. Lett., 2003, 5(12): 2029-2031.
    [13] A. Buryak, K. Severin. An Organometallic Chemosensor for the Sequence-Selective Detection of Histidine- and Methionine-Containing Peptides in Water at Neutral pH[J]. Angew. Chem.Int. Ed., 2004, 43(36): 4771-1774.
    [14] Y. Kubo, A. Kobayashi, T. Ishida, Y. Misawa, T. D. James. Detection of Anions Using a Fluorescent Alizarin-Phenylboronic Acid Ensemble[J]. Chem. Commun., 2005, (22):2846-2848.
    [15] I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida, I. Hamachi. Molecular Recognition in a Supramolecular Hydrogel to Afford a Semi-Wet Sensor Chip[J]. J. Am.Chem. Soc, 2004, 126(38): 12204-12205.
    [16] M. Arduini, S. Marcuz, M. Montolli, E. Rampazzo, F. Mancin, S. Gross, L. Armelao, P.Tecilla, U. Tonellato. Turning Fluorescent Dyes into Cu(ll) Nanosensors[J]. Langmuir, 2005,21(20): 9314-9321.
    [17] M. Crego-Calama, D. N. Reinhoudt. New Materials for Metal Ion Sensing by Self-Assembled Monolayers on Glass[J]. Adv. Mater., 2001, 13(15): 1171-1174.
    [18] K. A. Gattas-Asfura, R. M. Leblanc. Peptide-Coated CdS Quantum Dots for the Optical Detection of Copper (II) and Silver (I)[J]. Chem. Commun., 2003, 2684-2685.
    [19] Y. Zheng, J. Orbulescu, X. Ji, F. M. Andreopoulos, S. M. Pham, R. M. Leblanc. Development of Fluorescent Film Sensors for the Detection of Divalent Copper[J]. J. Am. Chem. Soc, 2003,125(9): 2680-2686.
    [20] S. Kolusheva, O. Molt, M. Herm, T. Schrader, R. Jelinek. Selective Detection of Catecholamines by Synthetic Receptors Embedded in Chromatic Polydiacetylene Vesicles[J].J. Am. Chem. Soc, 2005, 127(28): 10000-10001.
    [21] K. P. McNamara, N. Rosenzweig, Z. Rosenzweig. Liposome-Based Optochemical Nanosensors[J]. Mikrochim. Acta, 1999, 131(1-2): 57-64.
    [22] R. Aucejo, J. Alarcon, C. Soriano, M. C. Guillem, E. Garcia-Espana, F. Torres. New Sensing Devices Part 1: Indole-Containing Polyamines Supported in Nanosized Boehmite Particles[J].J. Mater. Chem., 2005, 15(28): 2920-2927.
    [23] O. S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors[J]. Anal. Chem., 2004, 76(12):3269-3283.
    [24] R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje. Optical Waveguide Sensors in Analytical Chemistry: Today's Instrumentation, Applications and Trends for Future Development[J]. J.Anal. Chem. Commun., 1998, 362(4): 349-373.
    [25] M. Zourob, S. Mohr, P. R. Fielden, N. J. Goddard. An Integrated Disposable Dye Clad Leaky Waveguide Sensor for μ-TAS Applications[J]. Lab Chip, 2005, 5(7): 772-777.
    [26] R. Meallet-Renault, R. Pansu, S. Amigoni-Gerbier, C. Larpent. Metal-Chelating Nanoparticles as Selective Fluorescent Sensor for Cu~(2+)[J]. Chem. Commun., 2004, (20): 2344-2345.
    [27] J. T. Suri, D. B. Cordes, F. E. Cappuccio, R. A. Wessling, B. Singaram. Continuous Glucose Sensing with a Fluorescent Thin-Film Hydrogel[J]. Angew. Chem. Int. Ed., 2003, 42(47):5857-5859.
    [28] S. H. Lee, J. Kumar, S. K. Tripathy. Thin Film Optical Sensors Employing Polyelectrolyte Assembly[J]. Langmuir, 2000, 16(26): 10482-10489
    [29] Y. Amao. Probes and Polymers for Optical Sensing of Oxygen[J]. Microchim. Acta, 2003,143(1): 1-12.
    [30] K. J. Albert, S. D. Gill, T. C. Pearce, D. R. Walt. Automatic Decoding of Sensor Types within Randomly-Ordered, High-Density Optical Sensor Arrays[J]. Anal. Bioanal. Chem., 2002,373(8): 792-802.
    [31] T. A. Dickinson, D. R. Walt, J. White, J. S. Kauer. Generating Sensor Diversity through Combinatorial Polymer Synthesis[J]. Anal. Chem., 1997, 69(17): 3413-3418.
    [32] E. L. Doyle, C. A. Hunter, H. C. Phillips, S. J. Webb, N. H. Williams. Cooperative Binding at Lipid Bilayer Membrane Surfaces[J]. J. Am. Chem. Soc., 2003, 125(15): 4593-4599.
    [33] W. Qin, P. Parzuchowski, W. Zhang, M. E. Meyerhoff. Optical Sensor for Amine Vapors Based on Dimer-Monomer Equilibrium of Indium(III) Octaethylporphyrin in a Polymeric Film[J]. Anal. Chem., 2003, 75(2): 332-340.
    [34] Y. Liu, R. C. Mills, J. M. Boncella, K. S. Schanze. Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics[J]. Langmuir, 2001, 17(24): 7452-7455.
    [35] T. M. Ambrose, M. E. Meyerhoff. Optical Ion Sensing with Immobilized Thin Films of Photocrosslinked Decyl Methacrylate[J]. Anal. Chim. Acta, 1999, 378(1-3): 119-126.
    [36] M. R. Shortreed, S. Dourado, R. Kopelman. Development of a Fluorescent Optical Potassium-Selective Ion Sensor with Ratiometric Response for Intracellular Applications[J].Sens. Actuators, B, 1997, 38(1-3): 8-12.
    [37] T. Mayr, G. Liebsch, I. Klimant, O. S. Wolfbeis. Multi-Ion Imaging Using Fluorescent Sensors in a Microtiterplate Array Format[J]. Analyst, 2002, 127(2): 201-203.
    [38] J. Lin. Recent Development and Applications of Optical and Fiber-Optic pH Sensors[J].TrAC-Trends Anal. Chem., 2000, 19(9): 541-552.
    [39] B. M. Weidgans, C. Krause, I. Klimant, O. S. Wolfbeis. Fluorescent pH Sensors with Negligible Sensitivity to Ionic Strength[J]. Analyst, 2004, 129(7): 645-650.
    [40] S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, R. Kopelman. Nanoscale Probes Encapsulated by Biologically Localized Embedding (Pebbles) for Ion Sensing and Imaging in Live Cells[J]. Talanta,2004,63(1):41-59.
    [41]R.M.Sanchez-Martin,M.Cuttle,S.Mittoo,M.Bradley.Microsphere-Based Real-Time Calcium Sensing[J].Angew.Chem.Int.Ed.,2006,45(33):5472-5474.
    [42]S.C.Zimmerman,N.G.Lemcoff.Synthetic Hosts Via Molecular Imprinting--Are Universal Synthetic Antibodies Realistically Possible?[J].Chem.Commun.,2004,(1):5-14.
    [43]E.Brasola,F.Mancin,E.Rampazzo,P.Tecilla,U.Tonellato.A Fluorescence Nanosensor for Cu~(2+) on Silica Particles[J].Chem.Commun.,2003,(24):3026-3027.
    [44]O.S.Wolfbeis,N.V.Rodriguez,T.Werner.Led-Compatible Fluorosensor for Measurement of near-Neutral pH Values[J].Mikrochim.Acta,1992,108(3-6):133-141.
    [45]T.Tanabe,K.Touma,K.Hamasaki,A.Ueno.Immobilized Fluorescent Cyclodextrin on a Cellulose Membrane as a Chemosensor for Molecule Detection[J].Anal.Chem.,2001,73(13):3126-3130.
    [46]T.Tanabe,K.Touma,K.Hamasaki,A.Ueno.Fluorescent Cyclodextrin Immobilized on a Cellulose Membrane as a Chemosensor System for Detecting Molecules[J].Anal.Chem.,2001,73(8):1877-1880.
    [47]W.H.Liu,Y.Wang,J.H.Tang,G.L.Shen,R.Q.Yu.Optical Fiber Sensor for Tetracycline Antibiotics Based on Fluorescence Quenching of Covalently Immobilized Anthracene[J].Analyst,1998,123(2):365-369.
    [48]B.S.Sandanaraj,R.Demont,S.V.Aathimanikandan,E.N.Savariar,S.Thayumanavan.Selective Sensing of Metalloproteins from Nonselective Binding Using a Fluorogenic Amphiphilic Polymer[J].J.Am.Chem.Soc.,2006,128(33):10686-10687.
    [49]H.R.He,M.A.Mortellaro,M.J.P.Leiner,R.J.Fraatz,J.K.Tusa.A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water[J].J.Am.Chem.Soc.,2003,125(6):1468-1469.
    [50]V.Balzani,P.Ceroni,M.Maestri,C.Saudan,V.Vicinelli.Luminescent Dendrimers.Recent Advances[J].Top.Curr.Chem.,2003,228(159-191.
    [51]V.J.Pugh,Q.S.Hu,L.Pu.The First Dendrimer-Based Enantioselective Fluorescent Sensor for the Recognition of Chiral Amino Alcohols[J].Angew.Chem.Int.Ed.,2000,39(20):3638-3641.
    [52]L.Pu.Synthesis and Study of Binaphthyl-Based Chiral Dendrimers[J].J.Photochem.Photobiol.,A,2003,155(1-3):47-55.
    [53]L.Z.Gong,Q.S.Hu,L.Pu.Optically Active Dendrimers with a Binaphthyl Core and Phenylene Dendrons:Light Harvesting and Enantioselective Fluorescent Sensing[J].J.Org.Chem.,2001,66(7):2358-2367.
    [54] V. Balzani, P. Ceroni, S. Gestermann, C. Kauffmann, M. Gorka, F. Vogtle. Dendrimers as Fluorescent Sensors with Signal Amplification[J]. Chem. Commun., 2000, (10): 853-854.
    [55] F. Vogtle, S. Gestermann, C. Kauffmann, P. Ceroni, V. Vicinelli, V. Balzani. Coordination of Co~(2+) Ions in the Interior of Poly(Propylene Amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery[J]. J. Am. Chem. Soc., 2000, 122(42): 10398-10404.
    [56] I. Grabchev, J. M. Chovelon, V. Bojinov, G. Ivanova. Poly(amidoamine) Dendrimers Peripherally Modified with 4-Ethylamino-1,8-naphthalimide. Synthesis and Photophysical Properties[J]. Tetrahedron, 2003, 59(48): 9591-9598.
    [57] I. Grabchev, J. M. Chovelon, X. H. Qian. A Polyamidoamine Dendrimer with Peripheral 1,8-Naphthalimide Groups Capable of Acting as a PET Fluorescent Sensor for Metal Cations[J]. New J. Chem., 2003, 27(2): 337-340.
    [58] D. Batra, K. J. Shea. Combinatorial Methods in Molecular Imprinting[J]. Curr. Opin. Chem.Biol., 2003, 7(3): 434-442.
    [59] F. H. Dickey. The Preparation of Specific Adsorbents[J]. Proc. Natl. Acad. Sci. USA, 1949,35(5): 227-229.
    [60] K. Haupt, K. Mosbach. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors[J]. Chem. Rev., 2000, 100(7): 2495-2504.
    [61] P. Turkewitsch, B. Wandelt, G. D. Darling, W. S. Powell. Fluorescent Functional Recognition Sites through Molecular Imprinting. A Polymer-Based Fluorescent Chemosensor for Aqueous cAMP[J]. Anal. Chem., 1998, 70(10): 2025-2030.
    [62] A. L. Jenkins, O. M. Uy, G. M. Murray. Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water[J]. Anal. Chem.,1999, 71(2): 373-378.
    [63] Y. Liao, W. Wang, B. H. Wang. Building Fluorescent Sensors by Template Polymerization :The Preparation of a Fluorescent Sensor for L-Tryptophan[J]. Bioorg. Chem., 1999, 27(6):463-476.
    [64] N. T. K. Thanh, D. L. Rathbone, D. C. Billington, N. A. Hartell. Selective Recognition of cGMP Using a Polymer-Based Fluorescent Chemosensor[J]. Anal. Lett., 2002, 35(15):2499-2509.
    [65] A. J. Tong, H. Dong, L. D. Li. Molecular Imprinting-Based Fluorescent Chemosensor for Histamine Using Zinc(II)-Protoporphyrin as a Functional Monomer[J]. Anal. Chim. Acta,2002, 466(1): 31-37.
    [66] W. Wang, S. H. Gao, B. H. Wang. Building Fluorescent Sensors by Template Polymerization:The Preparation of a Fluorescent Sensor for D-Fructose[J]. Org. Lett., 1999, 1(18): 1209-1212.
    [67] S. Subrahmanyam, S. A. Piletsky, E. V. Piletska, B. N. Chen, K. Karim, A. P. F. Turner.'Bite-and-Switch' Approach Using Computationally Designed Molecularly Imprinted Polymers for Sensing of Creatinine[J]. Biosens. Bioelectron., 2001, 16(9-12): 631-637.
    [68] S. H. Gao, W. Wang, B. H. Wang. Building Fluorescent Sensors for Carbohydrates Using Template-Directed Polymerizations[J]. Bioorg. Chem., 2001, 29(5): 308-320.
    [69] D. L. Rathbone, D. Q. Su, Y. F. Wang, D. C. Billington. Molecular Recognition by Fluorescent Imprinted Polymers[J]. Tetrahedron Lett., 2000, 41(1): 123-126.
    [70] B. Wandelt, P. Turkewitsch, S. Wysocki, G. D. Darling. Fluorescent Molecularly Imprinted Polymer Studied by Time-Resolved Fluorescence Spectroscopy[J]. Polymer, 2002, 43(9):2777-2785.
    [71] H. Q. Zhang, W. Verboom, D. N. Reinhoudt. 9-(Guanidinomethyl)-10-Vinylanthracene: A Suitable Fluorescent Monomer for MIPs[J]. Tetrahedron Lett., 2001, 42(26): 4413-4416.
    [72] H. Kubo, N. Yoshioka, T. Takeuchi. Fluorescent Imprinted Polymers Prepared with 2-Acrylamidoquinoline as a Signaling Monomer[J], Org. Lett., 2005, 7(3): 359-362.
    [73] N. T. Greene, K. D. Shimizu. Colorimetric Molecularly Imprinted Polymer Sensor Array Using Dye Displacement[J]. J. Am. Chem. Soc, 2005, 127(15): 5695-5700.
    [74] Q. Zhou, T. M. Swager. Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity[J]. J. Am. Chem. Soc, 1995,117(50): 12593-12602.
    [75] T. M. Swager. The Molecular Wire Approach to Sensory Signal Amplification[J]. Acc. Chem.Res., 1998, 31(5): 201-207.
    [76] I. B. Kim, U. H. F. Bunz. Modulating the Sensory Response of a Conjugated Polymer by Proteins: An Agglutination Assay for Mercury Ions in Water[J]. J. Am. Chem. Soc, 2006,128(9): 2818-2819.
    [77] L. J. Fan, W. E. Jones. A Highly Selective and Sensitive Inorganic/Organic Hybrid Polymer Fluorescence "Turn-On" Chemosensory System for Iron Cations[J]. J. Am. Chem. Soc, 2006,128(21): 6784-6785.
    [78] L. J. Fan, Y. Zhang, W. E. Jones. Design and Synthesis of Fluorescence "Turn-On" Chemosensors Based on Photoinduced Electron Transfer in Conjugated Polymers[J].Macromolecules, 2005, 38(7): 2844-2849.
    [79] B. S. Harrison, M. B. Ramey, J. R. Reynolds, K. S. Schanze. Amplified Fluorescence Quenching in a PoIy(p-phenylene)-Based Cationic Polyelectrolyte[J]. J. Am. Chem. Soc, 2000,122(35): 8561-8562.
    
    [80] F. Naso, F. Babudri, D. Colangiuli, G. M. Farinola, F. Quaranta, R. Rella, R. Tafuro, L. Valli. Thin Film Construction and Characterization and Gas-Sensing Performances of a Tailored Phenylene-Thienylene Copolymer[J]. J. Am. Chem. Soc, 2003, 125(30): 9055-9061.
    [81] A. Sundararaman, M. Victor, R. Varughese, F. Jakle. Synthesis of Organo-Silane Functionalized Nanocrystal Micelles and Their Self-Assembly [J]. J. Am. Chem. Soc, 2005,127(40): 13748-13749.
    [82] J. Yang, T. M. Swage. Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials[J]. J. Am. Chem. Soc, 1998, 120(21): 5321-5322.
    [83] J. S. Yang, T. M. Swager. Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects[J]. J. Am. Chem. Soc, 1998, (120): 11864-11873.
    [84] C. J. Cumming, C. Aker, M. Fisher, M. Fox, M. J. L. Grone, D. Reust, M. G. Rockley, T. M.Swager, E. Towers, V. Williams. Using Novel Fluorescent Polymers as Sensory Materials for above-Ground Sensing of Chemical Signature Compounds Emanating from Buried Landmines[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39(6): 1119-1128.
    [85] G. Schulz-Ekloff, D. Wohrle, B. V. Duffel, R. A. Schoonheydt. Chromophores in Porous Silicas and Minerals: Preparation and Optical Properties[J]. Microporous Mesoporous Mater.,2002, 51(2): 91-138.
    
    [86] R. Reisfeld. Fluorescent Dyes in Sol-Gel Glasses[J]. J. Fluoresc, 2002, 12(3-4): 317-325.
    [87] C. Sanchez, B. Lebeau, F. Chaput, J. P. Boilot. Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites[J]. Adv. Mater., 2003, 15(13): 1969-1994.
    [88] D. A. Loy, K. J. Shea. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials[J]. Chem. Rev., 1995, 95(5): 1431-1442.
    [89] D. Avnir, D. Levy, R. Reisfeld. The Nature of the Silica Cage as Reflected by Spectral Changes and Enhanced Photostability of Trapped Rhodamine 6G[J]. J. Phys. Chem., 1984,88(24): 5956-5959.
    [90] M. Plaschke, R. Czolk, H. J. Ache. Fluorimetric Determination of Mercury with a Water-Soluble Porphyrin and Porphyrin-Doped Sol-Gel Films[J]. Anal. Chim. Acta, 1995,304(1): 107-113.
    [91] B. D. Maccraith, C. M. Mcdonagh, G. O'Keeffe, A. K. Mcevoy, T. Butler, F. R. Sheridan. Sol-Gel Coatings for Optical Chemical Sensors and Biosensors[J]. Sens. Actuators, B, 1995,29(1-3): 51-57.
    [92] G. E. Badini, K. T. V. Grattan, A. C. C. Tseung. Impregnation of a pH Sensitive Dye into Sol-Gels for Fiber Optic Chemical Sensors[J]. Analyst, 1995, 120(4): 1025-1028.
    [93] M. Ayadim, L. H. Jiwan, A. P. d. Silva, J. P. Soumillion. Photosensing by a Fluorescing Probe Covalently Attached to the Silica[J]. Tetrahedron Lett., 1996, 37(39): 7039-7042.
    [94] J. Zilberstein, A. Bromberg, G. Berkovic. Fluorescence Study of Pyrene Chemically Bound to Controlled-Pore Glasses[J]. J. Photochem. Photobiol., A, 1994, 77(1): 69-81.
    [95] G. O'Keeffe, B. D. Maccraith, A. K. Mcevoy, C. M. Mcdonagh, J. F. Megilp. Development of a Led-Based Phase Fluorimetric Oxygen Sensor Using Evanescent Wave Excitation of a Sol-Gel Immobilized Dye[J]. Sens. Actuators, B, 1995, 29(1-3): 226-230.
    [96] C. Malins, S. Fanni, H. G. Glever, J. G. Vos, B. D. Maccraith. The Preparation of a Sol-Gel Glass Oxygen Sensor Incorporating a Covalently Bound Fluorescent Dye[J]. Anal. Commun.,1999, 36(1): 3-4.
    [97] C. Malins, H. G. Glever, T. E. Keyes, J. G. Vos, W. J. Dressick, B. D. Maccraith. Sol-Gel Immobilised Ruthenium(II) Polypyridyl Complexes as Chemical Transducers for Optical pH Sensing[J]. Sens. Actuators, B, 2000, 67(1-2): 89-95.
    [98] T. Nguyen, K. P. McNamara, Z. Rosenzweig. Optochemical Sensing by Immobilizing Fluorophore-Encapsulating Liposomes in Sol-Gel Thin Films[J]. Anal. Chim. Acta, 1999,400(1-3): 45-54.
    [99] K. E. Jaeger, M. T. Reetz. Microbial Lipases Form Versatile Tools for Biotechnology[J].Trends Biotechnol., 1998, 16(9): 396-403.
    [100] J. M. Haider, Z. Pikramenou. Photoactive Metallocyclodextrins: Sophisticated Supramolecular Arrays for the Construction of Light Activated Miniature Devices[J]. Chem. Soc. Rev., 2005,34(1): 120-132.
    [101] C. M. Rudzinski, A. M. Young, D. G. Nocera. A Supramolecular Microfluidic Optical Chemosensor[J]. J. Am. Chem. Soc, 2002, 124(8): 1723-1727.
    [102] A. W. Wun, P. T. Snee, Y. T. Chan, M. G. Bawendi, D. G. Nocera. Non-Linear Transduction Strategies for Chemo/Biosensing on Small Length Scales[J]. J. Mater. Chem., 2005, 15(27):2697-2706.
    [103] M. K. P. Leung, C. F. Chow, M. H. W. Lam. A Sol-Gel Derived Molecular Imprinted Luminescent PET Sensing Material for 2,4-Dichlorophenoxyacetic Acid[J]. J. Mater. Chem.,2001, 11(12): 2985-2991.
    [104] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature, 1992,359(6397): 710-712.
    [105] G. Wirnsberger, B. J. Scott, G. D. Stucky. pH Sensing with Mesoporous Thin Films[J]. Chem.Commun., 2001,(1): 119-120.
    [106] H. Y. Fan, Y. F. Lu, A. Stump, S. T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G. P. Lopez, C.J. Brinker. Rapid Prototyping of Patterned Functional Nanostructures[J]. Nature, 2000, 405(6782): 56-60.
    [107] A. B. Descalzo, D. Jimenez, M. D. Marcos, R. Martinez-Manez, J. Soto, J. E. Haskouri, C.Guillem, D. Beltran, P. Amoros, M. V. Borrachero. A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups[J]. Adv. Mater., 2002, 14(13-14):966-969.
    [108] V. S. Y. Lin, C. Y. Lai, J. G. Huang, S. A. Song, S. Xu. Molecular Recognition inside of Multifunctionalized Mesoporous Silicas: Toward Selective Fluorescence Detection of Dopamine and Glucosamine[J]. J. Am. Chem. Soc.,2001, 123(46): 11510-11511.
    [109] D. R. Radu, C. Y. Lai, J. W. Wiench, M. Pruski, V. S. Y. Lin. Gatekeeping Layer Effect: A Poly(lactic acid)-Coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters[J]. J. Am. Chem. Soc, 2004, 126(6):1640-1641.
    [110] A. B. Descalzo, K. Rurack, H. Weisshoff, R. M. n.-M. n. ez, M. D. Marcos, P. Amoros, K.Hoffmann, J. Soto. Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates[J]. J. Am. Chem. Soc, 2005, 127(1):184-200.
    [111] M. Comes, G. Rodriguez-Lopez, M. D. Marcos, R. Martinez-Mafiez, F. Ancenon, J. Soto, L. A.Villaescusa, P. Amoros, D. Beltran. Host Solids Containingnanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays[J]. Angew. Chem. Int. Ed., 2005,44(19): 2918-2922.
    [112] M. Wark, Y. Rohlfing, Y. Altindag, H. Wellmann. Optical Gas Sensing by Semiconductor Nanoparticles or Organic Dye Molecules Hosted in the Pores of Mesoporous Siliceous MCM-41[J]. Phys. Chem. Chem. Phys., 2003, 5(23): 5188-5194.
    [113] R. Metivier, I. Leray, B. Lebeau, B. Valeur. A Mesoporous Silica Functionalized by a Covalently Bound Calixarene-Based Fluoroionophore for Selective Optical Sensing of Mercury(II) in Water[J]. J. Mater. Chem., 2005, 15(27-28): 2965-2973.
    [114] O. S. Wolfbeis, B. P. H. Schaffar. Optical Sensors: An Ion-Selective Optrode for Potassium[J].Anal. Chim. Acta, 1987, (198): 1-12.
    [115] P. Grandini, F. Mancin, P. Tecilla, P. Scrimin, U. Tonellato. Exploiting the Self-Assembly Strategy for the Design of Selective Cu~(II) Ion Chemosensors[J]. Angew. Chem. Int. Ed., 1999,38(20): 3061-3064.
    [116] Y. D. Fernandez, A. P. Gramatges, V. Amendola, F. Foti, C. Mangano, P. Pallavicini, S.Patroni. Using Micelles for a New Approach to Fluorescent Sensors for Metal Cations[J].Chem. Commun., 2004, (14): 1650-1651.
    [117] Y. Diaz-Fernandez, A. Perez-Gramatges, S. Rodriguez-Calvo, C. Mangano, P. Pallavicini.Structure and Dynamics of Micelle-Based Fluorescent Sensor for Transition Metals[J]. Chem.Phys. Lett., 2004, 398(1-2): 245-249.
    [118] N. Nath, A. Chilkoti. Label Free Colorimetric Biosensing Using Nanoparticles[J], J. Fluoresc,2004, 14(4): 377-389.
    [119] J. J. Shi, Y. F. Zhu, X. R. Zhang, W. R. G. Baeyens, A. M. Garcia-Campana. Recent Developments in Nanomaterial Optical Sensors[J]. TrAC-Trends Anal. Chem., 2004, 23(5):351-360.
    [120] U. Drechsler, B. Erdogan, V. M. Rotello. Nanoparticles: Scaffolds for Molecular Receptors[J].Chem. Eur. J., 2004, 10(22): 5570-5579.
    [121] J. W. Aylott. Optical Nanosensors-an Enabling Technology for Intracellular Measurements[J].Analyst, 2003, 128(4): 309-312.
    [122] J. A. Ferguson, F. J. Steemers, D. R. Walt. High-Density Fiber-Optic DNA Random Microsphere Array[J]. Anal. Chem., 2000, 72(22): 5618-5624.
    [123] M. Montalti, L. Prodi, N. Zaccheroni. Fluorescence Quenching Amplification in Silica Nanosensors for Metal Ions[J]. J. Mater. Chem., 2005, 15(27): 2810-2814.
    [124] M. Montalti, L. Prodi, N. Zacheroni, A. Zattoni, P. Reschiglian, G. Falini. Energy Transfer in Fluorescent Silica Nanoparticles[J]. Langmuir, 2004, 20(7): 2989-2991.
    [125] Y. F. Chen, Z. Rosenzweig. Luminescent CdS Quantum Dots as Selective Ion Probes[J]. Anal.Chem., 2002, 74(19): 5132-5138.
    [126] K. Sasaki, Z. Y. Shi, R. Kopelman, H. Masuhara. Three-Dimensional pH Microprobing with an Optically-Manipulated Fluorescent Particle[J]. Chem. Lett., 1996, 25(2): 141-142.
    [127] M. Montalti, L. Prodi, N. Zaccheroni, G. Falini. Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles[J]. J. Am. Chem. Soc, 2002,124(45): 13540-13546.
    [128] A. Rose, Z. Zhu, C. F. Madigan. Sensitivity Gains in Chemosensing by Lasing Action in Organic Polymers[J]. Nature, 2005,434(7035): 876-879.
    [129] E. Rampazzo, E. Brasola, S. Marcuz, F. Mancin, P. Tecilla, U. Tonellato. Surface Modification of Silica Nanoparticles: A New Strategy for the Realization of Self-Organized Fluorescence Chemosensors[J]. J. Mater. Chem., 2005, 15(27): 2687-2696.
    [130] J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy. Luminescence Spectral Properties of CdS Nanoparticles[J]. J. Phys. Chem. B, 1999, 103(36): 7613-7620.
    [131] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science, 1998, 281(5396): 2013-2016.
    [132] J. G. Liang, X. P. Ai, Z. K. He, D. W. Pang. Functionalized CdSe Quantum Dots as Selective Silver Ion Chemodosimeter[J]. Analyst, 2004, 129(7): 619-622.
    [133] C. Bo, Z. Ping. A New Determining Method of Copper(III) Ions at ng mL(-l) Levels Based on Quenching of the Water-Soluble Nanocrystals Fluorescence[J]. Anal. Bioanal. Chem., 2005,381(4): 986-992.
    [134] W. J. Jin, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel. Surface-Modified CdSe Quantum Dots as Luminescent Probes for Cyanide Determination[J]. Anal. Chim. Acta, 2004,522(1): 1-8.
    [135] T. Jin, F. Fujii, H. Sakata, M. Tamura, M. Kinjo. Amphiphilic p-Sulfonatocalix[4]Arene -Coated CdSe/ZnS Quantum Dots for the Optical Detection of the Neurotransmitter Acetylcholine[J]. Chem. Commun., 2005, (934): 4300-4302.
    [136] W. J. Jin, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel.Photoactivated Luminescent CdSe Quantum Dots as Sensitive Cyanide Probes in Aqueous Solutions[J]. Chem. Commun., 2005, (7): 883-885.
    [137] D. B. Cordes, S. Gamsey, B. Singaram. Fluorescent Quantum Dots with Boronic Acid Substituted Viologens to Sense Glucose in Aqueous Solution[J]. Angew. Chem. Int. Ed., 2006,45(23): 3829-3832.
    [138] T. Torimoto, H. Kontani, Y. Shibutani, S. Kuwabata, T. Sakata, H. Mori, H. Yoneyama.Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique[J]. J. Phys. Chem. B, 2001, 105(29): 6838-6845.
    [139] K. Iwasaki, T. Torimoto, T. Shibayama, T. Nishikawa, B. Ohtani. Fabrication of Jingle-Bell-Shaped Core-Shell Nanoparticulate Films and Molecular-Size-Responsive Photoluminescence Quenching of Cadmium Sulfide Cores[J]. Small, 2006, 2(7): 854-858.
    [140] R. M. Crooks, A. J. Ricco. New Organic Materials Suitable for Use in Chemical Sensor Arrays[J]. Acc. Chem. Res., 1998, 31(5): 219-227.
    [141] V. Chechik, R. M. Crooks, C. J. M. Stirling. Reactions and Reactivity in Self-Assembled Monolayers[J]. Adv. Mater., 2000, 12(16): 1161-1171.
    [142] K. Motesharei, D. C. Myles. Molecular Recognition on Functionalized Self-Assembled Monolayers of Alkanethiols on Gold[J]. J. Am. Chem. Soc, 1998, 120(29): 7328-7336.
    [143] X. Y. Sun, B. Liu, Y. B. Jiang. An Extremely Sensitive Monoboronic Acid Based Fluorescent Sensor for Glucose[J]. Anal. Chim. Acta, 2004, 515(2): 285-290.
    [144] K. Motesharei, D. C. Myles. Molecular Recognition in Membrane Mimics: A Fluorescence Probe[J]. J. Am. Chem. Soc, 1994, 116(16): 7413-7414.
    
    [145] H. Imahori, H. Norieda, Y. Nishimura, I. Yamazaki, K. Higuchi, N. Kato, T. Motohiro, H. Yamada, K. Tamaki, M. Arimura, Y. Sakata. Chain Length Effect on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrins on Gold Electrodes[J]. J. Phys. Chem. B, 2000, 104(6): 1253-1260.
    [146] E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M.V. Veggel, D. N. Reinhoudt, M. Moller, D. I. Gittins. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects[J]. Phys. Rev. Lett.,2002, 89(20): 203002.
    [147] R. C. Panicker, X. Huang, S. Q. Yao. Recent Advances in Peptide-Based Microarray Technologies[J]. Comb. Chem. High Throughput Screening, 2004, 7(6): 547-556.
    [148] D. P. Walsh, Y. T. Chang. Recent Advances in Small Molecule Microarrays: Applications and Technology[J]. Comb. Chem. High Throughput Screening, 2004, 7(6): 557-564.
    [149] A. Adronov, D. R. Robello, J. M. J. Frechet. Light Harvesting and Energy Transfer within Coumarin-Labeled Polymers[J]. J. Polym. Sci. Part A: Polym. Chem., 2001, 39(9): 1366-1373.
    [150] L. A. J. Chrisstoffels, A. Adronov, J. M. J. Frechet. Surface-Confined Light Harvesting,Energy Transfer, and Amplification of Fluorescence Emission in Chromophore-Labeled Self-Assembled Monolayers[J]. Angew. Chem. Int. Ed., 2000, 39(12): 2163-2167.
    [151] T. P. Sullivan, W. T. S. Huck. Reactions on Monolayers: Organic Synthesis in Two Dimensions[J]. Eur. J. Org. Chem., 2003, (1): 17-29.
    [152] M. P. Xavier, D. Garcia-Fresnadillo, M. C. Moreno-Bondi, G. Orellana. Oxygen Sensing in Nonaqueous Media Using Porous Glass with Covalently Bound Luminescent Ru(II) Complexes[J]. Anal. Chem., 1998, 70(24): 5184-5189.
    [153] S. Flink, F. C. J. M. V. Veggel, D. N. Reinhoudt. A Self-Assembled Monolayer of a Fluorescent Guest for the Screening of Host Molecules[J]. Chem. Commun., 1999, (21):2229-2230.
    [154] N. J. V. d. Veen, S. Flink, M. A. Deij, R. J. M. Egberink, F. C. J. M. V. Veggel, D. N.Reinhoudt. Monolayer of a Na~+-Selective Fluoroionophore on Glass: Connecting the Fields of Monolayers and Optical Detection of Metal Ions[J]. J. Am. Chem. Soc., 2000, 122(25):6112-6113.
    [155] M. A. Cejas, F. M. Raymo. Fluorescent Diazapyrenium Films and Their Response to Dopamine[J]. Langmuir, 2005, 21(13): 5795-5892.
    [156] L. N. Gao, Y. Fang, X. P. Wen. Monomolecular Layers of Pyrene as a Sensor to Dicarboxylic Acids[J]. J. Phys. Chem. B, 2004, 108(32): 1207-1213.
    [157] F. Lu, L. Gao, H. Li, L. Ding, Y. Fang. Molecular Engineered Silica Surfaces with an Assembled Anthracene Monolayer as a Fluorescent Sensor for Organic Copper(II) Salts[J]. Appl.Surf.Sci.,2007,253(9):4123-4131.
    [158]F.T.L(u|¨),L.N.Gao,L.P.Ding.Spacer Layer Screening Effect:A Novel Fluorescent Film Sensor for Organic Copper(Ⅱ) Salts[J].Langmuir,2006,22(2):841-845.
    [159]L.P.Ding,Y.Fang,L.L.Jiang,L.N.Gao,X.Yin.Twisted Intra-Molecular Electron Transfer Phenomenon of Dansyl Immobilized on Chitosan Film and Its Sensing Property to the Composition of Ethanol-Water Mixtures[J].Thin Solid Films,2005,478(1-2):318-325.
    [160]L.P.Ding,J.P.Kang,F.T.L(u|¨),L.N.Gao,X.Yin,Y.Fang.Fluorescence Behaviors of 5-Dimethylamino-1-Naphthalene-Sulfonylfunctionalized Self-Assembled Monolayer on Glass Wafer Surface and Its Sensing Properties for Nitrobenzene[J].Thin Solid Films,2007,515(5):3112-3119.
    [161]S.J.Zhang,F.T.L(u|¨),L.N.Gao,L.P.Ding,Y.Fang.Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics[J].Langmuir,2007,23(3):1584-1590.
    [162]张淑娟,房喻.硝基芳烃类炸药检测用荧光传感器研究进展[J].传感器与微系统,2006,25(10):1-3.
    [163]A.E.Stephen,L.M.Charles.Water-Soluble Copolymers.39.Synthesis and Solution Properties of Associative Acrylamido Copolymers with Pyrenesulfonamide Fluorescence Labels[J].Macromolecules,1992,25(7):1881-1886.
    [164]F.Y.L(u|¨),Y.Fang,L.N.Gao.Selectivity Via Insertion:Detection of Dicarboxylic Acids in Water by a New Film Chemosensor with Enhanced Properties[J].J.Photochem.Photobiol.,A,2005,175(2):207-213.
    [165]J.Sagiv.Organized Monolayers by Adsorption.1.Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces[J].J.Am.Chem.Soc.,1980,102(1):92-98.
    [166]J.R.Lawowicz,Principles of Fluorescence Spectroscopy[M].2nd Ed.,New York:Kluwer Academic/Plenum Publishers,1999:7.
    [167]C.Bruschini.Commercial Systems for the Direct Detection of Explosives for Explosive Ordnance Disposal Tasks[J].Subsurf.Sens.Tech.Appl.,2001,2(3):299-366.
    [168]J.R.Lawowicz.Principles of Fluorescence Spectroscopy[M].2nd Ed.,New York:Kluwer Academic/Plenum Publishers,1999:248.
    [169]J.E.Walker,D.L.Kaplan.Biological Degradation of Explosives and Chemical Agents[J].Biodegradation,1992,3(3):369-385.
    [170]G.Koss,A.Lommel,I.Ollroge.Enhanced Humification of TNT Bioremediation of Contaminated Soil and Water in Practice[J].Bundesgesundheitsblatt,1989,32(12):527-536.
    [171]张蕾,徐镜波.硝基芳烃对虹鳉鱼(Poecilia Reticulata)的毒性[J].生态环境,2004,13(1): 31-33.
    [172]H.X.Zhang,Q.Chen,R.Wen.Effect of Polycyclic Aromatic Hydrocarbonson Detection Sensitivity of Ultratrace Nitroaromatic Compounds[J].Anal.Chem.,2007,79(5):2179-2183.
    [173]H.Sabahudin,M.Ehsan,Y.L.Liu.Metallic Nanoparticle Carbon Nanotube-Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds[J].Anal Chem,2006,78(15):5504-5512.
    [174]陈明,阴永光,邰超.顶空吲相微萃取-气相色谱-质谱联用快速测定环境水样中的硝基苯、苯和苯胺[J].科学通报,2006,51(11):1359-1362.
    [175]J.W.Steven,R.E.William,S.Eskil.Chromatographic Detection of Nitroaromatic and Nitramine Compounds by Electrochemical Reduction Combined with Photoluminescence Following Electron Transfer[J].Anal.Chem.,2000,72(20):4928-4933.
    [176]C.S.Danesec,C.T.Davidc.Screening Method for Nitroaromatic Compounds in Water Based on Solid-Phase Microextraction and Infrared Spectroscopy[J].Environ.Sci.Technol.,2001,35(17):3507-3512.
    [177]M.Christopher,I.Amos,V.P.Bethany.Detection of Explosives and Explosives-Related Compounds by Single Photon Laser Ionization Time-of-Flight Mass Spectrometry[J].Anal.Chem.,2006,78(11):3807-3814.
    [178]K.G.Furton,L.J.Myers.The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives[J].Talanta,2001,54(3):487-500.
    [179]A.Rose,Z.Zhu,C.F.Madigan.Sensitivity Gains in Chemosensing by Lasing Action in Organic Polymers[J].Nature,2005,434(7035):876-879.
    [180]B.Ren,F.Gao,Z.Tong,Y.Yan.Solvent Polarity Scale on the Fluorescence Spectra of a Dansyl Monomer Copolymerizable in Aqueous Media[J].Chem.Phys.Lett.,1999,307(1-2):55-61.
    [181]A.C.Heller,R.R.McBride,M.A.Ronning.Detection of Trinitrotoluene in Water by Fluorescent Ion-Exchange Resins[J].Anal.Chem.,1977,49(14):2251-2253.
    [182]J.V.Goodpaster,V.L.McGuffin.Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives[J].Anal.Chem.,2001,73(9):2004-2011.
    [183]M.J.Hostetler,R.W.Murray.Colloids and Self-Assembled Monolayers[J].Curr.Opin.Colloid Interface Sci.,1997,2(1):42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700